diff --git a/src/lib/miniaudio/miniaudio.h b/src/lib/miniaudio/miniaudio.h index 4f7e9099..edb2fabb 100644 --- a/src/lib/miniaudio/miniaudio.h +++ b/src/lib/miniaudio/miniaudio.h @@ -1,201 +1,25 @@ /* Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file. -miniaudio - v0.10.4 - 2020-04-12 +miniaudio - v0.10.27 - 2020-12-04 -David Reid - davidreidsoftware@gmail.com +David Reid - mackron@gmail.com -Website: https://miniaud.io -GitHub: https://github.com/dr-soft/miniaudio +Website: https://miniaud.io +Documentation: https://miniaud.io/docs +GitHub: https://github.com/mackron/miniaudio */ /* -RELEASE NOTES - VERSION 0.10.x -============================== -Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert -audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies -to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign. - - -Changes to Data Conversion --------------------------- -The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other -situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a -pointer to the input data directly rather than dealing with a callback. - -The following are the data conversion APIs that have been removed and their replacements: - - - ma_format_converter -> ma_convert_pcm_frames_format() - - ma_channel_router -> ma_channel_converter - - ma_src -> ma_resampler - - ma_pcm_converter -> ma_data_converter - -The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the -`*_process_pcm_frames()` function as a pointer to a buffer. - -The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel -conversion is also simple which you can do with `ma_channel_converter` via `ma_channel_converter_process_pcm_frames()`. - -Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you -call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to -output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated. - -The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably -makes it the best option if you need to do data conversion. - -In addition to changes to the API design, a few other changes have been made to the data conversion pipeline: - - - The sinc resampler has been removed. This was completely broken and never actually worked properly. - - The linear resampler now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with the - `lpfOrder` option, which has a maximum value of MA_MAX_FILTER_ORDER. - - Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before - processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however - `ma_data_converter` will handle this for you. - - -Custom Memory Allocators ------------------------- -miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more -flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the -`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure. - -The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by -`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same -way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults. - -The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults. -Otherwise they will use the relevant callback in the structure. - - - ma_malloc() - - ma_realloc() - - ma_free() - - ma_aligned_malloc() - - ma_aligned_free() - - ma_rb_init() / ma_rb_init_ex() - - ma_pcm_rb_init() / ma_pcm_rb_init_ex() - -Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom -allocation callbacks. - - -Buffer and Period Configuration Changes ---------------------------------------- -The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables -`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by -the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine -latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called -`periodSizeInFrames` and `periodSizeInMilliseconds`. - -These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is -that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to -configure latency. - -The following unused APIs have been removed: - - ma_get_default_buffer_size_in_milliseconds() - ma_get_default_buffer_size_in_frames() - -The following macros have been removed: - - MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY - MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE - - -Other API Changes ------------------ -Other less major API changes have also been made in version 0.10. - -`ma_device_set_stop_callback()` has been removed. If you require a stop callback, you must now set it via the device config just like the data callback. - -The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including -sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes a configuration -object called `ma_waveform_config` which defines the properties of the waveform. Use `ma_waveform_config_init()` to initialize a `ma_waveform_config` object. -Use `ma_waveform_read_pcm_frames()` in place of `ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`. - -`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies -the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to -take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it more flexible, to -prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added. - -`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API. - - -Filters -------- -The following filters have been added: - - |-------------|-------------------------------------------------------------------| - | API | Description | - |-------------|-------------------------------------------------------------------| - | ma_biquad | Biquad filter (transposed direct form 2) | - | ma_lpf1 | First order low-pass filter | - | ma_lpf2 | Second order low-pass filter | - | ma_lpf | High order low-pass filter (Butterworth) | - | ma_hpf1 | First order high-pass filter | - | ma_hpf2 | Second order high-pass filter | - | ma_hpf | High order high-pass filter (Butterworth) | - | ma_bpf2 | Second order band-pass filter | - | ma_bpf | High order band-pass filter | - | ma_peak2 | Second order peaking filter | - | ma_notch2 | Second order notching filter | - | ma_loshelf2 | Second order low shelf filter | - | ma_hishelf2 | Second order high shelf filter | - |-------------|-------------------------------------------------------------------| - -These filters all support 32-bit floating point and 16-bit signed integer formats natively. Other formats need to be converted beforehand. - - -Sine, Square, Triangle and Sawtooth Waveforms ---------------------------------------------- -Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old -`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_config_init()` to initialize a config object, and then pass it -into `ma_waveform_init()`. Then use `ma_waveform_read_pcm_frames()` to read PCM data. - - -Noise Generation ----------------- -A noise generation API has been added. This is used via the `ma_noise` API. Currently white, pink and Brownian noise is supported. The `ma_noise` API is -similar to the waveform API. Use `ma_noise_config_init()` to initialize a config object, and then pass it into `ma_noise_init()` to initialize a `ma_noise` -object. Then use `ma_noise_read_pcm_frames()` to read PCM data. - - -Miscellaneous Changes ---------------------- -The MA_NO_STDIO option has been removed. This would disable file I/O APIs, however this has proven to be too hard to maintain for it's perceived value and was -therefore removed. - -Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report. - -The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on -the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it -was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work, -this has been removed from all structures. - -Results codes have been overhauled. Unnecessary result codes have been removed, and some have been renumbered for organisation purposes. If you are are binding -maintainer you will need to update your result codes. Support has also been added for retrieving a human readable description of a given result code via the -`ma_result_description()` API. - -ALSA: The automatic format conversion, channel conversion and resampling performed by ALSA is now disabled by default as they were causing some compatibility -issues with certain devices and configurations. These can be individually enabled via the device config: - - ```c - deviceConfig.alsa.noAutoFormat = MA_TRUE; - deviceConfig.alsa.noAutoChannels = MA_TRUE; - deviceConfig.alsa.noAutoResample = MA_TRUE; - ``` -*/ - - -/* -Introduction -============ +1. Introduction +=============== miniaudio is a single file library for audio playback and capture. To use it, do the following in one .c file: ```c #define MINIAUDIO_IMPLEMENTATION - #include "miniaudio.h + #include "miniaudio.h" ``` -You can #include miniaudio.h in other parts of the program just like any other header. +You can do `#include "miniaudio.h"` in other parts of the program just like any other header. miniaudio uses the concept of a "device" as the abstraction for physical devices. The idea is that you choose a physical device to emit or capture audio from, and then move data to/from the device when miniaudio tells you to. Data is delivered to and from devices asynchronously via a callback which you specify when @@ -211,29 +35,32 @@ but you could allocate it on the heap if that suits your situation better. ```c void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount) { - // In playback mode copy data to pOutput. In capture mode read data from pInput. In full-duplex mode, both pOutput and pInput will be valid and you can - // move data from pInput into pOutput. Never process more than frameCount frames. + // In playback mode copy data to pOutput. In capture mode read data from pInput. In full-duplex mode, both + // pOutput and pInput will be valid and you can move data from pInput into pOutput. Never process more than + // frameCount frames. } - ... + int main() + { + ma_device_config config = ma_device_config_init(ma_device_type_playback); + config.playback.format = ma_format_f32; // Set to ma_format_unknown to use the device's native format. + config.playback.channels = 2; // Set to 0 to use the device's native channel count. + config.sampleRate = 48000; // Set to 0 to use the device's native sample rate. + config.dataCallback = data_callback; // This function will be called when miniaudio needs more data. + config.pUserData = pMyCustomData; // Can be accessed from the device object (device.pUserData). - ma_device_config config = ma_device_config_init(ma_device_type_playback); - config.playback.format = MY_FORMAT; - config.playback.channels = MY_CHANNEL_COUNT; - config.sampleRate = MY_SAMPLE_RATE; - config.dataCallback = data_callback; - config.pUserData = pMyCustomData; // Can be accessed from the device object (device.pUserData). + ma_device device; + if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) { + return -1; // Failed to initialize the device. + } - ma_device device; - if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) { - ... An error occurred ... + ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually. + + // Do something here. Probably your program's main loop. + + ma_device_uninit(&device); // This will stop the device so no need to do that manually. + return 0; } - - ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually. - - ... - - ma_device_uninit(&device); // This will stop the device so no need to do that manually. ``` In the example above, `data_callback()` is where audio data is written and read from the device. The idea is in playback mode you cause sound to be emitted @@ -251,15 +78,15 @@ are added to the `ma_device_config` structure. The example above uses a fairly s takes a single parameter, which is whether or not the device is a playback, capture, duplex or loopback device (loopback devices are not supported on all backends). The `config.playback.format` member sets the sample format which can be one of the following (all formats are native-endian): - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ | Symbol | Description | Range | - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ | ma_format_f32 | 32-bit floating point | [-1, 1] | | ma_format_s16 | 16-bit signed integer | [-32768, 32767] | | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] | | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] | | ma_format_u8 | 8-bit unsigned integer | [0, 255] | - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ The `config.playback.channels` member sets the number of channels to use with the device. The channel count cannot exceed MA_MAX_CHANNELS. The `config.sampleRate` member sets the sample rate (which must be the same for both playback and capture in full-duplex configurations). This is usually set to @@ -278,15 +105,17 @@ it, which is what the example above does, but you can also stop the device with Note that it's important to never stop or start the device from inside the callback. This will result in a deadlock. Instead you set a variable or signal an event indicating that the device needs to stop and handle it in a different thread. The following APIs must never be called inside the callback: + ```c ma_device_init() ma_device_init_ex() ma_device_uninit() ma_device_start() ma_device_stop() + ``` You must never try uninitializing and reinitializing a device inside the callback. You must also never try to stop and start it from inside the callback. There -are a few other things you shouldn't do in the callback depending on your requirements, however this isn't so much a thread-safety thing, but rather a real- -time processing thing which is beyond the scope of this introduction. +are a few other things you shouldn't do in the callback depending on your requirements, however this isn't so much a thread-safety thing, but rather a +real-time processing thing which is beyond the scope of this introduction. The example above demonstrates the initialization of a playback device, but it works exactly the same for capture. All you need to do is change the device type from `ma_device_type_playback` to `ma_device_type_capture` when setting up the config, like so: @@ -302,14 +131,14 @@ device type is set to `ma_device_type_capture`). These are the available device types and how you should handle the buffers in the callback: - |-------------------------|--------------------------------------------------------| + +-------------------------+--------------------------------------------------------+ | Device Type | Callback Behavior | - |-------------------------|--------------------------------------------------------| + +-------------------------+--------------------------------------------------------+ | ma_device_type_playback | Write to output buffer, leave input buffer untouched. | | ma_device_type_capture | Read from input buffer, leave output buffer untouched. | | ma_device_type_duplex | Read from input buffer, write to output buffer. | | ma_device_type_loopback | Read from input buffer, leave output buffer untouched. | - |-------------------------|--------------------------------------------------------| + +-------------------------+--------------------------------------------------------+ You will notice in the example above that the sample format and channel count is specified separately for playback and capture. This is to support different data formats between the playback and capture devices in a full-duplex system. An example may be that you want to capture audio data as a monaural stream (one @@ -319,7 +148,7 @@ will need to convert the data yourself. There are functions available to help yo The example above did not specify a physical device to connect to which means it will use the operating system's default device. If you have multiple physical devices connected and you want to use a specific one you will need to specify the device ID in the configuration, like so: - ``` + ```c config.playback.pDeviceID = pMyPlaybackDeviceID; // Only if requesting a playback or duplex device. config.capture.pDeviceID = pMyCaptureDeviceID; // Only if requesting a capture, duplex or loopback device. ``` @@ -335,22 +164,22 @@ backends and enumerating devices. The example below shows how to enumerate devic // Error. } - ma_device_info* pPlaybackDeviceInfos; - ma_uint32 playbackDeviceCount; - ma_device_info* pCaptureDeviceInfos; - ma_uint32 captureDeviceCount; - if (ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, &pCaptureDeviceInfos, &captureDeviceCount) != MA_SUCCESS) { + ma_device_info* pPlaybackInfos; + ma_uint32 playbackCount; + ma_device_info* pCaptureInfos; + ma_uint32 captureCount; + if (ma_context_get_devices(&context, &pPlaybackInfos, &playbackCount, &pCaptureInfos, &captureCount) != MA_SUCCESS) { // Error. } - // Loop over each device info and do something with it. Here we just print the name with their index. You may want to give the user the - // opportunity to choose which device they'd prefer. - for (ma_uint32 iDevice = 0; iDevice < playbackDeviceCount; iDevice += 1) { - printf("%d - %s\n", iDevice, pPlaybackDeviceInfos[iDevice].name); + // Loop over each device info and do something with it. Here we just print the name with their index. You may want + // to give the user the opportunity to choose which device they'd prefer. + for (ma_uint32 iDevice = 0; iDevice < playbackCount; iDevice += 1) { + printf("%d - %s\n", iDevice, pPlaybackInfos[iDevice].name); } ma_device_config config = ma_device_config_init(ma_device_type_playback); - config.playback.pDeviceID = &pPlaybackDeviceInfos[chosenPlaybackDeviceIndex].id; + config.playback.pDeviceID = &pPlaybackInfos[chosenPlaybackDeviceIndex].id; config.playback.format = MY_FORMAT; config.playback.channels = MY_CHANNEL_COUNT; config.sampleRate = MY_SAMPLE_RATE; @@ -389,198 +218,237 @@ allocate memory for the context. -Building -======== +2. Building +=========== miniaudio should work cleanly out of the box without the need to download or install any dependencies. See below for platform-specific details. -Windows -------- +2.1. Windows +------------ The Windows build should compile cleanly on all popular compilers without the need to configure any include paths nor link to any libraries. -macOS and iOS -------------- +2.2. macOS and iOS +------------------ The macOS build should compile cleanly without the need to download any dependencies nor link to any libraries or frameworks. The iOS build needs to be -compiled as Objective-C (sorry) and will need to link the relevant frameworks but should Just Work with Xcode. Compiling through the command line requires -linking to -lpthread and -lm. +compiled as Objective-C and will need to link the relevant frameworks but should compile cleanly out of the box with Xcode. Compiling through the command line +requires linking to `-lpthread` and `-lm`. -Linux ------ -The Linux build only requires linking to -ldl, -lpthread and -lm. You do not need any development packages. +Due to the way miniaudio links to frameworks at runtime, your application may not pass Apple's notarization process. To fix this there are two options. The +first is to use the `MA_NO_RUNTIME_LINKING` option, like so: -BSD ---- -The BSD build only requires linking to -lpthread and -lm. NetBSD uses audio(4), OpenBSD uses sndio and FreeBSD uses OSS. + ```c + #ifdef __APPLE__ + #define MA_NO_RUNTIME_LINKING + #endif + #define MINIAUDIO_IMPLEMENTATION + #include "miniaudio.h" + ``` -Android -------- +This will require linking with `-framework CoreFoundation -framework CoreAudio -framework AudioUnit`. Alternatively, if you would rather keep using runtime +linking you can add the following to your entitlements.xcent file: + + ``` + com.apple.security.cs.allow-dyld-environment-variables + + com.apple.security.cs.allow-unsigned-executable-memory + + ``` + + +2.3. Linux +---------- +The Linux build only requires linking to `-ldl`, `-lpthread` and `-lm`. You do not need any development packages. + +2.4. BSD +-------- +The BSD build only requires linking to `-lpthread` and `-lm`. NetBSD uses audio(4), OpenBSD uses sndio and FreeBSD uses OSS. + +2.5. Android +------------ AAudio is the highest priority backend on Android. This should work out of the box without needing any kind of compiler configuration. Support for AAudio starts with Android 8 which means older versions will fall back to OpenSL|ES which requires API level 16+. -Emscripten ----------- -The Emscripten build emits Web Audio JavaScript directly and should Just Work without any configuration. You cannot use -std=c* compiler flags, nor -ansi. +2.6. Emscripten +--------------- +The Emscripten build emits Web Audio JavaScript directly and should compile cleanly out of the box. You cannot use -std=c* compiler flags, nor -ansi. -Build Options -------------- -#define these options before including miniaudio.h. +2.7. Build Options +------------------ +`#define` these options before including miniaudio.h. -#define MA_NO_WASAPI - Disables the WASAPI backend. - -#define MA_NO_DSOUND - Disables the DirectSound backend. - -#define MA_NO_WINMM - Disables the WinMM backend. - -#define MA_NO_ALSA - Disables the ALSA backend. - -#define MA_NO_PULSEAUDIO - Disables the PulseAudio backend. - -#define MA_NO_JACK - Disables the JACK backend. - -#define MA_NO_COREAUDIO - Disables the Core Audio backend. - -#define MA_NO_SNDIO - Disables the sndio backend. - -#define MA_NO_AUDIO4 - Disables the audio(4) backend. - -#define MA_NO_OSS - Disables the OSS backend. - -#define MA_NO_AAUDIO - Disables the AAudio backend. - -#define MA_NO_OPENSL - Disables the OpenSL|ES backend. - -#define MA_NO_WEBAUDIO - Disables the Web Audio backend. - -#define MA_NO_NULL - Disables the null backend. - -#define MA_NO_DECODING - Disables the decoding APIs. - -#define MA_NO_DEVICE_IO - Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to use miniaudio's data conversion and/or - decoding APIs. - -#define MA_NO_SSE2 - Disables SSE2 optimizations. - -#define MA_NO_AVX2 - Disables AVX2 optimizations. - -#define MA_NO_AVX512 - Disables AVX-512 optimizations. - -#define MA_NO_NEON - Disables NEON optimizations. - -#define MA_LOG_LEVEL - Sets the logging level. Set level to one of the following: - MA_LOG_LEVEL_VERBOSE - MA_LOG_LEVEL_INFO - MA_LOG_LEVEL_WARNING - MA_LOG_LEVEL_ERROR - -#define MA_DEBUG_OUTPUT - Enable printf() debug output. - -#define MA_COINIT_VALUE - Windows only. The value to pass to internal calls to CoInitializeEx(). Defaults to COINIT_MULTITHREADED. - -#define MA_API - Controls how public APIs should be decorated. Defaults to `extern`. - -#define MA_DLL - If set, configures MA_API to either import or export APIs depending on whether or not the implementation is being defined. If defining the implementation, - MA_API will be configured to export. Otherwise it will be configured to import. This has no effect if MA_API is defined externally. - + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | Option | Description | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_WASAPI | Disables the WASAPI backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_DSOUND | Disables the DirectSound backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_WINMM | Disables the WinMM backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_ALSA | Disables the ALSA backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_PULSEAUDIO | Disables the PulseAudio backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_JACK | Disables the JACK backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_COREAUDIO | Disables the Core Audio backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_SNDIO | Disables the sndio backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_AUDIO4 | Disables the audio(4) backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_OSS | Disables the OSS backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_AAUDIO | Disables the AAudio backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_OPENSL | Disables the OpenSL|ES backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_WEBAUDIO | Disables the Web Audio backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_NULL | Disables the null backend. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_DECODING | Disables decoding APIs. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_ENCODING | Disables encoding APIs. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_WAV | Disables the built-in WAV decoder and encoder. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_FLAC | Disables the built-in FLAC decoder. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_MP3 | Disables the built-in MP3 decoder. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_DEVICE_IO | Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to use | + | | miniaudio's data conversion and/or decoding APIs. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_THREADING | Disables the ma_thread, ma_mutex, ma_semaphore and ma_event APIs. This option is useful if you only need to use miniaudio for | + | | data conversion, decoding and/or encoding. Some families of APIs require threading which means the following options must also | + | | be set: | + | | | + | | ``` | + | | MA_NO_DEVICE_IO | + | | ``` | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_GENERATION | Disables generation APIs such a ma_waveform and ma_noise. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_SSE2 | Disables SSE2 optimizations. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_AVX2 | Disables AVX2 optimizations. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_AVX512 | Disables AVX-512 optimizations. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_NEON | Disables NEON optimizations. