""" This script starts at a seed instance and loads the list of connected peers. From there, it scrapes the peers of all instances it finds, gradually mapping the fediverse. """ import json import multiprocessing as mp import requests import time import os from dateutil.parser import parse as datetime_parser from datetime import datetime, timedelta, timezone from functional import seq from django_bulk_update.helper import bulk_update from django.core.management.base import BaseCommand from django import db from django.conf import settings from scraper.models import Instance, PeerRelationship from scraper.management.commands._util import require_lock, InvalidResponseException, get_key, log, validate_int, PersonalInstanceException # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Because the script uses the Mastodon API other platforms like # # Pleroma, Peertube, Pixelfed, Funkwhale won't have outgoing peers. # # # # The script generates two files: # # - nodes.csv # # - edges.csv # # # # Change SEED to start from a different instance. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # TODO: use the /api/v1/server/followers and /api/v1/server/following endpoints in peertube instances SEED = 'mastodon.ar.al' TIMEOUT = 20 # seconds NUM_THREADS = 16 # roughly 40MB each PERSONAL_INSTANCE_THRESHOLD = 5 # instances with < this many users won't be scraped STATUS_SCRAPE_LIMIT = 5000 class Command(BaseCommand): help = "Scrapes the entire fediverse" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scraped_count = 0 f = open(os.path.join(settings.BASE_DIR, '../whitelist.txt'), 'r') self.whitelist = seq(f.readlines()).map(lambda i: i.lower().strip()).to_list() f.close() @staticmethod def get_instance_info(instance_name: str): """Collect info about instance""" url = 'https://' + instance_name + '/api/v1/instance' response = requests.get(url, timeout=TIMEOUT) json = response.json() if response.status_code != 200 or get_key(json, ['error']): raise InvalidResponseException("Could not get info for {}".format(instance_name)) return json @staticmethod def get_instance_peers(instance_name: str): """Collect connected instances""" # The peers endpoint returns a "list of all domain names known to this instance" # (https://github.com/tootsuite/mastodon/pull/6125) url = 'https://' + instance_name + '/api/v1/instance/peers' response = requests.get(url, timeout=TIMEOUT) peers = response.json() if response.status_code != 200 or not isinstance(peers, list) or get_key(peers, ['error']): raise InvalidResponseException("Could not get peers for {}".format(instance_name)) # Get rid of peers that just say "null" and the instance itself return [peer for peer in peers if peer and peer != instance_name] @staticmethod def get_statuses(instance_name: str): """Collect all statuses that mention users on other instances""" mentions = [] datetime_threshold = datetime.now(timezone.utc) - timedelta(days=31) statuses_seen = 0 # We'll ask for 1000 statuses, but Mastodon never returns more than 40. Some Pleroma instances will ignore # the limit and return 20. url = 'https://' + instance_name + '/api/v1/timelines/public?local=true&limit=1000' while True: response = requests.get(url, timeout=TIMEOUT) statuses = response.json() if response.status_code != 200 or get_key(statuses, ['error']): raise InvalidResponseException("Could not get statuses for {}".format(instance_name)) elif len(statuses) == 0: break # Get mentions from this instance mentions.extend((seq(statuses) .filter(lambda s: datetime_parser(s['created_at']) > datetime_threshold) .flat_map(lambda s: s['mentions']))) # map to mentions # Find out if we should stop here earliest_status = statuses[-1] earliest_time_seen = datetime_parser(earliest_status['created_at']) statuses_seen += len(statuses) # Mastodon returns max 40 statuses; if we ever see less than that we know there aren't any more if earliest_time_seen < datetime_threshold or statuses_seen >= STATUS_SCRAPE_LIMIT: break # Continuing, so get url for next page min_id = earliest_status['id'] url = 'https://' + instance_name + '/api/v1/timelines/public?local=true&limit=1000&max_id=' + min_id time.sleep(1) # Sleep to avoid overloading the instance mentions_seq = (seq(mentions) .filter(lambda m: not m['acct'].endswith(instance_name) and '@' in m['acct']) .map(lambda m: m['acct'].split('@')[-1]) # map to instance name .map(lambda m: (m, 1)) .reduce_by_key(lambda x, y: x+y)) # sequence of tuples (instance, count) mentions_by_instance = {t[0]: t[1] for t in mentions_seq} # dict of instance -> number of mentions return mentions_by_instance, statuses_seen def process_instance(self, instance: Instance): """Given an instance, get all the data we're interested in""" data = dict() try: data['instance_name'] = instance.name data['info'] = self.get_instance_info(instance.name) # Check if this is a personal instance before continuing user_count = get_key(data, ['info', 'stats', 'user_count']) print(self.whitelist) print(instance.name) if isinstance(user_count, int)\ and user_count < PERSONAL_INSTANCE_THRESHOLD\ and instance.name not in self.whitelist: raise PersonalInstanceException data['peers'] = self.get_instance_peers(instance.name) if not data['info'] and not data['peers']: # We got a response from the instance, but it didn't have any of the information we were expecting. raise InvalidResponseException data['mentions'], data['statuses_seen'] = self.get_statuses(instance.name) data['status'] = 'success' return data except (InvalidResponseException, PersonalInstanceException, requests.exceptions.RequestException, json.decoder.JSONDecodeError) as e: data['instance_name'] = instance.name data['status'] = type(e).__name__ return data @db.transaction.atomic @require_lock(Instance, 'ACCESS EXCLUSIVE') def save_data(self, instance, data, queue, existing_instance_ids): """Save data""" # Validate the ints. Some servers that appear to be fake instances have e.g. negative numbers here. instance.domain_count = validate_int(get_key(data, ['info', 'stats', 'domain_count'])) instance.status_count = validate_int(get_key(data, ['info', 'stats', 'status_count'])) instance.user_count = validate_int(get_key(data, ['info', 'stats', 'user_count'])) instance.description = get_key(data, ['info', 'description']) instance.version = get_key(data, ['info', 'version']) instance.status = get_key(data, ['status']) instance.save() if data['status'] == 'success' and data['peers']: # TODO: handle a peer disappeer-ing # Create instances for the peers we haven't seen before and add them to the queue new_instance_ids = [peer_id for peer_id in data['peers'] if peer_id not in existing_instance_ids] # bulk_create doesn't call save(), so the auto_now_add field won't get set automatically new_instances = [Instance(name=id, first_seen=datetime.now(), last_updated=datetime.now()) for id in new_instance_ids] existing_instance_ids.extend(new_instance_ids) Instance.objects.bulk_create(new_instances) for new_instance in new_instances: queue.put(new_instance) # Create relationships we haven't seen before existing_peer_ids = PeerRelationship.objects.filter(source=instance).values_list('target', flat=True) new_peer_ids = [peer_id for peer_id in data['peers'] if peer_id not in existing_peer_ids] if new_peer_ids: # new_peers = Instance.objects.filter(name__in=new_peer_ids) new_relationships = [PeerRelationship(source=instance, target_id=new_peer, first_seen=datetime.now()) for new_peer in new_peer_ids] PeerRelationship.objects.bulk_create(new_relationships) if data['status'] == 'success' and data['mentions']: # At this point, we can assume that a relationship exists for every peer that's mentioned in statuses mentions = data['mentions'] relationships = PeerRelationship.objects.filter(source=instance, target_id__in=list(mentions.keys())) for relationship in relationships: relationship.mention_count = mentions[relationship.target_id] relationship.statuses_seen = data['statuses_seen'] relationship.last_updated = datetime.now() bulk_update(relationships, update_fields=['mention_count', 'statuses_seen', 'last_updated']) self.stdout.write(log("Saved {}".format(data['instance_name']))) def worker(self, queue: mp.JoinableQueue, existing_instance_ids, scraped_ids): """The main worker that processes URLs""" # https://stackoverflow.com/a/38356519/3697202 db.connections.close_all() while True: instance = queue.get() if instance.name in scraped_ids: self.stderr.write(log("Skipping {}, already done. This should not have been added to the queue!" .format(instance))) queue.task_done() else: # Fetch data on instance self.stdout.write(log("Processing {}".format(instance.name))) data = self.process_instance(instance) self.save_data(instance, data, queue, existing_instance_ids) scraped_ids[instance.name] = 1 queue.task_done() def handle(self, *args, **options): start_time = time.time() stale_instances = Instance.objects.filter(last_updated__lte=datetime.now()-timedelta(days=1)) with mp.Manager() as manager: # Share the list of existing instances amongst all threads (to avoid each thread having to query # for it on every instance it scrapes) existing_instance_ids = manager.list(list(Instance.objects.values_list('name', flat=True))) scraped_ids = manager.dict() queue = mp.JoinableQueue() if stale_instances: for instance in stale_instances: queue.put(instance) elif not Instance.objects.exists(): instance, _ = Instance.objects.get_or_create(name=SEED) existing_instance_ids.append(instance.name) queue.put(instance) pool = mp.Pool(NUM_THREADS, initializer=self.worker, initargs=(queue, existing_instance_ids, scraped_ids)) queue.join() self.scraped_count = len(scraped_ids.keys()) end_time = time.time() self.stdout.write(self.style.SUCCESS(log("Scraped {} instances in {:.0f}s" .format(self.scraped_count, end_time - start_time))))