from __future__ import division import cv2 import numpy as np def nothing(*arg): pass # Initial HSV GUI slider values to load on program start. icol = (36, 202, 59, 71, 255, 255) # Green #icol = (18, 0, 196, 36, 255, 255) # Yellow #icol = (89, 0, 0, 125, 255, 255) # Blue #icol = (0, 100, 80, 10, 255, 255) # Red cv2.namedWindow('colorTest') # Lower range colour sliders. cv2.createTrackbar('lowHue', 'colorTest', icol[0], 255, nothing) cv2.createTrackbar('lowSat', 'colorTest', icol[1], 255, nothing) cv2.createTrackbar('lowVal', 'colorTest', icol[2], 255, nothing) # Higher range colour sliders. cv2.createTrackbar('highHue', 'colorTest', icol[3], 255, nothing) cv2.createTrackbar('highSat', 'colorTest', icol[4], 255, nothing) cv2.createTrackbar('highVal', 'colorTest', icol[5], 255, nothing) # Raspberry pi file path example. frame = cv2.imread('box.png') # Windows file path example. #frame = cv2.imread('colour-circles-test.jpg') while True: # Get HSV values from the GUI sliders. lowHue = cv2.getTrackbarPos('lowHue', 'colorTest') lowSat = cv2.getTrackbarPos('lowSat', 'colorTest') lowVal = cv2.getTrackbarPos('lowVal', 'colorTest') highHue = cv2.getTrackbarPos('highHue', 'colorTest') highSat = cv2.getTrackbarPos('highSat', 'colorTest') highVal = cv2.getTrackbarPos('highVal', 'colorTest') # Show the original image. cv2.imshow('frame', frame) # Blur methods available, comment or uncomment to try different blur methods. frameBGR = cv2.GaussianBlur(frame, (7, 7), 0) #frameBGR = cv2.medianBlur(frameBGR, 7) #frameBGR = cv2.bilateralFilter(frameBGR, 15 ,75, 75) """kernal = np.ones((15, 15), np.float32)/255 frameBGR = cv2.filter2D(frameBGR, -1, kernal)""" # Show blurred image. cv2.imshow('blurred', frameBGR) # HSV (Hue, Saturation, Value). # Convert the frame to HSV colour model. hsv = cv2.cvtColor(frameBGR, cv2.COLOR_BGR2HSV) # HSV values to define a colour range. colorLow = np.array([lowHue,lowSat,lowVal]) colorHigh = np.array([highHue,highSat,highVal]) mask = cv2.inRange(hsv, colorLow, colorHigh) # Show the first mask #cv2.imshow('mask-plain', mask) kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernal) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernal) # Show morphological transformation mask #cv2.imshow('mask', mask) # Put mask over top of the original image. #result = cv2.bitwise_and(frame, frame, mask = mask) # Show final output image cv2.imshow('colorTest', result) k = cv2.waitKey(5) & 0xFF if k == 27: break