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_NO_RUNTIME_LINKING | Disables runtime linking. This is useful for passing Apple's notarization process. When enabling this, you may need to avoid | + | | using `-std=c89` or `-std=c99` on Linux builds or else you may end up with compilation errors due to conflicts with `timespec` | + | | and `timeval` data types. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_LOG_LEVEL [level] | Sets the logging level. Set `level` to one of the following: | + | | | + | | ``` | + | | MA_LOG_LEVEL_VERBOSE | + | | MA_LOG_LEVEL_INFO | + | | MA_LOG_LEVEL_WARNING | + | | MA_LOG_LEVEL_ERROR | + | | ``` | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_DEBUG_OUTPUT | Enable `printf()` debug output. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_COINIT_VALUE | Windows only. The value to pass to internal calls to `CoInitializeEx()`. Defaults to `COINIT_MULTITHREADED`. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_API | Controls how public APIs should be decorated. Defaults to `extern`. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ + | MA_DLL | If set, configures MA_API to either import or export APIs depending on whether or not the implementation is being defined. If | + | | defining the implementation, MA_API will be configured to export. Otherwise it will be configured to import. This has no effect | + | | if MA_API is defined externally. | + +-----------------------+---------------------------------------------------------------------------------------------------------------------------------+ - -Definitions -=========== +3. Definitions +============== This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms throughout the audio space, so this section is intended to clarify how miniaudio uses each term. -Sample ------- +3.1. Sample +----------- A sample is a single unit of audio data. If the sample format is f32, then one sample is one 32-bit floating point number. -Frame / PCM Frame ------------------ +3.2. Frame / PCM Frame +---------------------- A frame is a group of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in miniaudio. Note that this is different to a compressed frame. If ever miniaudio needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame". -Channel -------- +3.3. Channel +------------ A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual microphone in a microphone system. A stereo stream has two channels (a left channel, and a right channel), a 5.1 surround sound system has 6 channels, etc. Some audio systems refer to a channel as a complex audio stream that's mixed with other channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and should not be confused. -Sample Rate ------------ +3.4. Sample Rate +---------------- The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are processed per second. -Formats -------- +3.5. Formats +------------ Throughout miniaudio you will see references to different sample formats: - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ | Symbol | Description | Range | - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ | ma_format_f32 | 32-bit floating point | [-1, 1] | | ma_format_s16 | 16-bit signed integer | [-32768, 32767] | | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] | | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] | | ma_format_u8 | 8-bit unsigned integer | [0, 255] | - |---------------|----------------------------------------|---------------------------| + +---------------+----------------------------------------+---------------------------+ All formats are native-endian. -Decoding -======== -The `ma_decoder` API is used for reading audio files. To enable a decoder you must #include the header of the relevant backend library before the -implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio). +4. Decoding +=========== +The `ma_decoder` API is used for reading audio files. Decoders are completely decoupled from devices and can be used independently. The following formats are +supported: -The table below are the supported decoding backends: + +---------+------------------+----------+ + | Format | Decoding Backend | Built-In | + +---------+------------------+----------+ + | WAV | dr_wav | Yes | + | MP3 | dr_mp3 | Yes | + | FLAC | dr_flac | Yes | + | Vorbis | stb_vorbis | No | + +---------+------------------+----------+ - |--------|-----------------| - | Type | Backend Library | - |--------|-----------------| - | WAV | dr_wav.h | - | FLAC | dr_flac.h | - | MP3 | dr_mp3.h | - | Vorbis | stb_vorbis.c | - |--------|-----------------| - -The code below is an example of how to enable decoding backends: +Vorbis is supported via stb_vorbis which can be enabled by including the header section before the implementation of miniaudio, like the following: ```c - #include "dr_flac.h" // Enables FLAC decoding. - #include "dr_mp3.h" // Enables MP3 decoding. - #include "dr_wav.h" // Enables WAV decoding. + #define STB_VORBIS_HEADER_ONLY + #include "extras/stb_vorbis.c" // Enables Vorbis decoding. #define MINIAUDIO_IMPLEMENTATION #include "miniaudio.h" + + // The stb_vorbis implementation must come after the implementation of miniaudio. + #undef STB_VORBIS_HEADER_ONLY + #include "extras/stb_vorbis.c" ``` +A copy of stb_vorbis is included in the "extras" folder in the miniaudio repository (https://github.com/mackron/miniaudio). + +Built-in decoders are amalgamated into the implementation section of miniaudio. You can disable the built-in decoders by specifying one or more of the +following options before the miniaudio implementation: + + ```c + #define MA_NO_WAV + #define MA_NO_MP3 + #define MA_NO_FLAC + ``` + +Disabling built-in decoding libraries is useful if you use these libraries independantly of the `ma_decoder` API. + A decoder can be initialized from a file with `ma_decoder_init_file()`, a block of memory with `ma_decoder_init_memory()`, or from data delivered via callbacks with `ma_decoder_init()`. Here is an example for loading a decoder from a file: @@ -596,19 +464,23 @@ with `ma_decoder_init()`. Here is an example for loading a decoder from a file: ma_decoder_uninit(&decoder); ``` -When initializing a decoder, you can optionally pass in a pointer to a ma_decoder_config object (the NULL argument in the example above) which allows you to -configure the output format, channel count, sample rate and channel map: +When initializing a decoder, you can optionally pass in a pointer to a `ma_decoder_config` object (the `NULL` argument in the example above) which allows you +to configure the output format, channel count, sample rate and channel map: ```c ma_decoder_config config = ma_decoder_config_init(ma_format_f32, 2, 48000); ``` -When passing in NULL for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend. +When passing in `NULL` for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend. -Data is read from the decoder as PCM frames: +Data is read from the decoder as PCM frames. This will return the number of PCM frames actually read. If the return value is less than the requested number of +PCM frames it means you've reached the end: ```c ma_uint64 framesRead = ma_decoder_read_pcm_frames(pDecoder, pFrames, framesToRead); + if (framesRead < framesToRead) { + // Reached the end. + } ``` You can also seek to a specific frame like so: @@ -620,6 +492,12 @@ You can also seek to a specific frame like so: } ``` +If you want to loop back to the start, you can simply seek back to the first PCM frame: + + ```c + ma_decoder_seek_to_pcm_frame(pDecoder, 0); + ``` + When loading a decoder, miniaudio uses a trial and error technique to find the appropriate decoding backend. This can be unnecessarily inefficient if the type is already known. In this case you can use the `_wav`, `_mp3`, etc. varients of the aforementioned initialization APIs: @@ -637,26 +515,13 @@ The `ma_decoder_init_file()` API will try using the file extension to determine -Encoding -======== -The `ma_encoding` API is used for writing audio files. To enable an encoder you must #include the header of the relevant backend library before the -implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio). - -The table below are the supported encoding backends: - - |--------|-----------------| - | Type | Backend Library | - |--------|-----------------| - | WAV | dr_wav.h | - |--------|-----------------| - -The code below is an example of how to enable encoding backends: +5. Encoding +=========== +The `ma_encoding` API is used for writing audio files. The only supported output format is WAV which is achieved via dr_wav which is amalgamated into the +implementation section of miniaudio. This can be disabled by specifying the following option before the implementation of miniaudio: ```c - #include "dr_wav.h" // Enables WAV encoding. - - #define MINIAUDIO_IMPLEMENTATION - #include "miniaudio.h" + #define MA_NO_WAV ``` An encoder can be initialized to write to a file with `ma_encoder_init_file()` or from data delivered via callbacks with `ma_encoder_init()`. Below is an @@ -678,11 +543,11 @@ example for initializing an encoder to output to a file. When initializing an encoder you must specify a config which is initialized with `ma_encoder_config_init()`. Here you must specify the file type, the output sample format, output channel count and output sample rate. The following file types are supported: - |------------------------|-------------| + +------------------------+-------------+ | Enum | Description | - |------------------------|-------------| + +------------------------+-------------+ | ma_resource_format_wav | WAV | - |------------------------|-------------| + +------------------------+-------------+ If the format, channel count or sample rate is not supported by the output file type an error will be returned. The encoder will not perform data conversion so you will need to convert it before outputting any audio data. To output audio data, use `ma_encoder_write_pcm_frames()`, like in the example below: @@ -694,30 +559,37 @@ you will need to convert it before outputting any audio data. To output audio da Encoders must be uninitialized with `ma_encoder_uninit()`. +6. Data Conversion +================== +A data conversion API is included with miniaudio which supports the majority of data conversion requirements. This supports conversion between sample formats, +channel counts (with channel mapping) and sample rates. -Sample Format Conversion -======================== + +6.1. Sample Format Conversion +----------------------------- Conversion between sample formats is achieved with the `ma_pcm_*_to_*()`, `ma_pcm_convert()` and `ma_convert_pcm_frames_format()` APIs. Use `ma_pcm_*_to_*()` to convert between two specific formats. Use `ma_pcm_convert()` to convert based on a `ma_format` variable. Use `ma_convert_pcm_frames_format()` to convert PCM frames where you want to specify the frame count and channel count as a variable instead of the total sample count. -Dithering ---------- + +6.1.1. Dithering +---------------- Dithering can be set using the ditherMode parameter. The different dithering modes include the following, in order of efficiency: - |-----------|--------------------------| + +-----------+--------------------------+ | Type | Enum Token | - |-----------|--------------------------| + +-----------+--------------------------+ | None | ma_dither_mode_none | | Rectangle | ma_dither_mode_rectangle | | Triangle | ma_dither_mode_triangle | - |-----------|--------------------------| + +-----------+--------------------------+ Note that even if the dither mode is set to something other than `ma_dither_mode_none`, it will be ignored for conversions where dithering is not needed. Dithering is available for the following conversions: + ``` s16 -> u8 s24 -> u8 s32 -> u8 @@ -725,18 +597,26 @@ Dithering is available for the following conversions: s24 -> s16 s32 -> s16 f32 -> s16 + ``` Note that it is not an error to pass something other than ma_dither_mode_none for conversions where dither is not used. It will just be ignored. -Channel Conversion -================== +6.2. Channel Conversion +----------------------- Channel conversion is used for channel rearrangement and conversion from one channel count to another. The `ma_channel_converter` API is used for channel conversion. Below is an example of initializing a simple channel converter which converts from mono to stereo. ```c - ma_channel_converter_config config = ma_channel_converter_config_init(ma_format, 1, NULL, 2, NULL, ma_channel_mix_mode_default, NULL); + ma_channel_converter_config config = ma_channel_converter_config_init( + ma_format, // Sample format + 1, // Input channels + NULL, // Input channel map + 2, // Output channels + NULL, // Output channel map + ma_channel_mix_mode_default); // The mixing algorithm to use when combining channels. + result = ma_channel_converter_init(&config, &converter); if (result != MA_SUCCESS) { // Error. @@ -754,15 +634,12 @@ To perform the conversion simply call `ma_channel_converter_process_pcm_frames() It is up to the caller to ensure the output buffer is large enough to accomodate the new PCM frames. -The only formats supported are `ma_format_s16` and `ma_format_f32`. If you need another format you need to convert your data manually which you can do with -`ma_pcm_convert()`, etc. - Input and output PCM frames are always interleaved. Deinterleaved layouts are not supported. -Channel Mapping ---------------- -In addition to converting from one channel count to another, like the example above, The channel converter can also be used to rearrange channels. When +6.2.1. Channel Mapping +---------------------- +In addition to converting from one channel count to another, like the example above, the channel converter can also be used to rearrange channels. When initializing the channel converter, you can optionally pass in channel maps for both the input and output frames. If the channel counts are the same, and each channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels will be performed. If, however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing mode which is @@ -784,9 +661,9 @@ Finally, the `ma_channel_mix_mode_custom_weights` mode can be used to use custom Predefined channel maps can be retrieved with `ma_get_standard_channel_map()`. This takes a `ma_standard_channel_map` enum as it's first parameter, which can be one of the following: - |-----------------------------------|-----------------------------------------------------------| + +-----------------------------------+-----------------------------------------------------------+ | Name | Description | - |-----------------------------------|-----------------------------------------------------------| + +-----------------------------------+-----------------------------------------------------------+ | ma_standard_channel_map_default | Default channel map used by miniaudio. See below. | | ma_standard_channel_map_microsoft | Channel map used by Microsoft's bitfield channel maps. | | ma_standard_channel_map_alsa | Default ALSA channel map. | @@ -794,72 +671,78 @@ be one of the following: | ma_standard_channel_map_flac | FLAC channel map. | | ma_standard_channel_map_vorbis | Vorbis channel map. | | ma_standard_channel_map_sound4 | FreeBSD's sound(4). | - | ma_standard_channel_map_sndio | sndio channel map. www.sndio.org/tips.html | - | ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering | - |-----------------------------------|-----------------------------------------------------------| + | ma_standard_channel_map_sndio | sndio channel map. http://www.sndio.org/tips.html. | + | ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering | + +-----------------------------------+-----------------------------------------------------------+ -Below are the channel maps used by default in miniaudio (ma_standard_channel_map_default): +Below are the channel maps used by default in miniaudio (`ma_standard_channel_map_default`): - |---------------|------------------------------| - | Channel Count | Mapping | - |---------------|------------------------------| - | 1 (Mono) | 0: MA_CHANNEL_MONO | - |---------------|------------------------------| - | 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - |---------------|------------------------------| - | 3 | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - |---------------|------------------------------| - | 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - | | 3: MA_CHANNEL_BACK_CENTER | - |---------------|------------------------------| - | 5 | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - | | 3: MA_CHANNEL_BACK_LEFT | - | | 4: MA_CHANNEL_BACK_RIGHT | - |---------------|------------------------------| - | 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - | | 3: MA_CHANNEL_LFE | - | | 4: MA_CHANNEL_SIDE_LEFT | - | | 5: MA_CHANNEL_SIDE_RIGHT | - |---------------|------------------------------| - | 7 | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - | | 3: MA_CHANNEL_LFE | - | | 4: MA_CHANNEL_BACK_CENTER | - | | 4: MA_CHANNEL_SIDE_LEFT | - | | 5: MA_CHANNEL_SIDE_RIGHT | - |---------------|------------------------------| - | 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT | - | | 1: MA_CHANNEL_FRONT_RIGHT | - | | 2: MA_CHANNEL_FRONT_CENTER | - | | 3: MA_CHANNEL_LFE | - | | 4: MA_CHANNEL_BACK_LEFT | - | | 5: MA_CHANNEL_BACK_RIGHT | - | | 6: MA_CHANNEL_SIDE_LEFT | - | | 7: MA_CHANNEL_SIDE_RIGHT | - |---------------|------------------------------| - | Other | All channels set to 0. This | - | | is equivalent to the same | - | | mapping as the device. | - |---------------|------------------------------| + +---------------+---------------------------------+ + | Channel Count | Mapping | + +---------------+---------------------------------+ + | 1 (Mono) | 0: MA_CHANNEL_MONO | + +---------------+---------------------------------+ + | 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT | + +---------------+---------------------------------+ + | 3 | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER | + +---------------+---------------------------------+ + | 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER
| + | | 3: MA_CHANNEL_BACK_CENTER | + +---------------+---------------------------------+ + | 5 | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER
| + | | 3: MA_CHANNEL_BACK_LEFT
| + | | 4: MA_CHANNEL_BACK_RIGHT | + +---------------+---------------------------------+ + | 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER
| + | | 3: MA_CHANNEL_LFE
| + | | 4: MA_CHANNEL_SIDE_LEFT
| + | | 5: MA_CHANNEL_SIDE_RIGHT | + +---------------+---------------------------------+ + | 7 | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER
| + | | 3: MA_CHANNEL_LFE
| + | | 4: MA_CHANNEL_BACK_CENTER
| + | | 4: MA_CHANNEL_SIDE_LEFT
| + | | 5: MA_CHANNEL_SIDE_RIGHT | + +---------------+---------------------------------+ + | 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT
| + | | 1: MA_CHANNEL_FRONT_RIGHT
| + | | 2: MA_CHANNEL_FRONT_CENTER
| + | | 3: MA_CHANNEL_LFE
| + | | 4: MA_CHANNEL_BACK_LEFT
| + | | 5: MA_CHANNEL_BACK_RIGHT
| + | | 6: MA_CHANNEL_SIDE_LEFT
| + | | 7: MA_CHANNEL_SIDE_RIGHT | + +---------------+---------------------------------+ + | Other | All channels set to 0. This | + | | is equivalent to the same | + | | mapping as the device. | + +---------------+---------------------------------+ -Resampling -========== +6.3. Resampling +--------------- Resampling is achieved with the `ma_resampler` object. To create a resampler object, do something like the following: ```c - ma_resampler_config config = ma_resampler_config_init(ma_format_s16, channels, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear); + ma_resampler_config config = ma_resampler_config_init( + ma_format_s16, + channels, + sampleRateIn, + sampleRateOut, + ma_resample_algorithm_linear); + ma_resampler resampler; ma_result result = ma_resampler_init(&config, &resampler); if (result != MA_SUCCESS) { @@ -883,7 +766,8 @@ The following example shows how data can be processed // An error occurred... } - // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written. + // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the + // number of output frames written. ``` To initialize the resampler you first need to set up a config (`ma_resampler_config`) with `ma_resampler_config_init()`. You need to specify the sample format @@ -899,12 +783,12 @@ only configuration property that can be changed after initialization. The miniaudio resampler supports multiple algorithms: - |-----------|------------------------------| + +-----------+------------------------------+ | Algorithm | Enum Token | - |-----------|------------------------------| + +-----------+------------------------------+ | Linear | ma_resample_algorithm_linear | | Speex | ma_resample_algorithm_speex | - |-----------|------------------------------| + +-----------+------------------------------+ Because Speex is not public domain it is strictly opt-in and the code is stored in separate files. if you opt-in to the Speex backend you will need to consider it's license, the text of which can be found in it's source files in "extras/speex_resampler". Details on how to opt-in to the Speex resampler is explained in @@ -929,15 +813,15 @@ Due to the nature of how resampling works, the resampler introduces some latency with `ma_resampler_get_input_latency()` and `ma_resampler_get_output_latency()`. -Resampling Algorithms ---------------------- +6.3.1. Resampling Algorithms +---------------------------- The choice of resampling algorithm depends on your situation and requirements. The linear resampler is the most efficient and has the least amount of latency, but at the expense of poorer quality. The Speex resampler is higher quality, but slower with more latency. It also performs several heap allocations internally for memory management. -Linear Resampling ------------------ +6.3.1.1. Linear Resampling +-------------------------- The linear resampler is the fastest, but comes at the expense of poorer quality. There is, however, some control over the quality of the linear resampler which may make it a suitable option depending on your requirements. @@ -954,18 +838,22 @@ and is a purely perceptual configuration. The API for the linear resampler is the same as the main resampler API, only it's called `ma_linear_resampler`. -Speex Resampling ----------------- +6.3.1.2. Speex Resampling +------------------------- The Speex resampler is made up of third party code which is released under the BSD license. Because it is licensed differently to miniaudio, which is public domain, it is strictly opt-in and all of it's code is stored in separate files. If you opt-in to the Speex resampler you must consider the license text in it's -source files. To opt-in, you must first #include the following file before the implementation of miniaudio.h: +source files. To opt-in, you must first `#include` the following file before the implementation of miniaudio.h: + ```c #include "extras/speex_resampler/ma_speex_resampler.h" + ``` Both the header and implementation is contained within the same file. The implementation can be included in your program like so: + ```c #define MINIAUDIO_SPEEX_RESAMPLER_IMPLEMENTATION #include "extras/speex_resampler/ma_speex_resampler.h" + ``` Note that even if you opt-in to the Speex backend, miniaudio won't use it unless you explicitly ask for it in the respective config of the object you are initializing. If you try to use the Speex resampler without opting in, initialization of the `ma_resampler` object will fail with `MA_NO_BACKEND`. @@ -975,14 +863,22 @@ the fastest with the poorest quality and 10 being the slowest with the highest q -General Data Conversion -======================= +6.4. General Data Conversion +---------------------------- The `ma_data_converter` API can be used to wrap sample format conversion, channel conversion and resampling into one operation. This is what miniaudio uses internally to convert between the format requested when the device was initialized and the format of the backend's native device. The API for general data conversion is very similar to the resampling API. Create a `ma_data_converter` object like this: ```c - ma_data_converter_config config = ma_data_converter_config_init(inputFormat, outputFormat, inputChannels, outputChannels, inputSampleRate, outputSampleRate); + ma_data_converter_config config = ma_data_converter_config_init( + inputFormat, + outputFormat, + inputChannels, + outputChannels, + inputSampleRate, + outputSampleRate + ); + ma_data_converter converter; ma_result result = ma_data_converter_init(&config, &converter); if (result != MA_SUCCESS) { @@ -1021,15 +917,16 @@ The following example shows how data can be processed // An error occurred... } - // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written. + // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number + // of output frames written. ``` The data converter supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization. Sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the only configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config` is -set to MA_TRUE. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The resampling -algorithm cannot be changed after initialization. +set to `MA_TRUE`. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The +resampling algorithm cannot be changed after initialization. Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process frames, use `ma_data_converter_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number @@ -1046,11 +943,11 @@ input rate and the output rate with `ma_data_converter_get_input_latency()` and -Filtering -========= +7. Filtering +============ -Biquad Filtering ----------------- +7.1. Biquad Filtering +--------------------- Biquad filtering is achieved with the `ma_biquad` API. Example: ```c @@ -1085,17 +982,17 @@ do a full initialization which involves clearing the registers to 0. Note that c result in an error. -Low-Pass Filtering ------------------- +7.2. Low-Pass Filtering +----------------------- Low-pass filtering is achieved with the following APIs: - |---------|------------------------------------------| + +---------+------------------------------------------+ | API | Description | - |---------|------------------------------------------| + +---------+------------------------------------------+ | ma_lpf1 | First order low-pass filter | | ma_lpf2 | Second order low-pass filter | | ma_lpf | High order low-pass filter (Butterworth) | - |---------|------------------------------------------| + +---------+------------------------------------------+ Low-pass filter example: @@ -1120,7 +1017,7 @@ Filtering can be applied in-place by passing in the same pointer for both the in ma_lpf_process_pcm_frames(&lpf, pMyData, pMyData, frameCount); ``` -The maximum filter order is limited to MA_MAX_FILTER_ORDER which is set to 8. If you need more, you can chain first and second order filters together. +The maximum filter order is limited to `MA_MAX_FILTER_ORDER` which is set to 8. If you need more, you can chain first and second order filters together. ```c for (iFilter = 0; iFilter < filterCount; iFilter += 1) { @@ -1139,82 +1036,82 @@ If an even filter order is specified, a series of second order filters will be p will be applied, followed by a series of second order filters in a chain. -High-Pass Filtering -------------------- +7.3. High-Pass Filtering +------------------------ High-pass filtering is achieved with the following APIs: - |---------|-------------------------------------------| + +---------+-------------------------------------------+ | API | Description | - |---------|-------------------------------------------| + +---------+-------------------------------------------+ | ma_hpf1 | First order high-pass filter | | ma_hpf2 | Second order high-pass filter | | ma_hpf | High order high-pass filter (Butterworth) | - |---------|-------------------------------------------| + +---------+-------------------------------------------+ High-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_hpf1`, `ma_hpf2` and `ma_hpf`. See example code for low-pass filters for example usage. -Band-Pass Filtering -------------------- +7.4. Band-Pass Filtering +------------------------ Band-pass filtering is achieved with the following APIs: - |---------|-------------------------------| + +---------+-------------------------------+ | API | Description | - |---------|-------------------------------| + +---------+-------------------------------+ | ma_bpf2 | Second order band-pass filter | | ma_bpf | High order band-pass filter | - |---------|-------------------------------| + +---------+-------------------------------+ Band-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_bpf2` and `ma_hpf`. See example code for low-pass filters for example usage. Note that the order for band-pass filters must be an even number which means there is no first order band-pass filter, unlike low-pass and high-pass filters. -Notch Filtering ---------------- +7.5. Notch Filtering +-------------------- Notch filtering is achieved with the following APIs: - |-----------|------------------------------------------| + +-----------+------------------------------------------+ | API | Description | - |-----------|------------------------------------------| + +-----------+------------------------------------------+ | ma_notch2 | Second order notching filter | - |-----------|------------------------------------------| + +-----------+------------------------------------------+ -Peaking EQ Filtering --------------------- +7.6. Peaking EQ Filtering +------------------------- Peaking filtering is achieved with the following APIs: - |----------|------------------------------------------| + +----------+------------------------------------------+ | API | Description | - |----------|------------------------------------------| + +----------+------------------------------------------+ | ma_peak2 | Second order peaking filter | - |----------|------------------------------------------| + +----------+------------------------------------------+ -Low Shelf Filtering -------------------- +7.7. Low Shelf Filtering +------------------------ Low shelf filtering is achieved with the following APIs: - |-------------|------------------------------------------| + +-------------+------------------------------------------+ | API | Description | - |-------------|------------------------------------------| + +-------------+------------------------------------------+ | ma_loshelf2 | Second order low shelf filter | - |-------------|------------------------------------------| + +-------------+------------------------------------------+ Where a high-pass filter is used to eliminate lower frequencies, a low shelf filter can be used to just turn them down rather than eliminate them entirely. -High Shelf Filtering --------------------- +7.8. High Shelf Filtering +------------------------- High shelf filtering is achieved with the following APIs: - |-------------|------------------------------------------| + +-------------+------------------------------------------+ | API | Description | - |-------------|------------------------------------------| + +-------------+------------------------------------------+ | ma_hishelf2 | Second order high shelf filter | - |-------------|------------------------------------------| + +-------------+------------------------------------------+ The high shelf filter has the same API as the low shelf filter, only you would use `ma_hishelf` instead of `ma_loshelf`. Where a low shelf filter is used to adjust the volume of low frequencies, the high shelf filter does the same thing for high frequencies. @@ -1222,15 +1119,21 @@ adjust the volume of low frequencies, the high shelf filter does the same thing -Waveform and Noise Generation -============================= +8. Waveform and Noise Generation +================================ -Waveforms ---------- +8.1. Waveforms +-------------- miniaudio supports generation of sine, square, triangle and sawtooth waveforms. This is achieved with the `ma_waveform` API. Example: ```c - ma_waveform_config config = ma_waveform_config_init(FORMAT, CHANNELS, SAMPLE_RATE, ma_waveform_type_sine, amplitude, frequency); + ma_waveform_config config = ma_waveform_config_init( + FORMAT, + CHANNELS, + SAMPLE_RATE, + ma_waveform_type_sine, + amplitude, + frequency); ma_waveform waveform; ma_result result = ma_waveform_init(&config, &waveform); @@ -1243,31 +1146,36 @@ miniaudio supports generation of sine, square, triangle and sawtooth waveforms. ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount); ``` -The amplitude, frequency and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()` and -`ma_waveform_set_sample_rate()` respectively. +The amplitude, frequency, type, and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()`, +`ma_waveform_set_type()`, and `ma_waveform_set_sample_rate()` respectively. -You can reverse the waveform by setting the amplitude to a negative value. You can use this to control whether or not a sawtooth has a positive or negative +You can invert the waveform by setting the amplitude to a negative value. You can use this to control whether or not a sawtooth has a positive or negative ramp, for example. Below are the supported waveform types: - |---------------------------| + +---------------------------+ | Enum Name | - |---------------------------| + +---------------------------+ | ma_waveform_type_sine | | ma_waveform_type_square | | ma_waveform_type_triangle | | ma_waveform_type_sawtooth | - |---------------------------| + +---------------------------+ -Noise ------ -miniaudio supports generation of white, pink and brownian noise via the `ma_noise` API. Example: +8.2. Noise +---------- +miniaudio supports generation of white, pink and Brownian noise via the `ma_noise` API. Example: ```c - ma_noise_config config = ma_noise_config_init(FORMAT, CHANNELS, ma_noise_type_white, SEED, amplitude); + ma_noise_config config = ma_noise_config_init( + FORMAT, + CHANNELS, + ma_noise_type_white, + SEED, + amplitude); ma_noise noise; ma_result result = ma_noise_init(&config, &noise); @@ -1281,7 +1189,9 @@ miniaudio supports generation of white, pink and brownian noise via the `ma_nois ``` The noise API uses simple LCG random number generation. It supports a custom seed which is useful for things like automated testing requiring reproducibility. -Setting the seed to zero will default to MA_DEFAULT_LCG_SEED. +Setting the seed to zero will default to `MA_DEFAULT_LCG_SEED`. + +The amplitude, seed, and type can be changed dynamically with `ma_noise_set_amplitude()`, `ma_noise_set_seed()`, and `ma_noise_set_type()` respectively. By default, the noise API will use different values for different channels. So, for example, the left side in a stereo stream will be different to the right side. To instead have each channel use the same random value, set the `duplicateChannels` member of the noise config to true, like so: @@ -1292,18 +1202,108 @@ side. To instead have each channel use the same random value, set the `duplicate Below are the supported noise types. - |------------------------| + +------------------------+ | Enum Name | - |------------------------| + +------------------------+ | ma_noise_type_white | | ma_noise_type_pink | | ma_noise_type_brownian | - |------------------------| + +------------------------+ -Ring Buffers -============ +9. Audio Buffers +================ +miniaudio supports reading from a buffer of raw audio data via the `ma_audio_buffer` API. This can read from memory that's managed by the application, but +can also handle the memory management for you internally. Memory management is flexible and should support most use cases. + +Audio buffers are initialised using the standard configuration system used everywhere in miniaudio: + + ```c + ma_audio_buffer_config config = ma_audio_buffer_config_init( + format, + channels, + sizeInFrames, + pExistingData, + &allocationCallbacks); + + ma_audio_buffer buffer; + result = ma_audio_buffer_init(&config, &buffer); + if (result != MA_SUCCESS) { + // Error. + } + + ... + + ma_audio_buffer_uninit(&buffer); + ``` + +In the example above, the memory pointed to by `pExistingData` will *not* be copied and is how an application can do self-managed memory allocation. If you +would rather make a copy of the data, use `ma_audio_buffer_init_copy()`. To uninitialize the buffer, use `ma_audio_buffer_uninit()`. + +Sometimes it can be convenient to allocate the memory for the `ma_audio_buffer` structure and the raw audio data in a contiguous block of memory. That is, +the raw audio data will be located immediately after the `ma_audio_buffer` structure. To do this, use `ma_audio_buffer_alloc_and_init()`: + + ```c + ma_audio_buffer_config config = ma_audio_buffer_config_init( + format, + channels, + sizeInFrames, + pExistingData, + &allocationCallbacks); + + ma_audio_buffer* pBuffer + result = ma_audio_buffer_alloc_and_init(&config, &pBuffer); + if (result != MA_SUCCESS) { + // Error + } + + ... + + ma_audio_buffer_uninit_and_free(&buffer); + ``` + +If you initialize the buffer with `ma_audio_buffer_alloc_and_init()` you should uninitialize it with `ma_audio_buffer_uninit_and_free()`. In the example above, +the memory pointed to by `pExistingData` will be copied into the buffer, which is contrary to the behavior of `ma_audio_buffer_init()`. + +An audio buffer has a playback cursor just like a decoder. As you read frames from the buffer, the cursor moves forward. The last parameter (`loop`) can be +used to determine if the buffer should loop. The return value is the number of frames actually read. If this is less than the number of frames requested it +means the end has been reached. This should never happen if the `loop` parameter is set to true. If you want to manually loop back to the start, you can do so +with with `ma_audio_buffer_seek_to_pcm_frame(pAudioBuffer, 0)`. Below is an example for reading data from an audio buffer. + + ```c + ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames(pAudioBuffer, pFramesOut, desiredFrameCount, isLooping); + if (framesRead < desiredFrameCount) { + // If not looping, this means the end has been reached. This should never happen in looping mode with valid input. + } + ``` + +Sometimes you may want to avoid the cost of data movement between the internal buffer and the output buffer. Instead you can use memory mapping to retrieve a +pointer to a segment of data: + + ```c + void* pMappedFrames; + ma_uint64 frameCount = frameCountToTryMapping; + ma_result result = ma_audio_buffer_map(pAudioBuffer, &pMappedFrames, &frameCount); + if (result == MA_SUCCESS) { + // Map was successful. The value in frameCount will be how many frames were _actually_ mapped, which may be + // less due to the end of the buffer being reached. + ma_copy_pcm_frames(pFramesOut, pMappedFrames, frameCount, pAudioBuffer->format, pAudioBuffer->channels); + + // You must unmap the buffer. + ma_audio_buffer_unmap(pAudioBuffer, frameCount); + } + ``` + +When you use memory mapping, the read cursor is increment by the frame count passed in to `ma_audio_buffer_unmap()`. If you decide not to process every frame +you can pass in a value smaller than the value returned by `ma_audio_buffer_map()`. The disadvantage to using memory mapping is that it does not handle looping +for you. You can determine if the buffer is at the end for the purpose of looping with `ma_audio_buffer_at_end()` or by inspecting the return value of +`ma_audio_buffer_unmap()` and checking if it equals `MA_AT_END`. You should not treat `MA_AT_END` as an error when returned by `ma_audio_buffer_unmap()`. + + + +10. Ring Buffers +================ miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed via the `ma_rb` and `ma_pcm_rb` APIs. The `ma_rb` API operates on bytes, whereas the `ma_pcm_rb` operates on PCM frames. They are otherwise identical as `ma_pcm_rb` is just a wrapper around `ma_rb`. @@ -1324,42 +1324,42 @@ something like the following: The `ma_pcm_rb_init()` function takes the sample format and channel count as parameters because it's the PCM varient of the ring buffer API. For the regular ring buffer that operates on bytes you would call `ma_rb_init()` which leaves these out and just takes the size of the buffer in bytes instead of frames. The fourth parameter is an optional pre-allocated buffer and the fifth parameter is a pointer to a `ma_allocation_callbacks` structure for custom memory allocation -routines. Passing in NULL for this results in MA_MALLOC() and MA_FREE() being used. +routines. Passing in `NULL` for this results in `MA_MALLOC()` and `MA_FREE()` being used. -Use `ma_pcm_rb_init_ex()` if you need a deinterleaved buffer. The data for each sub-buffer is offset from each other based on the stride. To manage your sub- -buffers you can use `ma_pcm_rb_get_subbuffer_stride()`, `ma_pcm_rb_get_subbuffer_offset()` and `ma_pcm_rb_get_subbuffer_ptr()`. +Use `ma_pcm_rb_init_ex()` if you need a deinterleaved buffer. The data for each sub-buffer is offset from each other based on the stride. To manage your +sub-buffers you can use `ma_pcm_rb_get_subbuffer_stride()`, `ma_pcm_rb_get_subbuffer_offset()` and `ma_pcm_rb_get_subbuffer_ptr()`. -Use 'ma_pcm_rb_acquire_read()` and `ma_pcm_rb_acquire_write()` to retrieve a pointer to a section of the ring buffer. You specify the number of frames you +Use `ma_pcm_rb_acquire_read()` and `ma_pcm_rb_acquire_write()` to retrieve a pointer to a section of the ring buffer. You specify the number of frames you need, and on output it will set to what was actually acquired. If the read or write pointer is positioned such that the number of frames requested will require a loop, it will be clamped to the end of the buffer. Therefore, the number of frames you're given may be less than the number you requested. After calling `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()`, you do your work on the buffer and then "commit" it with `ma_pcm_rb_commit_read()` or `ma_pcm_rb_commit_write()`. This is where the read/write pointers are updated. When you commit you need to pass in the buffer that was returned by the earlier call to `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()` and is only used for validation. The number of frames passed to `ma_pcm_rb_commit_read()` and -`ma_pcm_rb_commit_write()` is what's used to increment the pointers. +`ma_pcm_rb_commit_write()` is what's used to increment the pointers, and can be less that what was originally requested. If you want to correct for drift between the write pointer and the read pointer you can use a combination of `ma_pcm_rb_pointer_distance()`, `ma_pcm_rb_seek_read()` and `ma_pcm_rb_seek_write()`. Note that you can only move the pointers forward, and you should only move the read pointer forward via the consumer thread, and the write pointer forward by the producer thread. If there is too much space between the pointers, move the read pointer forward. If there is too little space between the pointers, move the write pointer forward. -You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the sample, only you will use the `ma_rb` -functions instead of `ma_pcm_rb` and instead of frame counts you'll pass around byte counts. +You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the same, only you will use the `ma_rb` +functions instead of `ma_pcm_rb` and instead of frame counts you will pass around byte counts. -The maximum size of the buffer in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) due to the most significant bit being used to encode a flag and the internally +The maximum size of the buffer in bytes is `0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1)` due to the most significant bit being used to encode a loop flag and the internally managed buffers always being aligned to MA_SIMD_ALIGNMENT. Note that the ring buffer is only thread safe when used by a single consumer thread and single producer thread. -Backends -======== +11. Backends +============ The following backends are supported by miniaudio. - |-------------|-----------------------|--------------------------------------------------------| + +-------------+-----------------------+--------------------------------------------------------+ | Name | Enum Name | Supported Operating Systems | - |-------------|-----------------------|--------------------------------------------------------| + +-------------+-----------------------+--------------------------------------------------------+ | WASAPI | ma_backend_wasapi | Windows Vista+ | | DirectSound | ma_backend_dsound | Windows XP+ | | WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) | @@ -1371,50 +1371,52 @@ The following backends are supported by miniaudio. | audio(4) | ma_backend_audio4 | NetBSD, OpenBSD | | OSS | ma_backend_oss | FreeBSD | | AAudio | ma_backend_aaudio | Android 8+ | - | OpenSL|ES | ma_backend_opensl | Android (API level 16+) | + | OpenSL ES | ma_backend_opensl | Android (API level 16+) | | Web Audio | ma_backend_webaudio | Web (via Emscripten) | + | Custom | ma_backend_custom | Cross Platform | | Null | ma_backend_null | Cross Platform (not used on Web) | - |-------------|-----------------------|--------------------------------------------------------| + +-------------+-----------------------+--------------------------------------------------------+ Some backends have some nuance details you may want to be aware of. -WASAPI ------- +11.1. WASAPI +------------ - Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the device's native sample rate. To work around - this, set wasapi.noAutoConvertSRC to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the - AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's lower quality internal resampler being used - instead which will in turn enable the use of low-latency shared mode. + this, set `wasapi.noAutoConvertSRC` to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the + `AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM` flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's internal resampler being used instead + which will in turn enable the use of low-latency shared mode. -PulseAudio ----------- +11.2. PulseAudio +---------------- - If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki: - https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling - Alternatively, consider using a different backend such as ALSA. + https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling. Alternatively, consider using a different backend such as ALSA. -Android -------- -- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest: - +11.3. Android +------------- +- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest: `` - With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES. - With AAudio, only default devices are enumerated. This is due to AAudio not having an enumeration API (devices are enumerated through Java). You can however perform your own device enumeration through Java and then set the ID in the ma_device_id structure (ma_device_id.aaudio) and pass it to ma_device_init(). - The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in resampler is to take advantage of any potential device-specific optimizations the driver may implement. -UWP ---- +11.4. UWP +--------- - UWP only supports default playback and capture devices. - UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest): - - ... - - - - -Web Audio / Emscripten ----------------------- -- You cannot use -std=c* compiler flags, nor -ansi. This only applies to the Emscripten build. + ``` + + ... + + + + + ``` + +11.5. Web Audio / Emscripten +---------------------------- +- You cannot use `-std=c*` compiler flags, nor `-ansi`. This only applies to the Emscripten build. - The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act as a factory for device objects. - Currently the Web Audio backend uses ScriptProcessorNode's, but this may need to change later as they've been deprecated. - Google has implemented a policy in their browsers that prevent automatic media output without first receiving some kind of user input. The following web page @@ -1423,17 +1425,18 @@ Web Audio / Emscripten -Miscellaneous Notes -=================== +12. Miscellaneous Notes +======================= - Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI and Core Audio, however other backends such as PulseAudio may naturally support it, though not all have been tested. -- The contents of the output buffer passed into the data callback will always be pre-initialized to zero unless the noPreZeroedOutputBuffer config variable in - ma_device_config is set to true, in which case it'll be undefined which will require you to write something to the entire buffer. -- By default miniaudio will automatically clip samples. This only applies when the playback sample format is configured as ma_format_f32. If you are doing - clipping yourself, you can disable this overhead by setting noClip to true in the device config. +- The contents of the output buffer passed into the data callback will always be pre-initialized to silence unless the `noPreZeroedOutputBuffer` config variable + in `ma_device_config` is set to true, in which case it'll be undefined which will require you to write something to the entire buffer. +- By default miniaudio will automatically clip samples. This only applies when the playback sample format is configured as `ma_format_f32`. If you are doing + clipping yourself, you can disable this overhead by setting `noClip` to true in the device config. - The sndio backend is currently only enabled on OpenBSD builds. - The audio(4) backend is supported on OpenBSD, but you may need to disable sndiod before you can use it. -- Note that GCC and Clang requires "-msse2", "-mavx2", etc. for SIMD optimizations. +- Note that GCC and Clang requires `-msse2`, `-mavx2`, etc. for SIMD optimizations. +- When compiling with VC6 and earlier, decoding is restricted to files less than 2GB in size. This is due to 64-bit file APIs not being available. */ #ifndef miniaudio_h @@ -1443,11 +1446,20 @@ Miscellaneous Notes extern "C" { #endif +#define MA_STRINGIFY(x) #x +#define MA_XSTRINGIFY(x) MA_STRINGIFY(x) + +#define MA_VERSION_MAJOR 0 +#define MA_VERSION_MINOR 10 +#define MA_VERSION_REVISION 27 +#define MA_VERSION_STRING MA_XSTRINGIFY(MA_VERSION_MAJOR) "." MA_XSTRINGIFY(MA_VERSION_MINOR) "." MA_XSTRINGIFY(MA_VERSION_REVISION) + #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(push) #pragma warning(disable:4201) /* nonstandard extension used: nameless struct/union */ + #pragma warning(disable:4214) /* nonstandard extension used: bit field types other than int */ #pragma warning(disable:4324) /* structure was padded due to alignment specifier */ -#else +#elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */ #if defined(__clang__) @@ -1465,12 +1477,7 @@ extern "C" { #endif #else #define MA_POSIX - - /* We only use multi-threading with the device IO API, so no need to include these headers otherwise. */ -#if !defined(MA_NO_DEVICE_IO) #include /* Unfortunate #include, but needed for pthread_t, pthread_mutex_t and pthread_cond_t types. */ - #include -#endif #ifdef __unix__ #define MA_UNIX @@ -1494,56 +1501,34 @@ extern "C" { #include /* For size_t. */ -/* Sized types. Prefer built-in types. Fall back to stdint. */ -#ifdef _MSC_VER - #if defined(__clang__) +/* Sized types. */ +typedef signed char ma_int8; +typedef unsigned char ma_uint8; +typedef signed short ma_int16; +typedef unsigned short ma_uint16; +typedef signed int ma_int32; +typedef unsigned int ma_uint32; +#if defined(_MSC_VER) + typedef signed __int64 ma_int64; + typedef unsigned __int64 ma_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push - #pragma GCC diagnostic ignored "-Wlanguage-extension-token" - #pragma GCC diagnostic ignored "-Wlong-long" - #pragma GCC diagnostic ignored "-Wc++11-long-long" + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif #endif - typedef signed __int8 ma_int8; - typedef unsigned __int8 ma_uint8; - typedef signed __int16 ma_int16; - typedef unsigned __int16 ma_uint16; - typedef signed __int32 ma_int32; - typedef unsigned __int32 ma_uint32; - typedef signed __int64 ma_int64; - typedef unsigned __int64 ma_uint64; - #if defined(__clang__) + typedef signed long long ma_int64; + typedef unsigned long long ma_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif -#else - #define MA_HAS_STDINT - #include - typedef int8_t ma_int8; - typedef uint8_t ma_uint8; - typedef int16_t ma_int16; - typedef uint16_t ma_uint16; - typedef int32_t ma_int32; - typedef uint32_t ma_uint32; - typedef int64_t ma_int64; - typedef uint64_t ma_uint64; #endif - -#ifdef MA_HAS_STDINT - typedef uintptr_t ma_uintptr; +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + typedef ma_uint64 ma_uintptr; #else - #if defined(_WIN32) - #if defined(_WIN64) - typedef ma_uint64 ma_uintptr; - #else - typedef ma_uint32 ma_uintptr; - #endif - #elif defined(__GNUC__) - #if defined(__LP64__) - typedef ma_uint64 ma_uintptr; - #else - typedef ma_uint32 ma_uintptr; - #endif - #else - typedef ma_uint64 ma_uintptr; /* Fallback. */ - #endif + typedef ma_uint32 ma_uintptr; #endif typedef ma_uint8 ma_bool8; @@ -1586,6 +1571,8 @@ typedef ma_uint16 wchar_t; #else #define MA_INLINE inline __attribute__((always_inline)) #endif +#elif defined(__WATCOMC__) + #define MA_INLINE __inline #else #define MA_INLINE #endif @@ -1624,7 +1611,30 @@ typedef ma_uint16 wchar_t; #define MA_SIMD_ALIGNMENT 64 -/* Logging levels */ +/* +Logging Levels +============== +A log level will automatically include the lower levels. For example, verbose logging will enable everything. The warning log level will only include warnings +and errors, but will ignore informational and verbose logging. If you only want to handle a specific log level, implement a custom log callback (see +ma_context_init() for details) and interrogate the `logLevel` parameter. + +By default the log level will be set to MA_LOG_LEVEL_ERROR, but you can change this by defining MA_LOG_LEVEL before the implementation of miniaudio. + +MA_LOG_LEVEL_VERBOSE + Mainly intended for debugging. This will enable all log levels and can be triggered from within the data callback so care must be taken when enabling this + in production environments. + +MA_LOG_LEVEL_INFO + Informational logging. Useful for debugging. This will also enable warning and error logs. This will never be called from within the data callback. + +MA_LOG_LEVEL_WARNING + Warnings. You should enable this in you development builds and action them when encounted. This will also enable error logs. These logs usually indicate a + potential problem or misconfiguration, but still allow you to keep running. This will never be called from within the data callback. + +MA_LOG_LEVEL_ERROR + Error logging. This will be fired when an operation fails and is subsequently aborted. This can be fired from within the data callback, in which case the + device will be stopped. You should always have this log level enabled. +*/ #define MA_LOG_LEVEL_VERBOSE 4 #define MA_LOG_LEVEL_INFO 3 #define MA_LOG_LEVEL_WARNING 2 @@ -1790,7 +1800,9 @@ typedef int ma_result; #define MA_SAMPLE_RATE_384000 384000 #define MA_MIN_CHANNELS 1 +#ifndef MA_MAX_CHANNELS #define MA_MAX_CHANNELS 32 +#endif #define MA_MIN_SAMPLE_RATE MA_SAMPLE_RATE_8000 #define MA_MAX_SAMPLE_RATE MA_SAMPLE_RATE_384000 @@ -1868,6 +1880,83 @@ typedef struct void (* onFree)(void* p, void* pUserData); } ma_allocation_callbacks; +typedef struct +{ + ma_int32 state; +} ma_lcg; + + +#ifndef MA_NO_THREADING +/* Thread priorities should be ordered such that the default priority of the worker thread is 0. */ +typedef enum +{ + ma_thread_priority_idle = -5, + ma_thread_priority_lowest = -4, + ma_thread_priority_low = -3, + ma_thread_priority_normal = -2, + ma_thread_priority_high = -1, + ma_thread_priority_highest = 0, + ma_thread_priority_realtime = 1, + ma_thread_priority_default = 0 +} ma_thread_priority; + +typedef unsigned char ma_spinlock; + +#if defined(MA_WIN32) +typedef ma_handle ma_thread; +#endif +#if defined(MA_POSIX) +typedef pthread_t ma_thread; +#endif + +#if defined(MA_WIN32) +typedef ma_handle ma_mutex; +#endif +#if defined(MA_POSIX) +typedef pthread_mutex_t ma_mutex; +#endif + +#if defined(MA_WIN32) +typedef ma_handle ma_event; +#endif +#if defined(MA_POSIX) +typedef struct +{ + ma_uint32 value; + pthread_mutex_t lock; + pthread_cond_t cond; +} ma_event; +#endif /* MA_POSIX */ + +#if defined(MA_WIN32) +typedef ma_handle ma_semaphore; +#endif +#if defined(MA_POSIX) +typedef struct +{ + int value; + pthread_mutex_t lock; + pthread_cond_t cond; +} ma_semaphore; +#endif /* MA_POSIX */ +#else +/* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */ +#ifndef MA_NO_DEVICE_IO +#error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO"; +#endif +#endif /* MA_NO_THREADING */ + + +/* +Retrieves the version of miniaudio as separated integers. Each component can be NULL if it's not required. +*/ +MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision); + +/* +Retrieves the version of miniaudio as a string which can be useful for logging purposes. +*/ +MA_API const char* ma_version_string(void); + /************************************************************************************************************************************************************** @@ -1969,6 +2058,7 @@ typedef struct { ma_format format; ma_uint32 channels; + ma_uint32 sampleRate; ma_uint32 lpf1Count; ma_uint32 lpf2Count; ma_lpf1 lpf1[1]; @@ -2037,6 +2127,7 @@ typedef struct { ma_format format; ma_uint32 channels; + ma_uint32 sampleRate; ma_uint32 hpf1Count; ma_uint32 hpf2Count; ma_hpf1 hpf1[1]; @@ -2402,7 +2493,7 @@ typedef struct float weights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */ } ma_channel_converter_config; -MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode); +MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel* pChannelMapIn, ma_uint32 channelsOut, const ma_channel* pChannelMapOut, ma_channel_mix_mode mixingMode); typedef struct { @@ -2417,11 +2508,11 @@ typedef struct float f32[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; ma_int32 s16[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; } weights; - ma_bool32 isPassthrough : 1; - ma_bool32 isSimpleShuffle : 1; - ma_bool32 isSimpleMonoExpansion : 1; - ma_bool32 isStereoToMono : 1; - ma_uint8 shuffleTable[MA_MAX_CHANNELS]; + ma_bool8 isPassthrough; + ma_bool8 isSimpleShuffle; + ma_bool8 isSimpleMonoExpansion; + ma_bool8 isStereoToMono; + ma_uint8 shuffleTable[MA_MAX_CHANNELS]; } ma_channel_converter; MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter); @@ -2471,11 +2562,11 @@ typedef struct ma_data_converter_config config; ma_channel_converter channelConverter; ma_resampler resampler; - ma_bool32 hasPreFormatConversion : 1; - ma_bool32 hasPostFormatConversion : 1; - ma_bool32 hasChannelConverter : 1; - ma_bool32 hasResampler : 1; - ma_bool32 isPassthrough : 1; + ma_bool8 hasPreFormatConversion; + ma_bool8 hasPostFormatConversion; + ma_bool8 hasChannelConverter; + ma_bool8 hasResampler; + ma_bool8 isPassthrough; } ma_data_converter; MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter); @@ -2527,6 +2618,7 @@ Interleaves a group of deinterleaved buffers. */ MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames); + /************************************************************************************************************************************************************ Channel Maps @@ -2534,15 +2626,33 @@ Channel Maps ************************************************************************************************************************************************************/ /* -Helper for retrieving a standard channel map. +Initializes a blank channel map. + +When a blank channel map is specified anywhere it indicates that the native channel map should be used. */ -MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]); +MA_API void ma_channel_map_init_blank(ma_uint32 channels, ma_channel* pChannelMap); + +/* +Helper for retrieving a standard channel map. + +The output channel map buffer must have a capacity of at least `channels`. +*/ +MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel* pChannelMap); /* Copies a channel map. + +Both input and output channel map buffers must have a capacity of at at least `channels`. */ MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels); +/* +Copies a channel map if one is specified, otherwise copies the default channel map. + +The output buffer must have a capacity of at least `channels`. If not NULL, the input channel map must also have a capacity of at least `channels`. +*/ +MA_API void ma_channel_map_copy_or_default(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels); + /* Determines whether or not a channel map is valid. @@ -2553,25 +2663,33 @@ is usually treated as a passthrough. Invalid channel maps: - A channel map with no channels - A channel map with more than one channel and a mono channel + +The channel map buffer must have a capacity of at least `channels`. */ -MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]); +MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel* pChannelMap); /* Helper for comparing two channel maps for equality. This assumes the channel count is the same between the two. + +Both channels map buffers must have a capacity of at least `channels`. */ -MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]); +MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel* pChannelMapA, const ma_channel* pChannelMapB); /* Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE). + +The channel map buffer must have a capacity of at least `channels`. */ -MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]); +MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel* pChannelMap); /* Helper for determining whether or not a channel is present in the given channel map. + +The channel map buffer must have a capacity of at least `channels`. */ -MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition); +MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition); /************************************************************************************************************************************************************ @@ -2606,8 +2724,8 @@ typedef struct ma_uint32 subbufferStrideInBytes; volatile ma_uint32 encodedReadOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. */ volatile ma_uint32 encodedWriteOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. */ - ma_bool32 ownsBuffer : 1; /* Used to know whether or not miniaudio is responsible for free()-ing the buffer. */ - ma_bool32 clearOnWriteAcquire : 1; /* When set, clears the acquired write buffer before returning from ma_rb_acquire_write(). */ + ma_bool8 ownsBuffer; /* Used to know whether or not miniaudio is responsible for free()-ing the buffer. */ + ma_bool8 clearOnWriteAcquire; /* When set, clears the acquired write buffer before returning from ma_rb_acquire_write(). */ ma_allocation_callbacks allocationCallbacks; } ma_rb; @@ -2656,6 +2774,25 @@ MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbuf MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer); +/* +The idea of the duplex ring buffer is to act as the intermediary buffer when running two asynchronous devices in a duplex set up. The +capture device writes to it, and then a playback device reads from it. + +At the moment this is just a simple naive implementation, but in the future I want to implement some dynamic resampling to seamlessly +handle desyncs. Note that the API is work in progress and may change at any time in any version. + +The size of the buffer is based on the capture side since that's what'll be written to the buffer. It is based on the capture period size +in frames. The internal sample rate of the capture device is also needed in order to calculate the size. +*/ +typedef struct +{ + ma_pcm_rb rb; +} ma_duplex_rb; + +MA_API ma_result ma_duplex_rb_init(ma_uint32 inputSampleRate, ma_format captureFormat, ma_uint32 captureChannels, ma_uint32 captureSampleRate, ma_uint32 capturePeriodSizeInFrames, const ma_allocation_callbacks* pAllocationCallbacks, ma_duplex_rb* pRB); +MA_API ma_result ma_duplex_rb_uninit(ma_duplex_rb* pRB); + + /************************************************************************************************************************************************************ Miscellaneous Helpers @@ -2770,6 +2907,9 @@ This section contains the APIs for device playback and capture. Here is where yo #define MA_SUPPORT_WEBAUDIO #endif +/* All platforms should support custom backends. */ +#define MA_SUPPORT_CUSTOM + /* Explicitly disable the Null backend for Emscripten because it uses a background thread which is not properly supported right now. */ #if !defined(MA_EMSCRIPTEN) #define MA_SUPPORT_NULL @@ -2815,10 +2955,19 @@ This section contains the APIs for device playback and capture. Here is where yo #if !defined(MA_NO_WEBAUDIO) && defined(MA_SUPPORT_WEBAUDIO) #define MA_ENABLE_WEBAUDIO #endif +#if !defined(MA_NO_CUSTOM) && defined(MA_SUPPORT_CUSTOM) + #define MA_ENABLE_CUSTOM +#endif #if !defined(MA_NO_NULL) && defined(MA_SUPPORT_NULL) #define MA_ENABLE_NULL #endif +#define MA_STATE_UNINITIALIZED 0 +#define MA_STATE_STOPPED 1 /* The device's default state after initialization. */ +#define MA_STATE_STARTED 2 /* The device is started and is requesting and/or delivering audio data. */ +#define MA_STATE_STARTING 3 /* Transitioning from a stopped state to started. */ +#define MA_STATE_STOPPING 4 /* Transitioning from a started state to stopped. */ + #ifdef MA_SUPPORT_WASAPI /* We need a IMMNotificationClient object for WASAPI. */ typedef struct @@ -2845,111 +2994,11 @@ typedef enum ma_backend_aaudio, ma_backend_opensl, ma_backend_webaudio, - ma_backend_null /* <-- Must always be the last item. Lowest priority, and used as the terminator for backend enumeration. */ + ma_backend_custom, /* <-- Custom backend, with callbacks defined by the context config. */ + ma_backend_null /* <-- Must always be the last item. Lowest priority, and used as the terminator for backend enumeration. */ } ma_backend; -/* Thread priorties should be ordered such that the default priority of the worker thread is 0. */ -typedef enum -{ - ma_thread_priority_idle = -5, - ma_thread_priority_lowest = -4, - ma_thread_priority_low = -3, - ma_thread_priority_normal = -2, - ma_thread_priority_high = -1, - ma_thread_priority_highest = 0, - ma_thread_priority_realtime = 1, - ma_thread_priority_default = 0 -} ma_thread_priority; - -typedef struct -{ - ma_context* pContext; - - union - { -#ifdef MA_WIN32 - struct - { - /*HANDLE*/ ma_handle hThread; - } win32; -#endif -#ifdef MA_POSIX - struct - { - pthread_t thread; - } posix; -#endif - int _unused; - }; -} ma_thread; - -typedef struct -{ - ma_context* pContext; - - union - { -#ifdef MA_WIN32 - struct - { - /*HANDLE*/ ma_handle hMutex; - } win32; -#endif -#ifdef MA_POSIX - struct - { - pthread_mutex_t mutex; - } posix; -#endif - int _unused; - }; -} ma_mutex; - -typedef struct -{ - ma_context* pContext; - - union - { -#ifdef MA_WIN32 - struct - { - /*HANDLE*/ ma_handle hEvent; - } win32; -#endif -#ifdef MA_POSIX - struct - { - pthread_mutex_t mutex; - pthread_cond_t condition; - ma_uint32 value; - } posix; -#endif - int _unused; - }; -} ma_event; - -typedef struct -{ - ma_context* pContext; - - union - { -#ifdef MA_WIN32 - struct - { - /*HANDLE*/ ma_handle hSemaphore; - } win32; -#endif -#ifdef MA_POSIX - struct - { - sem_t semaphore; - } posix; -#endif - int _unused; - }; -} ma_semaphore; +#define MA_BACKEND_COUNT (ma_backend_null+1) /* @@ -3028,14 +3077,14 @@ pDevice (in) logLevel (in) The log level. This can be one of the following: - |----------------------| + +----------------------+ | Log Level | - |----------------------| + +----------------------+ | MA_LOG_LEVEL_VERBOSE | | MA_LOG_LEVEL_INFO | | MA_LOG_LEVEL_WARNING | | MA_LOG_LEVEL_ERROR | - |----------------------| + +----------------------+ message (in) The log message. @@ -3086,6 +3135,74 @@ typedef enum ma_ios_session_category_option_allow_air_play = 0x40, /* AVAudioSessionCategoryOptionAllowAirPlay */ } ma_ios_session_category_option; +/* OpenSL stream types. */ +typedef enum +{ + ma_opensl_stream_type_default = 0, /* Leaves the stream type unset. */ + ma_opensl_stream_type_voice, /* SL_ANDROID_STREAM_VOICE */ + ma_opensl_stream_type_system, /* SL_ANDROID_STREAM_SYSTEM */ + ma_opensl_stream_type_ring, /* SL_ANDROID_STREAM_RING */ + ma_opensl_stream_type_media, /* SL_ANDROID_STREAM_MEDIA */ + ma_opensl_stream_type_alarm, /* SL_ANDROID_STREAM_ALARM */ + ma_opensl_stream_type_notification /* SL_ANDROID_STREAM_NOTIFICATION */ +} ma_opensl_stream_type; + +/* OpenSL recording presets. */ +typedef enum +{ + ma_opensl_recording_preset_default = 0, /* Leaves the input preset unset. */ + ma_opensl_recording_preset_generic, /* SL_ANDROID_RECORDING_PRESET_GENERIC */ + ma_opensl_recording_preset_camcorder, /* SL_ANDROID_RECORDING_PRESET_CAMCORDER */ + ma_opensl_recording_preset_voice_recognition, /* SL_ANDROID_RECORDING_PRESET_VOICE_RECOGNITION */ + ma_opensl_recording_preset_voice_communication, /* SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION */ + ma_opensl_recording_preset_voice_unprocessed /* SL_ANDROID_RECORDING_PRESET_UNPROCESSED */ +} ma_opensl_recording_preset; + +/* AAudio usage types. */ +typedef enum +{ + ma_aaudio_usage_default = 0, /* Leaves the usage type unset. */ + ma_aaudio_usage_announcement, /* AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT */ + ma_aaudio_usage_emergency, /* AAUDIO_SYSTEM_USAGE_EMERGENCY */ + ma_aaudio_usage_safety, /* AAUDIO_SYSTEM_USAGE_SAFETY */ + ma_aaudio_usage_vehicle_status, /* AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS */ + ma_aaudio_usage_alarm, /* AAUDIO_USAGE_ALARM */ + ma_aaudio_usage_assistance_accessibility, /* AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY */ + ma_aaudio_usage_assistance_navigation_guidance, /* AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE */ + ma_aaudio_usage_assistance_sonification, /* AAUDIO_USAGE_ASSISTANCE_SONIFICATION */ + ma_aaudio_usage_assitant, /* AAUDIO_USAGE_ASSISTANT */ + ma_aaudio_usage_game, /* AAUDIO_USAGE_GAME */ + ma_aaudio_usage_media, /* AAUDIO_USAGE_MEDIA */ + ma_aaudio_usage_notification, /* AAUDIO_USAGE_NOTIFICATION */ + ma_aaudio_usage_notification_event, /* AAUDIO_USAGE_NOTIFICATION_EVENT */ + ma_aaudio_usage_notification_ringtone, /* AAUDIO_USAGE_NOTIFICATION_RINGTONE */ + ma_aaudio_usage_voice_communication, /* AAUDIO_USAGE_VOICE_COMMUNICATION */ + ma_aaudio_usage_voice_communication_signalling /* AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING */ +} ma_aaudio_usage; + +/* AAudio content types. */ +typedef enum +{ + ma_aaudio_content_type_default = 0, /* Leaves the content type unset. */ + ma_aaudio_content_type_movie, /* AAUDIO_CONTENT_TYPE_MOVIE */ + ma_aaudio_content_type_music, /* AAUDIO_CONTENT_TYPE_MUSIC */ + ma_aaudio_content_type_sonification, /* AAUDIO_CONTENT_TYPE_SONIFICATION */ + ma_aaudio_content_type_speech /* AAUDIO_CONTENT_TYPE_SPEECH */ +} ma_aaudio_content_type; + +/* AAudio input presets. */ +typedef enum +{ + ma_aaudio_input_preset_default = 0, /* Leaves the input preset unset. */ + ma_aaudio_input_preset_generic, /* AAUDIO_INPUT_PRESET_GENERIC */ + ma_aaudio_input_preset_camcorder, /* AAUDIO_INPUT_PRESET_CAMCORDER */ + ma_aaudio_input_preset_unprocessed, /* AAUDIO_INPUT_PRESET_UNPROCESSED */ + ma_aaudio_input_preset_voice_recognition, /* AAUDIO_INPUT_PRESET_VOICE_RECOGNITION */ + ma_aaudio_input_preset_voice_communication, /* AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION */ + ma_aaudio_input_preset_voice_performance /* AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE */ +} ma_aaudio_input_preset; + + typedef union { ma_int64 counter; @@ -3107,21 +3224,35 @@ typedef union ma_int32 aaudio; /* AAudio uses a 32-bit integer for identification. */ ma_uint32 opensl; /* OpenSL|ES uses a 32-bit unsigned integer for identification. */ char webaudio[32]; /* Web Audio always uses default devices for now, but if this changes it'll be a GUID. */ + union + { + int i; + char s[256]; + void* p; + } custom; /* The custom backend could be anything. Give them a few options. */ int nullbackend; /* The null backend uses an integer for device IDs. */ } ma_device_id; + +typedef struct ma_context_config ma_context_config; +typedef struct ma_device_config ma_device_config; +typedef struct ma_backend_callbacks ma_backend_callbacks; + +#define MA_DATA_FORMAT_FLAG_EXCLUSIVE_MODE (1U << 1) /* If set, this is supported in exclusive mode. Otherwise not natively supported by exclusive mode. */ + typedef struct { /* Basic info. This is the only information guaranteed to be filled in during device enumeration. */ ma_device_id id; char name[256]; + ma_bool32 isDefault; /* Detailed info. As much of this is filled as possible with ma_context_get_device_info(). Note that you are allowed to initialize a device with settings outside of this range, but it just means the data will be converted using miniaudio's data conversion pipeline before sending the data to/from the device. Most programs will need to not worry about these values, but it's provided here mainly for informational purposes or in the rare case that someone might find it useful. - + These will be set to 0 when returned by ma_context_enumerate_devices() or ma_context_get_devices(). */ ma_uint32 formatCount; @@ -3131,13 +3262,19 @@ typedef struct ma_uint32 minSampleRate; ma_uint32 maxSampleRate; + + /* Experimental. Don't use these right now. */ + ma_uint32 nativeDataFormatCount; struct { - ma_bool32 isDefault; - } _private; + ma_format format; /* Sample format. If set to ma_format_unknown, all sample formats are supported. */ + ma_uint32 channels; /* If set to 0, all channels are supported. */ + ma_uint32 sampleRate; /* If set to 0, all sample rates are supported. */ + ma_uint32 flags; + } nativeDataFormats[64]; } ma_device_info; -typedef struct +struct ma_device_config { ma_device_type deviceType; ma_uint32 sampleRate; @@ -3145,8 +3282,8 @@ typedef struct ma_uint32 periodSizeInMilliseconds; ma_uint32 periods; ma_performance_profile performanceProfile; - ma_bool32 noPreZeroedOutputBuffer; /* When set to true, the contents of the output buffer passed into the data callback will be left undefined rather than initialized to zero. */ - ma_bool32 noClip; /* When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. Only applies when the playback sample format is f32. */ + ma_bool8 noPreZeroedOutputBuffer; /* When set to true, the contents of the output buffer passed into the data callback will be left undefined rather than initialized to zero. */ + ma_bool8 noClip; /* When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. Only applies when the playback sample format is f32. */ ma_device_callback_proc dataCallback; ma_stop_proc stopCallback; void* pUserData; @@ -3164,27 +3301,29 @@ typedef struct } resampling; struct { - ma_device_id* pDeviceID; + const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; + ma_channel_mix_mode channelMixMode; ma_share_mode shareMode; } playback; struct { - ma_device_id* pDeviceID; + const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; + ma_channel_mix_mode channelMixMode; ma_share_mode shareMode; } capture; struct { - ma_bool32 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ - ma_bool32 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ - ma_bool32 noAutoStreamRouting; /* Disables automatic stream routing. */ - ma_bool32 noHardwareOffloading; /* Disables WASAPI's hardware offloading feature. */ + ma_bool8 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ + ma_bool8 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ + ma_bool8 noAutoStreamRouting; /* Disables automatic stream routing. */ + ma_bool8 noHardwareOffloading; /* Disables WASAPI's hardware offloading feature. */ } wasapi; struct { @@ -3198,35 +3337,23 @@ typedef struct const char* pStreamNamePlayback; const char* pStreamNameCapture; } pulse; -} ma_device_config; - -typedef struct -{ - ma_log_proc logCallback; - ma_thread_priority threadPriority; - void* pUserData; - ma_allocation_callbacks allocationCallbacks; struct { - ma_bool32 useVerboseDeviceEnumeration; - } alsa; - struct - { - const char* pApplicationName; - const char* pServerName; - ma_bool32 tryAutoSpawn; /* Enables autospawning of the PulseAudio daemon if necessary. */ - } pulse; - struct - { - ma_ios_session_category sessionCategory; - ma_uint32 sessionCategoryOptions; + ma_bool32 allowNominalSampleRateChange; /* Desktop only. When enabled, allows changing of the sample rate at the operating system level. */ } coreaudio; struct { - const char* pClientName; - ma_bool32 tryStartServer; - } jack; -} ma_context_config; + ma_opensl_stream_type streamType; + ma_opensl_recording_preset recordingPreset; + } opensl; + struct + { + ma_aaudio_usage usage; + ma_aaudio_content_type contentType; + ma_aaudio_input_preset inputPreset; + } aaudio; +}; + /* The callback for handling device enumeration. This is fired from `ma_context_enumerated_devices()`. @@ -3250,23 +3377,152 @@ pUserData (in) */ typedef ma_bool32 (* ma_enum_devices_callback_proc)(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData); -struct ma_context + +/* +Describes some basic details about a playback or capture device. +*/ +typedef struct +{ + const ma_device_id* pDeviceID; + ma_share_mode shareMode; + ma_format format; + ma_uint32 channels; + ma_uint32 sampleRate; + ma_channel channelMap[MA_MAX_CHANNELS]; + ma_uint32 periodSizeInFrames; + ma_uint32 periodSizeInMilliseconds; + ma_uint32 periodCount; +} ma_device_descriptor; + +/* +These are the callbacks required to be implemented for a backend. These callbacks are grouped into two parts: context and device. There is one context +to many devices. A device is created from a context. + +The general flow goes like this: + + 1) A context is created with `onContextInit()` + 1a) Available devices can be enumerated with `onContextEnumerateDevices()` if required. + 1b) Detailed information about a device can be queried with `onContextGetDeviceInfo()` if required. + 2) A device is created from the context that was created in the first step using `onDeviceInit()`, and optionally a device ID that was + selected from device enumeration via `onContextEnumerateDevices()`. + 3) A device is started or stopped with `onDeviceStart()` / `onDeviceStop()` + 4) Data is delivered to and from the device by the backend. This is always done based on the native format returned by the prior call + to `onDeviceInit()`. Conversion between the device's native format and the format requested by the application will be handled by + miniaudio internally. + +Initialization of the context is quite simple. You need to do any necessary initialization of internal objects and then output the +callbacks defined in this structure. + +Once the context has been initialized you can initialize a device. Before doing so, however, the application may want to know which +physical devices are available. This is where `onContextEnumerateDevices()` comes in. This is fairly simple. For each device, fire the +given callback with, at a minimum, the basic information filled out in `ma_device_info`. When the callback returns `MA_FALSE`, enumeration +needs to stop and the `onContextEnumerateDevices()` function return with a success code. + +Detailed device information can be retrieved from a device ID using `onContextGetDeviceInfo()`. This takes as input the device type and ID, +and on output returns detailed information about the device in `ma_device_info`. The `onContextGetDeviceInfo()` callback must handle the +case when the device ID is NULL, in which case information about the default device needs to be retrieved. + +Once the context has been created and the device ID retrieved (if using anything other than the default device), the device can be created. +This is a little bit more complicated than initialization of the context due to it's more complicated configuration. When initializing a +device, a duplex device may be requested. This means a separate data format needs to be specified for both playback and capture. On input, +the data format is set to what the application wants. On output it's set to the native format which should match as closely as possible to +the requested format. The conversion between the format requested by the application and the device's native format will be handled +internally by miniaudio. + +On input, if the sample format is set to `ma_format_unknown`, the backend is free to use whatever sample format it desires, so long as it's +supported by miniaudio. When the channel count is set to 0, the backend should use the device's native channel count. The same applies for +sample rate. For the channel map, the default should be used when `ma_channel_map_blank()` returns true (all channels set to +`MA_CHANNEL_NONE`). On input, the `periodSizeInFrames` or `periodSizeInMilliseconds` option should always be set. The backend should +inspect both of these variables. If `periodSizeInFrames` is set, it should take priority, otherwise it needs to be derived from the period +size in milliseconds (`periodSizeInMilliseconds`) and the sample rate, keeping in mind that the sample rate may be 0, in which case the +sample rate will need to be determined before calculating the period size in frames. On output, all members of the `ma_device_data_format` +object should be set to a valid value, except for `periodSizeInMilliseconds` which is optional (`periodSizeInFrames` *must* be set). + +Starting and stopping of the device is done with `onDeviceStart()` and `onDeviceStop()` and should be self-explanatory. If the backend uses +asynchronous reading and writing, `onDeviceStart()` and `onDeviceStop()` should always be implemented. + +The handling of data delivery between the application and the device is the most complicated part of the process. To make this a bit +easier, some helper callbacks are available. If the backend uses a blocking read/write style of API, the `onDeviceRead()` and +`onDeviceWrite()` callbacks can optionally be implemented. These are blocking and work just like reading and writing from a file. If the +backend uses a callback for data delivery, that callback must call `ma_device_handle_backend_data_callback()` from within it's callback. +This allows miniaudio to then process any necessary data conversion and then pass it to the miniaudio data callback. + +If the backend requires absolute flexibility with it's data delivery, it can optionally implement the `onDeviceWorkerThread()` callback +which will allow it to implement the logic that will run on the audio thread. This is much more advanced and is completely optional. + +The audio thread should run data delivery logic in a loop while `ma_device_get_state() == MA_STATE_STARTED` and no errors have been +encounted. Do not start or stop the device here. That will be handled from outside the `onDeviceAudioThread()` callback. + +The invocation of the `onDeviceAudioThread()` callback will be handled by miniaudio. When you start the device, miniaudio will fire this +callback. When the device is stopped, the `ma_device_get_state() == MA_STATE_STARTED` condition will fail and the loop will be terminated +which will then fall through to the part that stops the device. For an example on how to implement the `onDeviceAudioThread()` callback, +look at `ma_device_audio_thread__default_read_write()`. +*/ +struct ma_backend_callbacks +{ + ma_result (* onContextInit)(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks); + ma_result (* onContextUninit)(ma_context* pContext); + ma_result (* onContextEnumerateDevices)(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData); + ma_result (* onContextGetDeviceInfo)(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo); + ma_result (* onDeviceInit)(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture); + ma_result (* onDeviceUninit)(ma_device* pDevice); + ma_result (* onDeviceStart)(ma_device* pDevice); + ma_result (* onDeviceStop)(ma_device* pDevice); + ma_result (* onDeviceRead)(ma_device* pDevice, void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesRead); + ma_result (* onDeviceWrite)(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten); + ma_result (* onDeviceAudioThread)(ma_device* pDevice); +}; + +struct ma_context_config { - ma_backend backend; /* DirectSound, ALSA, etc. */ ma_log_proc logCallback; ma_thread_priority threadPriority; + size_t threadStackSize; void* pUserData; ma_allocation_callbacks allocationCallbacks; - ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */ - ma_mutex deviceInfoLock; /* Used to make ma_context_get_device_info() thread safe. */ - ma_uint32 deviceInfoCapacity; /* Total capacity of pDeviceInfos. */ + struct + { + ma_bool32 useVerboseDeviceEnumeration; + } alsa; + struct + { + const char* pApplicationName; + const char* pServerName; + ma_bool32 tryAutoSpawn; /* Enables autospawning of the PulseAudio daemon if necessary. */ + } pulse; + struct + { + ma_ios_session_category sessionCategory; + ma_uint32 sessionCategoryOptions; + ma_bool32 noAudioSessionActivate; /* iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:true] on initialization. */ + ma_bool32 noAudioSessionDeactivate; /* iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:false] on uninitialization. */ + } coreaudio; + struct + { + const char* pClientName; + ma_bool32 tryStartServer; + } jack; + ma_backend_callbacks custom; +}; + +struct ma_context +{ + ma_backend_callbacks callbacks; + ma_backend backend; /* DirectSound, ALSA, etc. */ + ma_log_proc logCallback; + ma_thread_priority threadPriority; + size_t threadStackSize; + void* pUserData; + ma_allocation_callbacks allocationCallbacks; + ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */ + ma_mutex deviceInfoLock; /* Used to make ma_context_get_device_info() thread safe. */ + ma_uint32 deviceInfoCapacity; /* Total capacity of pDeviceInfos. */ ma_uint32 playbackDeviceInfoCount; ma_uint32 captureDeviceInfoCount; - ma_device_info* pDeviceInfos; /* Playback devices first, then capture. */ - ma_bool32 isBackendAsynchronous : 1; /* Set when the context is initialized. Set to 1 for asynchronous backends such as Core Audio and JACK. Do not modify. */ + ma_device_info* pDeviceInfos; /* Playback devices first, then capture. */ + ma_bool8 isBackendAsynchronous; /* Set when the context is initialized. Set to 1 for asynchronous backends such as Core Audio and JACK. Do not modify. */ ma_result (* onUninit )(ma_context* pContext); - ma_bool32 (* onDeviceIDEqual )(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1); ma_result (* onEnumDevices )(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData); /* Return false from the callback to stop enumeration. */ ma_result (* onGetDeviceInfo )(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo); ma_result (* onDeviceInit )(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice); @@ -3386,9 +3642,23 @@ struct ma_context ma_handle pulseSO; ma_proc pa_mainloop_new; ma_proc pa_mainloop_free; + ma_proc pa_mainloop_quit; ma_proc pa_mainloop_get_api; ma_proc pa_mainloop_iterate; ma_proc pa_mainloop_wakeup; + ma_proc pa_threaded_mainloop_new; + ma_proc pa_threaded_mainloop_free; + ma_proc pa_threaded_mainloop_start; + ma_proc pa_threaded_mainloop_stop; + ma_proc pa_threaded_mainloop_lock; + ma_proc pa_threaded_mainloop_unlock; + ma_proc pa_threaded_mainloop_wait; + ma_proc pa_threaded_mainloop_signal; + ma_proc pa_threaded_mainloop_accept; + ma_proc pa_threaded_mainloop_get_retval; + ma_proc pa_threaded_mainloop_get_api; + ma_proc pa_threaded_mainloop_in_thread; + ma_proc pa_threaded_mainloop_set_name; ma_proc pa_context_new; ma_proc pa_context_unref; ma_proc pa_context_connect; @@ -3429,9 +3699,8 @@ struct ma_context ma_proc pa_stream_writable_size; ma_proc pa_stream_readable_size; - char* pApplicationName; - char* pServerName; - ma_bool32 tryAutoSpawn; + /*pa_threaded_mainloop**/ ma_ptr pMainLoop; + /*pa_context**/ ma_ptr pPulseContext; } pulse; #endif #ifdef MA_SUPPORT_JACK @@ -3465,14 +3734,14 @@ struct ma_context ma_handle hCoreFoundation; ma_proc CFStringGetCString; ma_proc CFRelease; - + ma_handle hCoreAudio; ma_proc AudioObjectGetPropertyData; ma_proc AudioObjectGetPropertyDataSize; ma_proc AudioObjectSetPropertyData; ma_proc AudioObjectAddPropertyListener; ma_proc AudioObjectRemovePropertyListener; - + ma_handle hAudioUnit; /* Could possibly be set to AudioToolbox on later versions of macOS. */ ma_proc AudioComponentFindNext; ma_proc AudioComponentInstanceDispose; @@ -3485,8 +3754,10 @@ struct ma_context ma_proc AudioUnitSetProperty; ma_proc AudioUnitInitialize; ma_proc AudioUnitRender; - + /*AudioComponent*/ ma_ptr component; + + ma_bool32 noAudioSessionDeactivate; /* For tracking whether or not the iOS audio session should be explicitly deactivated. Set from the config in ma_context_init__coreaudio(). */ } coreaudio; #endif #ifdef MA_SUPPORT_SNDIO @@ -3542,6 +3813,9 @@ struct ma_context ma_proc AAudioStreamBuilder_setDataCallback; ma_proc AAudioStreamBuilder_setErrorCallback; ma_proc AAudioStreamBuilder_setPerformanceMode; + ma_proc AAudioStreamBuilder_setUsage; + ma_proc AAudioStreamBuilder_setContentType; + ma_proc AAudioStreamBuilder_setInputPreset; ma_proc AAudioStreamBuilder_openStream; ma_proc AAudioStream_close; ma_proc AAudioStream_getState; @@ -3559,7 +3833,15 @@ struct ma_context #ifdef MA_SUPPORT_OPENSL struct { - int _unused; + ma_handle libOpenSLES; + ma_handle SL_IID_ENGINE; + ma_handle SL_IID_AUDIOIODEVICECAPABILITIES; + ma_handle SL_IID_ANDROIDSIMPLEBUFFERQUEUE; + ma_handle SL_IID_RECORD; + ma_handle SL_IID_PLAY; + ma_handle SL_IID_OUTPUTMIX; + ma_handle SL_IID_ANDROIDCONFIGURATION; + ma_proc slCreateEngine; } opensl; #endif #ifdef MA_SUPPORT_WEBAUDIO @@ -3639,13 +3921,14 @@ struct ma_device ma_event stopEvent; ma_thread thread; ma_result workResult; /* This is set by the worker thread after it's finished doing a job. */ - ma_bool32 usingDefaultSampleRate : 1; - ma_bool32 usingDefaultBufferSize : 1; - ma_bool32 usingDefaultPeriods : 1; - ma_bool32 isOwnerOfContext : 1; /* When set to true, uninitializing the device will also uninitialize the context. Set to true when NULL is passed into ma_device_init(). */ - ma_bool32 noPreZeroedOutputBuffer : 1; - ma_bool32 noClip : 1; + ma_bool8 usingDefaultSampleRate; + ma_bool8 usingDefaultBufferSize; + ma_bool8 usingDefaultPeriods; + ma_bool8 isOwnerOfContext; /* When set to true, uninitializing the device will also uninitialize the context. Set to true when NULL is passed into ma_device_init(). */ + ma_bool8 noPreZeroedOutputBuffer; + ma_bool8 noClip; volatile float masterVolumeFactor; /* Volatile so we can use some thread safety when applying volume to periods. */ + ma_duplex_rb duplexRB; /* Intermediary buffer for duplex device on asynchronous backends. */ struct { ma_resample_algorithm algorithm; @@ -3660,11 +3943,9 @@ struct ma_device } resampling; struct { + ma_device_id id; /* If using an explicit device, will be set to a copy of the ID used for initialization. Otherwise cleared to 0. */ char name[256]; /* Maybe temporary. Likely to be replaced with a query API. */ ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */ - ma_bool32 usingDefaultFormat : 1; - ma_bool32 usingDefaultChannels : 1; - ma_bool32 usingDefaultChannelMap : 1; ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; @@ -3674,15 +3955,17 @@ struct ma_device ma_channel internalChannelMap[MA_MAX_CHANNELS]; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; + ma_channel_mix_mode channelMixMode; ma_data_converter converter; + ma_bool8 usingDefaultFormat; + ma_bool8 usingDefaultChannels; + ma_bool8 usingDefaultChannelMap; } playback; struct { + ma_device_id id; /* If using an explicit device, will be set to a copy of the ID used for initialization. Otherwise cleared to 0. */ char name[256]; /* Maybe temporary. Likely to be replaced with a query API. */ ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */ - ma_bool32 usingDefaultFormat : 1; - ma_bool32 usingDefaultChannels : 1; - ma_bool32 usingDefaultChannelMap : 1; ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; @@ -3692,7 +3975,11 @@ struct ma_device ma_channel internalChannelMap[MA_MAX_CHANNELS]; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; + ma_channel_mix_mode channelMixMode; ma_data_converter converter; + ma_bool8 usingDefaultFormat; + ma_bool8 usingDefaultChannels; + ma_bool8 usingDefaultChannelMap; } capture; union @@ -3704,26 +3991,27 @@ struct ma_device /*IAudioClient**/ ma_ptr pAudioClientCapture; /*IAudioRenderClient**/ ma_ptr pRenderClient; /*IAudioCaptureClient**/ ma_ptr pCaptureClient; - /*IMMDeviceEnumerator**/ ma_ptr pDeviceEnumerator; /* Used for IMMNotificationClient notifications. Required for detecting default device changes. */ + /*IMMDeviceEnumerator**/ ma_ptr pDeviceEnumerator; /* Used for IMMNotificationClient notifications. Required for detecting default device changes. */ ma_IMMNotificationClient notificationClient; - /*HANDLE*/ ma_handle hEventPlayback; /* Auto reset. Initialized to signaled. */ - /*HANDLE*/ ma_handle hEventCapture; /* Auto reset. Initialized to unsignaled. */ - ma_uint32 actualPeriodSizeInFramesPlayback; /* Value from GetBufferSize(). internalPeriodSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */ + /*HANDLE*/ ma_handle hEventPlayback; /* Auto reset. Initialized to signaled. */ + /*HANDLE*/ ma_handle hEventCapture; /* Auto reset. Initialized to unsignaled. */ + ma_uint32 actualPeriodSizeInFramesPlayback; /* Value from GetBufferSize(). internalPeriodSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */ ma_uint32 actualPeriodSizeInFramesCapture; ma_uint32 originalPeriodSizeInFrames; ma_uint32 originalPeriodSizeInMilliseconds; ma_uint32 originalPeriods; - ma_bool32 hasDefaultPlaybackDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ - ma_bool32 hasDefaultCaptureDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ + ma_performance_profile originalPerformanceProfile; + ma_bool32 hasDefaultPlaybackDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ + ma_bool32 hasDefaultCaptureDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ ma_uint32 periodSizeInFramesPlayback; ma_uint32 periodSizeInFramesCapture; - ma_bool32 isStartedCapture; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ - ma_bool32 isStartedPlayback; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ - ma_bool32 noAutoConvertSRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ - ma_bool32 noDefaultQualitySRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ - ma_bool32 noHardwareOffloading : 1; - ma_bool32 allowCaptureAutoStreamRouting : 1; - ma_bool32 allowPlaybackAutoStreamRouting : 1; + ma_bool32 isStartedCapture; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ + ma_bool32 isStartedPlayback; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */ + ma_bool8 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ + ma_bool8 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ + ma_bool8 noHardwareOffloading; + ma_bool8 allowCaptureAutoStreamRouting; + ma_bool8 allowPlaybackAutoStreamRouting; } wasapi; #endif #ifdef MA_SUPPORT_DSOUND @@ -3760,26 +4048,16 @@ struct ma_device { /*snd_pcm_t**/ ma_ptr pPCMPlayback; /*snd_pcm_t**/ ma_ptr pPCMCapture; - ma_bool32 isUsingMMapPlayback : 1; - ma_bool32 isUsingMMapCapture : 1; + ma_bool8 isUsingMMapPlayback; + ma_bool8 isUsingMMapCapture; } alsa; #endif #ifdef MA_SUPPORT_PULSEAUDIO struct { - /*pa_mainloop**/ ma_ptr pMainLoop; - /*pa_mainloop_api**/ ma_ptr pAPI; - /*pa_context**/ ma_ptr pPulseContext; /*pa_stream**/ ma_ptr pStreamPlayback; /*pa_stream**/ ma_ptr pStreamCapture; - /*pa_context_state*/ ma_uint32 pulseContextState; - void* pMappedBufferPlayback; - const void* pMappedBufferCapture; - ma_uint32 mappedBufferFramesRemainingPlayback; - ma_uint32 mappedBufferFramesRemainingCapture; - ma_uint32 mappedBufferFramesCapacityPlayback; - ma_uint32 mappedBufferFramesCapacityCapture; - ma_bool32 breakFromMainLoop : 1; + ma_pcm_rb duplexRB; } pulse; #endif #ifdef MA_SUPPORT_JACK @@ -3790,7 +4068,6 @@ struct ma_device /*jack_port_t**/ ma_ptr pPortsCapture[MA_MAX_CHANNELS]; float* pIntermediaryBufferPlayback; /* Typed as a float because JACK is always floating point. */ float* pIntermediaryBufferCapture; - ma_pcm_rb duplexRB; } jack; #endif #ifdef MA_SUPPORT_COREAUDIO @@ -3800,7 +4077,8 @@ struct ma_device ma_uint32 deviceObjectIDCapture; /*AudioUnit*/ ma_ptr audioUnitPlayback; /*AudioUnit*/ ma_ptr audioUnitCapture; - /*AudioBufferList**/ ma_ptr pAudioBufferList; /* Only used for input devices. */ + /*AudioBufferList**/ ma_ptr pAudioBufferList; /* Only used for input devices. */ + ma_uint32 audioBufferCapInFrames; /* Only used for input devices. The capacity in frames of each buffer in pAudioBufferList. */ ma_event stopEvent; ma_uint32 originalPeriodSizeInFrames; ma_uint32 originalPeriodSizeInMilliseconds; @@ -3869,7 +4147,6 @@ struct ma_device { int indexPlayback; /* We use a factory on the JavaScript side to manage devices and use an index for JS/C interop. */ int indexCapture; - ma_pcm_rb duplexRB; /* In external capture format. */ } webaudio; #endif #ifdef MA_SUPPORT_NULL @@ -3878,6 +4155,7 @@ struct ma_device ma_thread deviceThread; ma_event operationEvent; ma_event operationCompletionEvent; + ma_semaphore operationSemaphore; ma_uint32 operation; ma_result operationResult; ma_timer timer; @@ -3885,7 +4163,7 @@ struct ma_device ma_uint32 currentPeriodFramesRemainingPlayback; ma_uint32 currentPeriodFramesRemainingCapture; ma_uint64 lastProcessedFramePlayback; - ma_uint32 lastProcessedFrameCapture; + ma_uint64 lastProcessedFrameCapture; ma_bool32 isStarted; } null_device; #endif @@ -3893,7 +4171,7 @@ struct ma_device }; #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(pop) -#else +#elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic pop /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */ #endif @@ -3979,7 +4257,7 @@ The context can be configured via the `pConfig` argument. The config object is i can then be set directly on the structure. Below are the members of the `ma_context_config` object. logCallback - Callback for handling log messages from miniaudio. + Callback for handling log messages from miniaudio. threadPriority The desired priority to use for the audio thread. Allowable values include the following: @@ -4146,7 +4424,7 @@ Retrieves the size of the ma_context object. This is mainly for the purpose of bindings to know how much memory to allocate. */ -MA_API size_t ma_context_sizeof(); +MA_API size_t ma_context_sizeof(void); /* Enumerates over every device (both playback and capture). @@ -4553,7 +4831,7 @@ then be set directly on the structure. Below are the members of the `ma_device_c ma_share_mode_shared and reinitializing. wasapi.noAutoConvertSRC - WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false. + WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false. wasapi.noDefaultQualitySRC WASAPI only. Only used when `wasapi.noAutoConvertSRC` is set to false. When set to true, disables the use of `AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY`. @@ -4583,6 +4861,13 @@ then be set directly on the structure. Below are the members of the `ma_device_c pulse.pStreamNameCapture PulseAudio only. Sets the stream name for capture. + coreaudio.allowNominalSampleRateChange + Core Audio only. Desktop only. When enabled, allows the sample rate of the device to be changed at the operating system level. This + is disabled by default in order to prevent intrusive changes to the user's system. This is useful if you want to use a sample rate + that is known to be natively supported by the hardware thereby avoiding the cost of resampling. When set to true, miniaudio will + find the closest match between the sample rate requested in the device config and the sample rates natively supported by the + hardware. When set to false, the sample rate currently set by the operating system will always be used. + Once initialized, the device's config is immutable. If you need to change the config you will need to initialize a new device. @@ -4896,7 +5181,63 @@ See Also ma_device_start() ma_device_stop() */ -MA_API ma_bool32 ma_device_is_started(ma_device* pDevice); +MA_API ma_bool32 ma_device_is_started(const ma_device* pDevice); + + +/* +Retrieves the state of the device. + + +Parameters +---------- +pDevice (in) + A pointer to the device whose state is being retrieved. + + +Return Value +------------ +The current state of the device. The return value will be one of the following: + + +------------------------+------------------------------------------------------------------------------+ + | MA_STATE_UNINITIALIZED | Will only be returned if the device is in the middle of initialization. | + +------------------------+------------------------------------------------------------------------------+ + | MA_STATE_STOPPED | The device is stopped. The initial state of the device after initialization. | + +------------------------+------------------------------------------------------------------------------+ + | MA_STATE_STARTED | The device started and requesting and/or delivering audio data. | + +------------------------+------------------------------------------------------------------------------+ + | MA_STATE_STARTING | The device is in the process of starting. | + +------------------------+------------------------------------------------------------------------------+ + | MA_STATE_STOPPING | The device is in the process of stopping. | + +------------------------+------------------------------------------------------------------------------+ + + +Thread Safety +------------- +Safe. This is implemented as a simple accessor. Note that if the device is started or stopped at the same time as this function is called, +there's a possibility the return value could be out of sync. See remarks. + + +Callback Safety +--------------- +Safe. This is implemented as a simple accessor. + + +Remarks +------- +The general flow of a devices state goes like this: + + ``` + ma_device_init() -> MA_STATE_UNINITIALIZED -> MA_STATE_STOPPED + ma_device_start() -> MA_STATE_STARTING -> MA_STATE_STARTED + ma_device_stop() -> MA_STATE_STOPPING -> MA_STATE_STOPPED + ``` + +When the state of the device is changed with `ma_device_start()` or `ma_device_stop()` at this same time as this function is called, the +value returned by this function could potentially be out of sync. If this is significant to your program you need to implement your own +synchronization. +*/ +MA_API ma_uint32 ma_device_get_state(const ma_device* pDevice); + /* Sets the master volume factor for the device. @@ -5080,19 +5421,171 @@ ma_device_get_master_volume() MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB); +/* +Called from the data callback of asynchronous backends to allow miniaudio to process the data and fire the miniaudio data callback. -/************************************************************************************************************************************************************ -Utiltities +Parameters +---------- +pDevice (in) + A pointer to device whose processing the data callback. + +pOutput (out) + A pointer to the buffer that will receive the output PCM frame data. On a playback device this must not be NULL. On a duplex device + this can be NULL, in which case pInput must not be NULL. + +pInput (in) + A pointer to the buffer containing input PCM frame data. On a capture device this must not be NULL. On a duplex device this can be + NULL, in which case `pOutput` must not be NULL. + +frameCount (in) + The number of frames being processed. + + +Return Value +------------ +MA_SUCCESS if successful; any other result code otherwise. + + +Thread Safety +------------- +This function should only ever be called from the internal data callback of the backend. It is safe to call this simultaneously between a +playback and capture device in duplex setups. + + +Callback Safety +--------------- +Do not call this from the miniaudio data callback. It should only ever be called from the internal data callback of the backend. + + +Remarks +------- +If both `pOutput` and `pInput` are NULL, and error will be returned. In duplex scenarios, both `pOutput` and `pInput` can be non-NULL, in +which case `pInput` will be processed first, followed by `pOutput`. + +If you are implementing a custom backend, and that backend uses a callback for data delivery, you'll need to call this from inside that +callback. +*/ +MA_API ma_result ma_device_handle_backend_data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount); + + + + +/* +Retrieves a friendly name for a backend. +*/ +MA_API const char* ma_get_backend_name(ma_backend backend); + +/* +Determines whether or not the given backend is available by the compilation environment. +*/ +MA_API ma_bool32 ma_is_backend_enabled(ma_backend backend); + +/* +Retrieves compile-time enabled backends. + + +Parameters +---------- +pBackends (out, optional) + A pointer to the buffer that will receive the enabled backends. Set to NULL to retrieve the backend count. Setting + the capacity of the buffer to `MA_BUFFER_COUNT` will guarantee it's large enough for all backends. + +backendCap (in) + The capacity of the `pBackends` buffer. + +pBackendCount (out) + A pointer to the variable that will receive the enabled backend count. + + +Return Value +------------ +MA_SUCCESS if successful. +MA_INVALID_ARGS if `pBackendCount` is NULL. +MA_NO_SPACE if the capacity of `pBackends` is not large enough. + +If `MA_NO_SPACE` is returned, the `pBackends` buffer will be filled with `*pBackendCount` values. + + +Thread Safety +------------- +Safe. + + +Callback Safety +--------------- +Safe. + + +Remarks +------- +If you want to retrieve the number of backends so you can determine the capacity of `pBackends` buffer, you can call +this function with `pBackends` set to NULL. + +This will also enumerate the null backend. If you don't want to include this you need to check for `ma_backend_null` +when you enumerate over the returned backends and handle it appropriately. Alternatively, you can disable it at +compile time with `MA_NO_NULL`. + +The returned backends are determined based on compile time settings, not the platform it's currently running on. For +example, PulseAudio will be returned if it was enabled at compile time, even when the user doesn't actually have +PulseAudio installed. + + +Example 1 +--------- +The example below retrieves the enabled backend count using a fixed sized buffer allocated on the stack. The buffer is +given a capacity of `MA_BACKEND_COUNT` which will guarantee it'll be large enough to store all available backends. +Since `MA_BACKEND_COUNT` is always a relatively small value, this should be suitable for most scenarios. + +``` +ma_backend enabledBackends[MA_BACKEND_COUNT]; +size_t enabledBackendCount; + +result = ma_get_enabled_backends(enabledBackends, MA_BACKEND_COUNT, &enabledBackendCount); +if (result != MA_SUCCESS) { + // Failed to retrieve enabled backends. Should never happen in this example since all inputs are valid. +} +``` + + +See Also +-------- +ma_is_backend_enabled() +*/ +MA_API ma_result ma_get_enabled_backends(ma_backend* pBackends, size_t backendCap, size_t* pBackendCount); + +/* +Determines whether or not loopback mode is support by a backend. +*/ +MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend); + +#endif /* MA_NO_DEVICE_IO */ + + +#ifndef MA_NO_THREADING + +/* +Locks a spinlock. +*/ +MA_API ma_result ma_spinlock_lock(ma_spinlock* pSpinlock); + +/* +Locks a spinlock, but does not yield() when looping. +*/ +MA_API ma_result ma_spinlock_lock_noyield(ma_spinlock* pSpinlock); + +/* +Unlocks a spinlock. +*/ +MA_API ma_result ma_spinlock_unlock(ma_spinlock* pSpinlock); -************************************************************************************************************************************************************/ /* Creates a mutex. A mutex must be created from a valid context. A mutex is initially unlocked. */ -MA_API ma_result ma_mutex_init(ma_context* pContext, ma_mutex* pMutex); +MA_API ma_result ma_mutex_init(ma_mutex* pMutex); /* Deletes a mutex. @@ -5111,15 +5604,32 @@ MA_API void ma_mutex_unlock(ma_mutex* pMutex); /* -Retrieves a friendly name for a backend. +Initializes an auto-reset event. */ -MA_API const char* ma_get_backend_name(ma_backend backend); +MA_API ma_result ma_event_init(ma_event* pEvent); /* -Determines whether or not loopback mode is support by a backend. +Uninitializes an auto-reset event. */ -MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend); +MA_API void ma_event_uninit(ma_event* pEvent); +/* +Waits for the specified auto-reset event to become signalled. +*/ +MA_API ma_result ma_event_wait(ma_event* pEvent); + +/* +Signals the specified auto-reset event. +*/ +MA_API ma_result ma_event_signal(ma_event* pEvent); +#endif /* MA_NO_THREADING */ + + +/************************************************************************************************************************************************************ + +Utiltities + +************************************************************************************************************************************************************/ /* Adjust buffer size based on a scaling factor. @@ -5139,46 +5649,65 @@ Calculates a buffer size in frames from the specified number of milliseconds and MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate); /* -Copies silent frames into the given buffer. +Copies PCM frames from one buffer to another. */ -MA_API void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels); +MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels); + +/* +Copies silent frames into the given buffer. + +Remarks +------- +For all formats except `ma_format_u8`, the output buffer will be filled with 0. For `ma_format_u8` it will be filled with 128. The reason for this is that it +makes more sense for the purpose of mixing to initialize it to the center point. +*/ +MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels); +static MA_INLINE void ma_zero_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { ma_silence_pcm_frames(p, frameCount, format, channels); } + + +/* +Offsets a pointer by the specified number of PCM frames. +*/ +MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels); +MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels); + /* Clips f32 samples. */ -MA_API void ma_clip_samples_f32(float* p, ma_uint32 sampleCount); -static MA_INLINE void ma_clip_pcm_frames_f32(float* p, ma_uint32 frameCount, ma_uint32 channels) { ma_clip_samples_f32(p, frameCount*channels); } +MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount); +static MA_INLINE void ma_clip_pcm_frames_f32(float* p, ma_uint64 frameCount, ma_uint32 channels) { ma_clip_samples_f32(p, frameCount*channels); } /* Helper for applying a volume factor to samples. Note that the source and destination buffers can be the same, in which case it'll perform the operation in-place. */ -MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor); -MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor); -MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor); -MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor); -MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor); +MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint64 sampleCount, float factor); +MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint64 sampleCount, float factor); +MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint64 sampleCount, float factor); +MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint64 sampleCount, float factor); +MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint64 sampleCount, float factor); -MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor); -MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor); -MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor); -MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor); -MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor); +MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint64 sampleCount, float factor); +MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint64 sampleCount, float factor); +MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint64 sampleCount, float factor); +MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint64 sampleCount, float factor); +MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint64 sampleCount, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor); -MA_API void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); +MA_API void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor); /* @@ -5191,16 +5720,129 @@ Helper for converting gain in decibels to a linear factor. */ MA_API float ma_gain_db_to_factor(float gain); -#endif /* MA_NO_DEVICE_IO */ + +typedef void ma_data_source; + +typedef struct +{ + ma_result (* onRead)(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); + ma_result (* onSeek)(ma_data_source* pDataSource, ma_uint64 frameIndex); + ma_result (* onMap)(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */ + ma_result (* onUnmap)(ma_data_source* pDataSource, ma_uint64 frameCount); + ma_result (* onGetDataFormat)(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate); + ma_result (* onGetCursor)(ma_data_source* pDataSource, ma_uint64* pCursor); + ma_result (* onGetLength)(ma_data_source* pDataSource, ma_uint64* pLength); +} ma_data_source_callbacks; + +MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop); /* Must support pFramesOut = NULL in which case a forward seek should be performed. */ +MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop); /* Can only seek forward. Equivalent to ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount); */ +MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex); +MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount); +MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */ +MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate); +MA_API ma_result ma_data_source_get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor); +MA_API ma_result ma_data_source_get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength); /* Returns MA_NOT_IMPLEMENTED if the length is unknown or cannot be determined. Decoders can return this. */ -#if !defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING) +typedef struct +{ + ma_format format; + ma_uint32 channels; + ma_uint64 sizeInFrames; + const void* pData; /* If set to NULL, will allocate a block of memory for you. */ + ma_allocation_callbacks allocationCallbacks; +} ma_audio_buffer_config; + +MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks); + +typedef struct +{ + ma_data_source_callbacks ds; + ma_format format; + ma_uint32 channels; + ma_uint64 cursor; + ma_uint64 sizeInFrames; + const void* pData; + ma_allocation_callbacks allocationCallbacks; + ma_bool32 ownsData; /* Used to control whether or not miniaudio owns the data buffer. If set to true, pData will be freed in ma_audio_buffer_uninit(). */ + ma_uint8 _pExtraData[1]; /* For allocating a buffer with the memory located directly after the other memory of the structure. */ +} ma_audio_buffer; + +MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer); +MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer); +MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer); /* Always copies the data. Doesn't make sense to use this otherwise. Use ma_audio_buffer_uninit_and_free() to uninit. */ +MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer); +MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer); +MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop); +MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex); +MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount); +MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */ +MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer); +MA_API ma_result ma_audio_buffer_get_available_frames(ma_audio_buffer* pAudioBuffer, ma_uint64* pAvailableFrames); + + + +/************************************************************************************************************************************************************ + +VFS +=== + +The VFS object (virtual file system) is what's used to customize file access. This is useful in cases where stdio FILE* based APIs may not be entirely +appropriate for a given situation. + +************************************************************************************************************************************************************/ +typedef void ma_vfs; +typedef ma_handle ma_vfs_file; + +#define MA_OPEN_MODE_READ 0x00000001 +#define MA_OPEN_MODE_WRITE 0x00000002 + typedef enum { ma_seek_origin_start, - ma_seek_origin_current + ma_seek_origin_current, + ma_seek_origin_end /* Not used by decoders. */ } ma_seek_origin; +typedef struct +{ + ma_uint64 sizeInBytes; +} ma_file_info; + +typedef struct +{ + ma_result (* onOpen) (ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); + ma_result (* onOpenW)(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); + ma_result (* onClose)(ma_vfs* pVFS, ma_vfs_file file); + ma_result (* onRead) (ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead); + ma_result (* onWrite)(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten); + ma_result (* onSeek) (ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin); + ma_result (* onTell) (ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor); + ma_result (* onInfo) (ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo); +} ma_vfs_callbacks; + +MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); +MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); +MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file); +MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead); +MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten); +MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin); +MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor); +MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo); +MA_API ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks); + +typedef struct +{ + ma_vfs_callbacks cb; + ma_allocation_callbacks allocationCallbacks; /* Only used for the wchar_t version of open() on non-Windows platforms. */ +} ma_default_vfs; + +MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks); + + + + +#if !defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING) typedef enum { ma_resource_format_wav @@ -5220,7 +5862,7 @@ you do your own synchronization. typedef struct ma_decoder ma_decoder; typedef size_t (* ma_decoder_read_proc) (ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead); /* Returns the number of bytes read. */ -typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin); +typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin); /* Origin will never be ma_seek_origin_end. */ typedef ma_uint64 (* ma_decoder_read_pcm_frames_proc) (ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount); /* Returns the number of frames read. Output data is in internal format. */ typedef ma_result (* ma_decoder_seek_to_pcm_frame_proc) (ma_decoder* pDecoder, ma_uint64 frameIndex); typedef ma_result (* ma_decoder_uninit_proc) (ma_decoder* pDecoder); @@ -5251,10 +5893,12 @@ typedef struct struct ma_decoder { + ma_data_source_callbacks ds; ma_decoder_read_proc onRead; ma_decoder_seek_proc onSeek; void* pUserData; - ma_uint64 readPointer; /* Used for returning back to a previous position after analysing the stream or whatnot. */ + ma_uint64 readPointerInBytes; /* In internal encoded data. */ + ma_uint64 readPointerInPCMFrames; /* In output sample rate. Used for keeping track of how many frames are available for decoding. */ ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; @@ -5270,12 +5914,20 @@ struct ma_decoder ma_decoder_uninit_proc onUninit; ma_decoder_get_length_in_pcm_frames_proc onGetLengthInPCMFrames; void* pInternalDecoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */ - struct + union { - const ma_uint8* pData; - size_t dataSize; - size_t currentReadPos; - } memory; /* Only used for decoders that were opened against a block of memory. */ + struct + { + ma_vfs* pVFS; + ma_vfs_file file; + } vfs; + struct + { + const ma_uint8* pData; + size_t dataSize; + size_t currentReadPos; + } memory; /* Only used for decoders that were opened against a block of memory. */ + } backend; }; MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate); @@ -5283,31 +5935,48 @@ MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint3 MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); -MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); -MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); + +MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); + MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); -MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); -MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); +MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder); +/* +Retrieves the current position of the read cursor in PCM frames. +*/ +MA_API ma_result ma_decoder_get_cursor_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pCursor); + /* Retrieves the length of the decoder in PCM frames. @@ -5338,12 +6007,24 @@ This is not thread safe without your own synchronization. */ MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex); +/* +Retrieves the number of frames that can be read before reaching the end. + +This calls `ma_decoder_get_length_in_pcm_frames()` so you need to be aware of the rules for that function, in +particular ensuring you do not call it on streams of an undefined length, such as internet radio. + +If the total length of the decoder cannot be retrieved, such as with Vorbis decoders, `MA_NOT_IMPLEMENTED` will be +returned. +*/ +MA_API ma_result ma_decoder_get_available_frames(ma_decoder* pDecoder, ma_uint64* pAvailableFrames); + /* Helper for opening and decoding a file into a heap allocated block of memory. Free the returned pointer with ma_free(). On input, pConfig should be set to what you want. On output it will be set to what you got. */ -MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppDataOut); -MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppDataOut); +MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); +MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); +MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); #endif /* MA_NO_DECODING */ @@ -5403,6 +6084,7 @@ MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* p Generation ************************************************************************************************************************************************************/ +#ifndef MA_NO_GENERATION typedef enum { ma_waveform_type_sine, @@ -5425,6 +6107,7 @@ MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 ch typedef struct { + ma_data_source_callbacks ds; ma_waveform_config config; double advance; double time; @@ -5432,17 +6115,12 @@ typedef struct MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform); MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount); +MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex); MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude); MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency); +MA_API ma_result ma_waveform_set_type(ma_waveform* pWaveform, ma_waveform_type type); MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate); - - -typedef struct -{ - ma_int32 state; -} ma_lcg; - typedef enum { ma_noise_type_white, @@ -5464,6 +6142,7 @@ MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels typedef struct { + ma_data_source_callbacks ds; ma_noise_config config; ma_lcg lcg; union @@ -5483,7 +6162,11 @@ typedef struct MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise); MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount); +MA_API ma_result ma_noise_set_amplitude(ma_noise* pNoise, double amplitude); +MA_API ma_result ma_noise_set_seed(ma_noise* pNoise, ma_int32 seed); +MA_API ma_result ma_noise_set_type(ma_noise* pNoise, ma_noise_type type); +#endif /* MA_NO_GENERATION */ #ifdef __cplusplus } @@ -5500,6 +6183,9 @@ IMPLEMENTATION ************************************************************************************************************************************************************* ************************************************************************************************************************************************************/ #if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION) +#ifndef miniaudio_c +#define miniaudio_c + #include #include /* For INT_MAX */ #include /* sin(), etc. */ @@ -5514,10 +6200,14 @@ IMPLEMENTATION #ifdef MA_WIN32 #include #else -#include /* For malloc(), free(), wcstombs(). */ -#include /* For memset() */ +#include /* For malloc(), free(), wcstombs(). */ +#include /* For memset() */ +#include +#include /* select() (used for ma_sleep()). */ #endif +#include /* For fstat(), etc. */ + #ifdef MA_EMSCRIPTEN #include #endif @@ -5672,7 +6362,7 @@ IMPLEMENTATION It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for supporting different assembly dialects. - + What's basically happening is that we're saving and restoring the ebx register manually. */ #if defined(DRFLAC_X86) && defined(__PIC__) @@ -5709,7 +6399,7 @@ IMPLEMENTATION #define MA_NO_XGETBV #endif -static MA_INLINE ma_bool32 ma_has_sse2() +static MA_INLINE ma_bool32 ma_has_sse2(void) { #if defined(MA_SUPPORT_SSE2) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_SSE2) @@ -5769,7 +6459,7 @@ static MA_INLINE ma_bool32 ma_has_avx() } #endif -static MA_INLINE ma_bool32 ma_has_avx2() +static MA_INLINE ma_bool32 ma_has_avx2(void) { #if defined(MA_SUPPORT_AVX2) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX2) @@ -5804,7 +6494,7 @@ static MA_INLINE ma_bool32 ma_has_avx2() #endif } -static MA_INLINE ma_bool32 ma_has_avx512f() +static MA_INLINE ma_bool32 ma_has_avx512f(void) { #if defined(MA_SUPPORT_AVX512) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX512) @@ -5839,7 +6529,7 @@ static MA_INLINE ma_bool32 ma_has_avx512f() #endif } -static MA_INLINE ma_bool32 ma_has_neon() +static MA_INLINE ma_bool32 ma_has_neon(void) { #if defined(MA_SUPPORT_NEON) #if defined(MA_ARM) && !defined(MA_NO_NEON) @@ -5875,7 +6565,34 @@ static MA_INLINE ma_bool32 ma_has_neon() #endif -static MA_INLINE ma_bool32 ma_is_little_endian() +#if defined(_MSC_VER) && _MSC_VER >= 1400 + #define MA_HAS_BYTESWAP16_INTRINSIC + #define MA_HAS_BYTESWAP32_INTRINSIC + #define MA_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_bswap16) + #define MA_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define MA_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define MA_HAS_BYTESWAP64_INTRINSIC + #endif + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define MA_HAS_BYTESWAP32_INTRINSIC + #define MA_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define MA_HAS_BYTESWAP16_INTRINSIC + #endif +#endif + + +static MA_INLINE ma_bool32 ma_is_little_endian(void) { #if defined(MA_X86) || defined(MA_X64) return MA_TRUE; @@ -5885,12 +6602,117 @@ static MA_INLINE ma_bool32 ma_is_little_endian() #endif } -static MA_INLINE ma_bool32 ma_is_big_endian() +static MA_INLINE ma_bool32 ma_is_big_endian(void) { return !ma_is_little_endian(); } +static MA_INLINE ma_uint32 ma_swap_endian_uint32(ma_uint32 n) +{ +#ifdef MA_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + #if defined(MA_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(MA_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */ + /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */ + ma_uint32 r; + __asm__ __volatile__ ( + #if defined(MA_64BIT) + "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */ + #else + "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) + #endif + ); + return r; + #else + return __builtin_bswap32(n); + #endif + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + + +#if !defined(MA_EMSCRIPTEN) +#ifdef MA_WIN32 +static void ma_sleep__win32(ma_uint32 milliseconds) +{ + Sleep((DWORD)milliseconds); +} +#endif +#ifdef MA_POSIX +static void ma_sleep__posix(ma_uint32 milliseconds) +{ +#ifdef MA_EMSCRIPTEN + (void)milliseconds; + MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */ +#else + #if _POSIX_C_SOURCE >= 199309L + struct timespec ts; + ts.tv_sec = milliseconds / 1000; + ts.tv_nsec = milliseconds % 1000 * 1000000; + nanosleep(&ts, NULL); + #else + struct timeval tv; + tv.tv_sec = milliseconds / 1000; + tv.tv_usec = milliseconds % 1000 * 1000; + select(0, NULL, NULL, NULL, &tv); + #endif +#endif +} +#endif + +static void ma_sleep(ma_uint32 milliseconds) +{ +#ifdef MA_WIN32 + ma_sleep__win32(milliseconds); +#endif +#ifdef MA_POSIX + ma_sleep__posix(milliseconds); +#endif +} +#endif + +static MA_INLINE void ma_yield() +{ +#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) + /* x86/x64 */ + #if (defined(_MSC_VER) || defined(__WATCOMC__) || defined(__DMC__)) && !defined(__clang__) + #if _MSC_VER >= 1400 + _mm_pause(); + #else + #if defined(__DMC__) + /* Digital Mars does not recognize the PAUSE opcode. Fall back to NOP. */ + __asm nop; + #else + __asm pause; + #endif + #endif + #else + __asm__ __volatile__ ("pause"); + #endif +#elif (defined(__arm__) && defined(__ARM_ARCH) && __ARM_ARCH >= 7) || (defined(_M_ARM) && _M_ARM >= 7) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6T2__) + /* ARM */ + #if defined(_MSC_VER) + /* Apparently there is a __yield() intrinsic that's compatible with ARM, but I cannot find documentation for it nor can I find where it's declared. */ + __yield(); + #else + __asm__ __volatile__ ("yield"); /* ARMv6K/ARMv6T2 and above. */ + #endif +#else + /* Unknown or unsupported architecture. No-op. */ +#endif +} + + + #ifndef MA_COINIT_VALUE #define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED */ #endif @@ -5951,7 +6773,7 @@ static MA_INLINE ma_bool32 ma_is_big_endian() #endif -#if defined(__GNUC__) +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-variable" #endif @@ -5980,19 +6802,40 @@ static ma_uint32 g_maStandardSampleRatePriorities[] = { static ma_format g_maFormatPriorities[] = { ma_format_s16, /* Most common */ ma_format_f32, - + /*ma_format_s24_32,*/ /* Clean alignment */ ma_format_s32, - + ma_format_s24, /* Unclean alignment */ - + ma_format_u8 /* Low quality */ }; -#if defined(__GNUC__) +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif +MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision) +{ + if (pMajor) { + *pMajor = MA_VERSION_MAJOR; + } + + if (pMinor) { + *pMinor = MA_VERSION_MINOR; + } + + if (pRevision) { + *pRevision = MA_VERSION_REVISION; + } +} + +MA_API const char* ma_version_string(void) +{ + return MA_VERSION_STRING; +} + + /****************************************************************************** Standard Library Stuff @@ -6844,12 +7687,13 @@ _wfopen() isn't always available in all compilation environments. * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back). * MinGW-64 (both 32- and 64-bit) seems to support it. * MinGW wraps it in !defined(__STRICT_ANSI__). + * OpenWatcom wraps it in !defined(_NO_EXT_KEYS). This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs() fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support. */ #if defined(_WIN32) - #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) #define MA_HAS_WFOPEN #endif #endif @@ -7015,10 +7859,10 @@ static MA_INLINE unsigned int ma_count_set_bits(unsigned int x) if (x & 1) { count += 1; } - + x = x >> 1; } - + return count; } @@ -7044,7 +7888,6 @@ static MA_INLINE float ma_mix_f32_fast(float x, float y, float a) /*return x + (y - x)*a;*/ } - #if defined(MA_SUPPORT_SSE2) static MA_INLINE __m128 ma_mix_f32_fast__sse2(__m128 x, __m128 y, __m128 a) { @@ -7177,22 +8020,22 @@ static MA_INLINE void ma_seed(ma_int32 seed) ma_lcg_seed(&g_maLCG, seed); } -static MA_INLINE ma_int32 ma_rand_s32() +static MA_INLINE ma_int32 ma_rand_s32(void) { return ma_lcg_rand_s32(&g_maLCG); } -static MA_INLINE ma_uint32 ma_rand_u32() +static MA_INLINE ma_uint32 ma_rand_u32(void) { return ma_lcg_rand_u32(&g_maLCG); } -static MA_INLINE double ma_rand_f64() +static MA_INLINE double ma_rand_f64(void) { return ma_lcg_rand_f64(&g_maLCG); } -static MA_INLINE float ma_rand_f32() +static MA_INLINE float ma_rand_f32(void) { return ma_lcg_rand_f32(&g_maLCG); } @@ -7248,51 +8091,1484 @@ static MA_INLINE ma_int32 ma_dither_s32(ma_dither_mode ditherMode, ma_int32 dith } -/****************************************************************************** +/************************************************************************************************************************************************************** Atomics -******************************************************************************/ -#if defined(__clang__) - #if defined(__has_builtin) - #if __has_builtin(__sync_swap) - #define MA_HAS_SYNC_SWAP +**************************************************************************************************************************************************************/ +/* c89atomic.h begin */ +#ifndef c89atomic_h +#define c89atomic_h +#if defined(__cplusplus) +extern "C" { +#endif +typedef signed char c89atomic_int8; +typedef unsigned char c89atomic_uint8; +typedef signed short c89atomic_int16; +typedef unsigned short c89atomic_uint16; +typedef signed int c89atomic_int32; +typedef unsigned int c89atomic_uint32; +#if defined(_MSC_VER) + typedef signed __int64 c89atomic_int64; + typedef unsigned __int64 c89atomic_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif -#elif defined(__GNUC__) - #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC__ >= 7) - #define MA_HAS_GNUC_ATOMICS + typedef signed long long c89atomic_int64; + typedef unsigned long long c89atomic_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop #endif #endif - -#if defined(_WIN32) && !defined(__GNUC__) && !defined(__clang__) -#define ma_memory_barrier() MemoryBarrier() -#define ma_atomic_exchange_32(a, b) InterlockedExchange((LONG*)a, (LONG)b) -#define ma_atomic_exchange_64(a, b) InterlockedExchange64((LONGLONG*)a, (LONGLONG)b) -#define ma_atomic_increment_32(a) InterlockedIncrement((LONG*)a) -#define ma_atomic_decrement_32(a) InterlockedDecrement((LONG*)a) +typedef int c89atomic_memory_order; +typedef unsigned char c89atomic_bool; +typedef unsigned char c89atomic_flag; +#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) +#ifdef _WIN32 +#ifdef _WIN64 +#define C89ATOMIC_64BIT #else -#define ma_memory_barrier() __sync_synchronize() -#if defined(MA_HAS_SYNC_SWAP) - #define ma_atomic_exchange_32(a, b) __sync_swap(a, b) - #define ma_atomic_exchange_64(a, b) __sync_swap(a, b) -#elif defined(MA_HAS_GNUC_ATOMICS) - #define ma_atomic_exchange_32(a, b) (void)__atomic_exchange_n(a, b, __ATOMIC_ACQ_REL) - #define ma_atomic_exchange_64(a, b) (void)__atomic_exchange_n(a, b, __ATOMIC_ACQ_REL) +#define C89ATOMIC_32BIT +#endif +#endif +#endif +#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) +#ifdef __GNUC__ +#ifdef __LP64__ +#define C89ATOMIC_64BIT #else - #define ma_atomic_exchange_32(a, b) __sync_synchronize(); (void)__sync_lock_test_and_set(a, b) - #define ma_atomic_exchange_64(a, b) __sync_synchronize(); (void)__sync_lock_test_and_set(a, b) +#define C89ATOMIC_32BIT #endif -#define ma_atomic_increment_32(a) __sync_add_and_fetch(a, 1) -#define ma_atomic_decrement_32(a) __sync_sub_and_fetch(a, 1) #endif +#endif +#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) +#include +#if INTPTR_MAX == INT64_MAX +#define C89ATOMIC_64BIT +#else +#define C89ATOMIC_32BIT +#endif +#endif +#if defined(__x86_64__) || defined(_M_X64) +#define C89ATOMIC_X64 +#elif defined(__i386) || defined(_M_IX86) +#define C89ATOMIC_X86 +#elif defined(__arm__) || defined(_M_ARM) +#define C89ATOMIC_ARM +#endif +#if defined(_MSC_VER) + #define C89ATOMIC_INLINE __forceinline +#elif defined(__GNUC__) + #if defined(__STRICT_ANSI__) + #define C89ATOMIC_INLINE __inline__ __attribute__((always_inline)) + #else + #define C89ATOMIC_INLINE inline __attribute__((always_inline)) + #endif +#elif defined(__WATCOMC__) || defined(__DMC__) + #define C89ATOMIC_INLINE __inline +#else + #define C89ATOMIC_INLINE +#endif +#if (defined(_MSC_VER) ) || defined(__WATCOMC__) || defined(__DMC__) + #define c89atomic_memory_order_relaxed 0 + #define c89atomic_memory_order_consume 1 + #define c89atomic_memory_order_acquire 2 + #define c89atomic_memory_order_release 3 + #define c89atomic_memory_order_acq_rel 4 + #define c89atomic_memory_order_seq_cst 5 + #if _MSC_VER >= 1400 + #include + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint8)_InterlockedExchange8((volatile char*)dst, (char)src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint16)_InterlockedExchange16((volatile short*)dst, (short)src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint32)_InterlockedExchange((volatile long*)dst, (long)src); + } + #if defined(C89ATOMIC_64BIT) + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint64)_InterlockedExchange64((volatile long long*)dst, (long long)src); + } + #endif + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint8)_InterlockedExchangeAdd8((volatile char*)dst, (char)src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint16)_InterlockedExchangeAdd16((volatile short*)dst, (short)src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint32)_InterlockedExchangeAdd((volatile long*)dst, (long)src); + } + #if defined(C89ATOMIC_64BIT) + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return (c89atomic_uint64)_InterlockedExchangeAdd64((volatile long long*)dst, (long long)src); + } + #endif + #define c89atomic_compare_and_swap_8( dst, expected, desired) (c89atomic_uint8 )_InterlockedCompareExchange8 ((volatile char* )dst, (char )desired, (char )expected) + #define c89atomic_compare_and_swap_16(dst, expected, desired) (c89atomic_uint16)_InterlockedCompareExchange16((volatile short* )dst, (short )desired, (short )expected) + #define c89atomic_compare_and_swap_32(dst, expected, desired) (c89atomic_uint32)_InterlockedCompareExchange ((volatile long* )dst, (long )desired, (long )expected) + #define c89atomic_compare_and_swap_64(dst, expected, desired) (c89atomic_uint64)_InterlockedCompareExchange64((volatile long long*)dst, (long long)desired, (long long)expected) + #if defined(C89ATOMIC_X64) + #define c89atomic_thread_fence(order) __faststorefence(), (void)order + #else + static C89ATOMIC_INLINE void c89atomic_thread_fence(c89atomic_memory_order order) + { + volatile c89atomic_uint32 barrier = 0; + (void)order; + c89atomic_fetch_add_explicit_32(&barrier, 0, order); + } + #endif + #else + #if defined(C89ATOMIC_X86) + static C89ATOMIC_INLINE void __stdcall c89atomic_thread_fence(c89atomic_memory_order order) + { + (void)order; + __asm { + lock add [esp], 0 + } + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + c89atomic_uint8 result = 0; + (void)order; + __asm { + mov ecx, dst + mov al, src + lock xchg [ecx], al + mov result, al + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + c89atomic_uint16 result = 0; + (void)order; + __asm { + mov ecx, dst + mov ax, src + lock xchg [ecx], ax + mov result, ax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + c89atomic_uint32 result = 0; + (void)order; + __asm { + mov ecx, dst + mov eax, src + lock xchg [ecx], eax + mov result, eax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + c89atomic_uint8 result = 0; + (void)order; + __asm { + mov ecx, dst + mov al, src + lock xadd [ecx], al + mov result, al + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + c89atomic_uint16 result = 0; + (void)order; + __asm { + mov ecx, dst + mov ax, src + lock xadd [ecx], ax + mov result, ax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + c89atomic_uint32 result = 0; + (void)order; + __asm { + mov ecx, dst + mov eax, src + lock xadd [ecx], eax + mov result, eax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired) + { + c89atomic_uint8 result = 0; + __asm { + mov ecx, dst + mov al, expected + mov dl, desired + lock cmpxchg [ecx], dl + mov result, al + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired) + { + c89atomic_uint16 result = 0; + __asm { + mov ecx, dst + mov ax, expected + mov dx, desired + lock cmpxchg [ecx], dx + mov result, ax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired) + { + c89atomic_uint32 result = 0; + __asm { + mov ecx, dst + mov eax, expected + mov edx, desired + lock cmpxchg [ecx], edx + mov result, eax + } + return result; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired) + { + c89atomic_uint32 resultEAX = 0; + c89atomic_uint32 resultEDX = 0; + __asm { + mov esi, dst + mov eax, dword ptr expected + mov edx, dword ptr expected + 4 + mov ebx, dword ptr desired + mov ecx, dword ptr desired + 4 + lock cmpxchg8b qword ptr [esi] + mov resultEAX, eax + mov resultEDX, edx + } + return ((c89atomic_uint64)resultEDX << 32) | resultEAX; + } + #else + #error Unsupported architecture. + #endif + #endif + #define c89atomic_compiler_fence() c89atomic_thread_fence(c89atomic_memory_order_seq_cst) + #define c89atomic_signal_fence(order) c89atomic_thread_fence(order) + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile c89atomic_uint8* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_8(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile c89atomic_uint16* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_16(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile c89atomic_uint32* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_32(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile c89atomic_uint64* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_64(ptr, 0, 0); + } + #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order) + #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order) + #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order) + #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order) +#if defined(C89ATOMIC_32BIT) + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + do { + oldValue = *dst; + } while (c89atomic_compare_and_swap_64(dst, oldValue, src) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue + src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } +#endif + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue - src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue - src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue - src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue - src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue & src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue & src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue & src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue & src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue ^ src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue ^ src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue ^ src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue ^ src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue | src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue | src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue | src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue | src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order) + #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order) + #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order) + #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order) + #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order) + #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order) + #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order) + #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order) + #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order) + #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order) +#elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) + #define C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE + #define C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE + #define c89atomic_memory_order_relaxed __ATOMIC_RELAXED + #define c89atomic_memory_order_consume __ATOMIC_CONSUME + #define c89atomic_memory_order_acquire __ATOMIC_ACQUIRE + #define c89atomic_memory_order_release __ATOMIC_RELEASE + #define c89atomic_memory_order_acq_rel __ATOMIC_ACQ_REL + #define c89atomic_memory_order_seq_cst __ATOMIC_SEQ_CST + #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory") + #define c89atomic_thread_fence(order) __atomic_thread_fence(order) + #define c89atomic_signal_fence(order) __atomic_signal_fence(order) + #define c89atomic_is_lock_free_8(ptr) __atomic_is_lock_free(1, ptr) + #define c89atomic_is_lock_free_16(ptr) __atomic_is_lock_free(2, ptr) + #define c89atomic_is_lock_free_32(ptr) __atomic_is_lock_free(4, ptr) + #define c89atomic_is_lock_free_64(ptr) __atomic_is_lock_free(8, ptr) + #define c89atomic_flag_test_and_set_explicit(dst, order) (c89atomic_flag)__atomic_test_and_set(dst, order) + #define c89atomic_flag_clear_explicit(dst, order) __atomic_clear(dst, order) + #define c89atomic_test_and_set_explicit_8( dst, order) __atomic_exchange_n(dst, 1, order) + #define c89atomic_test_and_set_explicit_16(dst, order) __atomic_exchange_n(dst, 1, order) + #define c89atomic_test_and_set_explicit_32(dst, order) __atomic_exchange_n(dst, 1, order) + #define c89atomic_test_and_set_explicit_64(dst, order) __atomic_exchange_n(dst, 1, order) + #define c89atomic_clear_explicit_8( dst, order) __atomic_store_n(dst, 0, order) + #define c89atomic_clear_explicit_16(dst, order) __atomic_store_n(dst, 0, order) + #define c89atomic_clear_explicit_32(dst, order) __atomic_store_n(dst, 0, order) + #define c89atomic_clear_explicit_64(dst, order) __atomic_store_n(dst, 0, order) + #define c89atomic_store_explicit_8( dst, src, order) __atomic_store_n(dst, src, order) + #define c89atomic_store_explicit_16(dst, src, order) __atomic_store_n(dst, src, order) + #define c89atomic_store_explicit_32(dst, src, order) __atomic_store_n(dst, src, order) + #define c89atomic_store_explicit_64(dst, src, order) __atomic_store_n(dst, src, order) + #define c89atomic_load_explicit_8( dst, order) __atomic_load_n(dst, order) + #define c89atomic_load_explicit_16(dst, order) __atomic_load_n(dst, order) + #define c89atomic_load_explicit_32(dst, order) __atomic_load_n(dst, order) + #define c89atomic_load_explicit_64(dst, order) __atomic_load_n(dst, order) + #define c89atomic_exchange_explicit_8( dst, src, order) __atomic_exchange_n(dst, src, order) + #define c89atomic_exchange_explicit_16(dst, src, order) __atomic_exchange_n(dst, src, order) + #define c89atomic_exchange_explicit_32(dst, src, order) __atomic_exchange_n(dst, src, order) + #define c89atomic_exchange_explicit_64(dst, src, order) __atomic_exchange_n(dst, src, order) + #define c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) + #define c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) + #define c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) + #define c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) + #define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) + #define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) + #define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) + #define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) + #define c89atomic_fetch_add_explicit_8( dst, src, order) __atomic_fetch_add(dst, src, order) + #define c89atomic_fetch_add_explicit_16(dst, src, order) __atomic_fetch_add(dst, src, order) + #define c89atomic_fetch_add_explicit_32(dst, src, order) __atomic_fetch_add(dst, src, order) + #define c89atomic_fetch_add_explicit_64(dst, src, order) __atomic_fetch_add(dst, src, order) + #define c89atomic_fetch_sub_explicit_8( dst, src, order) __atomic_fetch_sub(dst, src, order) + #define c89atomic_fetch_sub_explicit_16(dst, src, order) __atomic_fetch_sub(dst, src, order) + #define c89atomic_fetch_sub_explicit_32(dst, src, order) __atomic_fetch_sub(dst, src, order) + #define c89atomic_fetch_sub_explicit_64(dst, src, order) __atomic_fetch_sub(dst, src, order) + #define c89atomic_fetch_or_explicit_8( dst, src, order) __atomic_fetch_or(dst, src, order) + #define c89atomic_fetch_or_explicit_16(dst, src, order) __atomic_fetch_or(dst, src, order) + #define c89atomic_fetch_or_explicit_32(dst, src, order) __atomic_fetch_or(dst, src, order) + #define c89atomic_fetch_or_explicit_64(dst, src, order) __atomic_fetch_or(dst, src, order) + #define c89atomic_fetch_xor_explicit_8( dst, src, order) __atomic_fetch_xor(dst, src, order) + #define c89atomic_fetch_xor_explicit_16(dst, src, order) __atomic_fetch_xor(dst, src, order) + #define c89atomic_fetch_xor_explicit_32(dst, src, order) __atomic_fetch_xor(dst, src, order) + #define c89atomic_fetch_xor_explicit_64(dst, src, order) __atomic_fetch_xor(dst, src, order) + #define c89atomic_fetch_and_explicit_8( dst, src, order) __atomic_fetch_and(dst, src, order) + #define c89atomic_fetch_and_explicit_16(dst, src, order) __atomic_fetch_and(dst, src, order) + #define c89atomic_fetch_and_explicit_32(dst, src, order) __atomic_fetch_and(dst, src, order) + #define c89atomic_fetch_and_explicit_64(dst, src, order) __atomic_fetch_and(dst, src, order) + #define c89atomic_compare_and_swap_8 (dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) +#else + #define c89atomic_memory_order_relaxed 1 + #define c89atomic_memory_order_consume 2 + #define c89atomic_memory_order_acquire 3 + #define c89atomic_memory_order_release 4 + #define c89atomic_memory_order_acq_rel 5 + #define c89atomic_memory_order_seq_cst 6 + #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory") + #if defined(__GNUC__) + #define c89atomic_thread_fence(order) __sync_synchronize(), (void)order + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + if (order > c89atomic_memory_order_acquire) { + __sync_synchronize(); + } + return __sync_lock_test_and_set(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + do { + oldValue = *dst; + } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + do { + oldValue = *dst; + } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + do { + oldValue = *dst; + } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_add(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_add(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_add(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_add(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_sub(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_sub(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_sub(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_sub(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_or(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_or(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_or(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_or(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_xor(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_xor(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_xor(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_xor(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_and(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_and(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_and(dst, src); + } + static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + (void)order; + return __sync_fetch_and_and(dst, src); + } + #define c89atomic_compare_and_swap_8( dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) + #else + #if defined(C89ATOMIC_X86) + #define c89atomic_thread_fence(order) __asm__ __volatile__("lock; addl $0, (%%esp)" ::: "memory", "cc") + #elif defined(C89ATOMIC_X64) + #define c89atomic_thread_fence(order) __asm__ __volatile__("lock; addq $0, (%%rsp)" ::: "memory", "cc") + #else + #error Unsupported architecture. Please submit a feature request. + #endif + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired) + { + volatile c89atomic_uint8 result; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired) + { + volatile c89atomic_uint16 result; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired) + { + volatile c89atomic_uint32 result; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired) + { + volatile c89atomic_uint64 result; + #if defined(C89ATOMIC_X86) + volatile c89atomic_uint32 resultEAX; + volatile c89atomic_uint32 resultEDX; + __asm__ __volatile__("push %%ebx; xchg %5, %%ebx; lock; cmpxchg8b %0; pop %%ebx" : "+m"(*dst), "=a"(resultEAX), "=d"(resultEDX) : "a"(expected & 0xFFFFFFFF), "d"(expected >> 32), "r"(desired & 0xFFFFFFFF), "c"(desired >> 32) : "cc"); + result = ((c89atomic_uint64)resultEDX << 32) | resultEAX; + #elif defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 result = 0; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 result = 0; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 result; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 result; + (void)order; + #if defined(C89ATOMIC_X86) + do { + result = *dst; + } while (c89atomic_compare_and_swap_64(dst, result, src) != result); + #elif defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + c89atomic_uint8 result; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + c89atomic_uint16 result; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + c89atomic_uint32 result; + (void)order; + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); + #else + #error Unsupported architecture. Please submit a feature request. + #endif + return result; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + #if defined(C89ATOMIC_X86) + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + (void)order; + do { + oldValue = *dst; + newValue = oldValue + src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + return oldValue; + #elif defined(C89ATOMIC_X64) + volatile c89atomic_uint64 result; + (void)order; + __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); + return result; + #endif + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue - src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue - src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue - src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue - src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue & src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue & src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue & src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue & src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue ^ src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue ^ src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue ^ src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue ^ src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) + { + volatile c89atomic_uint8 oldValue; + volatile c89atomic_uint8 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint8)(oldValue | src); + } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) + { + volatile c89atomic_uint16 oldValue; + volatile c89atomic_uint16 newValue; + do { + oldValue = *dst; + newValue = (c89atomic_uint16)(oldValue | src); + } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) + { + volatile c89atomic_uint32 oldValue; + volatile c89atomic_uint32 newValue; + do { + oldValue = *dst; + newValue = oldValue | src; + } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) + { + volatile c89atomic_uint64 oldValue; + volatile c89atomic_uint64 newValue; + do { + oldValue = *dst; + newValue = oldValue | src; + } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); + (void)order; + return oldValue; + } + #endif + #define c89atomic_signal_fence(order) c89atomic_thread_fence(order) + static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile c89atomic_uint8* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_8(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile c89atomic_uint16* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_16(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile c89atomic_uint32* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_32(ptr, 0, 0); + } + static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile c89atomic_uint64* ptr, c89atomic_memory_order order) + { + (void)order; + return c89atomic_compare_and_swap_64(ptr, 0, 0); + } + #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order) + #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order) + #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order) + #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order) + #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order) + #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order) + #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order) + #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order) + #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order) + #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order) + #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order) + #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order) + #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order) + #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order) +#endif +#if !defined(C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE) +c89atomic_bool c89atomic_compare_exchange_strong_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8* expected, c89atomic_uint8 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) +{ + c89atomic_uint8 expectedValue; + c89atomic_uint8 result; + (void)successOrder; + (void)failureOrder; + expectedValue = c89atomic_load_explicit_8(expected, c89atomic_memory_order_seq_cst); + result = c89atomic_compare_and_swap_8(dst, expectedValue, desired); + if (result == expectedValue) { + return 1; + } else { + c89atomic_store_explicit_8(expected, result, failureOrder); + return 0; + } +} +c89atomic_bool c89atomic_compare_exchange_strong_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16* expected, c89atomic_uint16 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) +{ + c89atomic_uint16 expectedValue; + c89atomic_uint16 result; + (void)successOrder; + (void)failureOrder; + expectedValue = c89atomic_load_explicit_16(expected, c89atomic_memory_order_seq_cst); + result = c89atomic_compare_and_swap_16(dst, expectedValue, desired); + if (result == expectedValue) { + return 1; + } else { + c89atomic_store_explicit_16(expected, result, failureOrder); + return 0; + } +} +c89atomic_bool c89atomic_compare_exchange_strong_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32* expected, c89atomic_uint32 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) +{ + c89atomic_uint32 expectedValue; + c89atomic_uint32 result; + (void)successOrder; + (void)failureOrder; + expectedValue = c89atomic_load_explicit_32(expected, c89atomic_memory_order_seq_cst); + result = c89atomic_compare_and_swap_32(dst, expectedValue, desired); + if (result == expectedValue) { + return 1; + } else { + c89atomic_store_explicit_32(expected, result, failureOrder); + return 0; + } +} +c89atomic_bool c89atomic_compare_exchange_strong_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64* expected, c89atomic_uint64 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) +{ + c89atomic_uint64 expectedValue; + c89atomic_uint64 result; + (void)successOrder; + (void)failureOrder; + expectedValue = c89atomic_load_explicit_64(expected, c89atomic_memory_order_seq_cst); + result = c89atomic_compare_and_swap_64(dst, expectedValue, desired); + if (result == expectedValue) { + return 1; + } else { + c89atomic_store_explicit_64(expected, result, failureOrder); + return 0; + } +} +#define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8 (dst, expected, desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) +#endif +#if !defined(C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE) + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_8(volatile void* ptr) + { + (void)ptr; + return 1; + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_16(volatile void* ptr) + { + (void)ptr; + return 1; + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_32(volatile void* ptr) + { + (void)ptr; + return 1; + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_64(volatile void* ptr) + { + (void)ptr; + #if defined(C89ATOMIC_64BIT) + return 1; + #else + #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) + return 1; + #else + return 0; + #endif + #endif + } +#endif +#if defined(C89ATOMIC_64BIT) + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_ptr(volatile void** ptr) + { + return c89atomic_is_lock_free_64((volatile c89atomic_uint64*)ptr); + } + static C89ATOMIC_INLINE void* c89atomic_load_explicit_ptr(volatile void** ptr, c89atomic_memory_order order) + { + return (void*)c89atomic_load_explicit_64((volatile c89atomic_uint64*)ptr, order); + } + static C89ATOMIC_INLINE void c89atomic_store_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) + { + c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order); + } + static C89ATOMIC_INLINE void* c89atomic_exchange_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) + { + return (void*)c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order); + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_strong_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) + { + return c89atomic_compare_exchange_strong_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder); + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_weak_explicit_ptr(volatile void** dst, volatile void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) + { + return c89atomic_compare_exchange_weak_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder); + } + static C89ATOMIC_INLINE void* c89atomic_compare_and_swap_ptr(volatile void** dst, void* expected, void* desired) + { + return (void*)c89atomic_compare_and_swap_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)expected, (c89atomic_uint64)desired); + } +#elif defined(C89ATOMIC_32BIT) + static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_ptr(volatile void** ptr) + { + return c89atomic_is_lock_free_32((volatile c89atomic_uint32*)ptr); + } + static C89ATOMIC_INLINE void* c89atomic_load_explicit_ptr(volatile void** ptr, c89atomic_memory_order order) + { + return (void*)c89atomic_load_explicit_32((volatile c89atomic_uint32*)ptr, order); + } + static C89ATOMIC_INLINE void c89atomic_store_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) + { + c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order); + } + static C89ATOMIC_INLINE void* c89atomic_exchange_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) + { + return (void*)c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order); + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_strong_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) + { + return c89atomic_compare_exchange_strong_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder); + } + static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_weak_explicit_ptr(volatile void** dst, volatile void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) + { + return c89atomic_compare_exchange_weak_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder); + } + static C89ATOMIC_INLINE void* c89atomic_compare_and_swap_ptr(volatile void** dst, void* expected, void* desired) + { + return (void*)c89atomic_compare_and_swap_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)expected, (c89atomic_uint32)desired); + } +#else + #error Unsupported architecture. +#endif +#define c89atomic_flag_test_and_set(ptr) c89atomic_flag_test_and_set_explicit(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_flag_clear(ptr) c89atomic_flag_clear_explicit(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_store_ptr(dst, src) c89atomic_store_explicit_ptr((volatile void**)dst, (void*)src, c89atomic_memory_order_seq_cst) +#define c89atomic_load_ptr(ptr) c89atomic_load_explicit_ptr((volatile void**)ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_ptr(dst, src) c89atomic_exchange_explicit_ptr((volatile void**)dst, (void*)src, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_ptr(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_ptr((volatile void**)dst, (void*)expected, (void*)desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_ptr(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_ptr((volatile void**)dst, (void*)expected, (void*)desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_8( ptr) c89atomic_test_and_set_explicit_8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_16(ptr) c89atomic_test_and_set_explicit_16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_32(ptr) c89atomic_test_and_set_explicit_32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_64(ptr) c89atomic_test_and_set_explicit_64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_8( ptr) c89atomic_clear_explicit_8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_16(ptr) c89atomic_clear_explicit_16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_32(ptr) c89atomic_clear_explicit_32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_64(ptr) c89atomic_clear_explicit_64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_store_8( dst, src) c89atomic_store_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_16(dst, src) c89atomic_store_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_32(dst, src) c89atomic_store_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_64(dst, src) c89atomic_store_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_load_8( ptr) c89atomic_load_explicit_8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_16(ptr) c89atomic_load_explicit_16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_32(ptr) c89atomic_load_explicit_32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_64(ptr) c89atomic_load_explicit_64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_8( dst, src) c89atomic_exchange_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_16(dst, src) c89atomic_exchange_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_32(dst, src) c89atomic_exchange_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_64(dst, src) c89atomic_exchange_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_16(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_32(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_64(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_16( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_32( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_64( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_8( dst, src) c89atomic_fetch_add_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_16(dst, src) c89atomic_fetch_add_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_32(dst, src) c89atomic_fetch_add_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_64(dst, src) c89atomic_fetch_add_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_8( dst, src) c89atomic_fetch_sub_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_16(dst, src) c89atomic_fetch_sub_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_32(dst, src) c89atomic_fetch_sub_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_64(dst, src) c89atomic_fetch_sub_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_8( dst, src) c89atomic_fetch_or_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_16(dst, src) c89atomic_fetch_or_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_32(dst, src) c89atomic_fetch_or_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_64(dst, src) c89atomic_fetch_or_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_8( dst, src) c89atomic_fetch_xor_explicit_8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_16(dst, src) c89atomic_fetch_xor_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_32(dst, src) c89atomic_fetch_xor_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_64(dst, src) c89atomic_fetch_xor_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_8( dst, src) c89atomic_fetch_and_explicit_8 (dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_16(dst, src) c89atomic_fetch_and_explicit_16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_32(dst, src) c89atomic_fetch_and_explicit_32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_64(dst, src) c89atomic_fetch_and_explicit_64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_explicit_i8( ptr, order) c89atomic_test_and_set_explicit_8( (c89atomic_uint8* )ptr, order) +#define c89atomic_test_and_set_explicit_i16(ptr, order) c89atomic_test_and_set_explicit_16((c89atomic_uint16*)ptr, order) +#define c89atomic_test_and_set_explicit_i32(ptr, order) c89atomic_test_and_set_explicit_32((c89atomic_uint32*)ptr, order) +#define c89atomic_test_and_set_explicit_i64(ptr, order) c89atomic_test_and_set_explicit_64((c89atomic_uint64*)ptr, order) +#define c89atomic_clear_explicit_i8( ptr, order) c89atomic_clear_explicit_8( (c89atomic_uint8* )ptr, order) +#define c89atomic_clear_explicit_i16(ptr, order) c89atomic_clear_explicit_16((c89atomic_uint16*)ptr, order) +#define c89atomic_clear_explicit_i32(ptr, order) c89atomic_clear_explicit_32((c89atomic_uint32*)ptr, order) +#define c89atomic_clear_explicit_i64(ptr, order) c89atomic_clear_explicit_64((c89atomic_uint64*)ptr, order) +#define c89atomic_store_explicit_i8( dst, src, order) c89atomic_store_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_store_explicit_i16(dst, src, order) c89atomic_store_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_store_explicit_i32(dst, src, order) c89atomic_store_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_store_explicit_i64(dst, src, order) c89atomic_store_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_load_explicit_i8( ptr, order) c89atomic_load_explicit_8( (c89atomic_uint8* )ptr, order) +#define c89atomic_load_explicit_i16(ptr, order) c89atomic_load_explicit_16((c89atomic_uint16*)ptr, order) +#define c89atomic_load_explicit_i32(ptr, order) c89atomic_load_explicit_32((c89atomic_uint32*)ptr, order) +#define c89atomic_load_explicit_i64(ptr, order) c89atomic_load_explicit_64((c89atomic_uint64*)ptr, order) +#define c89atomic_exchange_explicit_i8( dst, src, order) c89atomic_exchange_explicit_8 ((c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_exchange_explicit_i16(dst, src, order) c89atomic_exchange_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_exchange_explicit_i32(dst, src, order) c89atomic_exchange_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_exchange_explicit_i64(dst, src, order) c89atomic_exchange_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_compare_exchange_strong_explicit_i8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8* )expected, (c89atomic_uint8 )desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_strong_explicit_i16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16*)expected, (c89atomic_uint16)desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_strong_explicit_i32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_strong_explicit_i64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_i8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8* )expected, (c89atomic_uint8 )desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_i16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16*)expected, (c89atomic_uint16)desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_i32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder) +#define c89atomic_compare_exchange_weak_explicit_i64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder) +#define c89atomic_fetch_add_explicit_i8( dst, src, order) c89atomic_fetch_add_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_fetch_add_explicit_i16(dst, src, order) c89atomic_fetch_add_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_fetch_add_explicit_i32(dst, src, order) c89atomic_fetch_add_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_fetch_add_explicit_i64(dst, src, order) c89atomic_fetch_add_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_fetch_sub_explicit_i8( dst, src, order) c89atomic_fetch_sub_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_fetch_sub_explicit_i16(dst, src, order) c89atomic_fetch_sub_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_fetch_sub_explicit_i32(dst, src, order) c89atomic_fetch_sub_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_fetch_sub_explicit_i64(dst, src, order) c89atomic_fetch_sub_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_fetch_or_explicit_i8( dst, src, order) c89atomic_fetch_or_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_fetch_or_explicit_i16(dst, src, order) c89atomic_fetch_or_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_fetch_or_explicit_i32(dst, src, order) c89atomic_fetch_or_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_fetch_or_explicit_i64(dst, src, order) c89atomic_fetch_or_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_fetch_xor_explicit_i8( dst, src, order) c89atomic_fetch_xor_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_fetch_xor_explicit_i16(dst, src, order) c89atomic_fetch_xor_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_fetch_xor_explicit_i32(dst, src, order) c89atomic_fetch_xor_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_fetch_xor_explicit_i64(dst, src, order) c89atomic_fetch_xor_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_fetch_and_explicit_i8( dst, src, order) c89atomic_fetch_and_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) +#define c89atomic_fetch_and_explicit_i16(dst, src, order) c89atomic_fetch_and_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) +#define c89atomic_fetch_and_explicit_i32(dst, src, order) c89atomic_fetch_and_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) +#define c89atomic_fetch_and_explicit_i64(dst, src, order) c89atomic_fetch_and_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) +#define c89atomic_test_and_set_i8( ptr) c89atomic_test_and_set_explicit_i8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_i16(ptr) c89atomic_test_and_set_explicit_i16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_i32(ptr) c89atomic_test_and_set_explicit_i32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_test_and_set_i64(ptr) c89atomic_test_and_set_explicit_i64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_i8( ptr) c89atomic_clear_explicit_i8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_i16(ptr) c89atomic_clear_explicit_i16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_i32(ptr) c89atomic_clear_explicit_i32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_i64(ptr) c89atomic_clear_explicit_i64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_store_i8( dst, src) c89atomic_store_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_i16(dst, src) c89atomic_store_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_i32(dst, src) c89atomic_store_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_i64(dst, src) c89atomic_store_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_load_i8( ptr) c89atomic_load_explicit_i8( ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_i16(ptr) c89atomic_load_explicit_i16(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_i32(ptr) c89atomic_load_explicit_i32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_i64(ptr) c89atomic_load_explicit_i64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_i8( dst, src) c89atomic_exchange_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_i16(dst, src) c89atomic_exchange_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_i32(dst, src) c89atomic_exchange_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_i64(dst, src) c89atomic_exchange_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_i8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_i16(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_i32(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_strong_i64(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_i8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_i16(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_i32(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_compare_exchange_weak_i64(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_i8( dst, src) c89atomic_fetch_add_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_i16(dst, src) c89atomic_fetch_add_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_i32(dst, src) c89atomic_fetch_add_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_add_i64(dst, src) c89atomic_fetch_add_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_i8( dst, src) c89atomic_fetch_sub_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_i16(dst, src) c89atomic_fetch_sub_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_i32(dst, src) c89atomic_fetch_sub_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_sub_i64(dst, src) c89atomic_fetch_sub_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_i8( dst, src) c89atomic_fetch_or_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_i16(dst, src) c89atomic_fetch_or_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_i32(dst, src) c89atomic_fetch_or_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_or_i64(dst, src) c89atomic_fetch_or_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_i8( dst, src) c89atomic_fetch_xor_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_i16(dst, src) c89atomic_fetch_xor_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_i32(dst, src) c89atomic_fetch_xor_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_xor_i64(dst, src) c89atomic_fetch_xor_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_i8( dst, src) c89atomic_fetch_and_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_i16(dst, src) c89atomic_fetch_and_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_i32(dst, src) c89atomic_fetch_and_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_fetch_and_i64(dst, src) c89atomic_fetch_and_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) +typedef union +{ + c89atomic_uint32 i; + float f; +} c89atomic_if32; +typedef union +{ + c89atomic_uint64 i; + double f; +} c89atomic_if64; +#define c89atomic_clear_explicit_f32(ptr, order) c89atomic_clear_explicit_32((c89atomic_uint32*)ptr, order) +#define c89atomic_clear_explicit_f64(ptr, order) c89atomic_clear_explicit_64((c89atomic_uint64*)ptr, order) +static C89ATOMIC_INLINE void c89atomic_store_explicit_f32(volatile float* dst, float src, c89atomic_memory_order order) +{ + c89atomic_if32 x; + x.f = src; + c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, x.i, order); +} +static C89ATOMIC_INLINE void c89atomic_store_explicit_f64(volatile float* dst, float src, c89atomic_memory_order order) +{ + c89atomic_if64 x; + x.f = src; + c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, x.i, order); +} +static C89ATOMIC_INLINE float c89atomic_load_explicit_f32(volatile float* ptr, c89atomic_memory_order order) +{ + c89atomic_if32 r; + r.i = c89atomic_load_explicit_32((volatile c89atomic_uint32*)ptr, order); + return r.f; +} +static C89ATOMIC_INLINE double c89atomic_load_explicit_f64(volatile double* ptr, c89atomic_memory_order order) +{ + c89atomic_if64 r; + r.i = c89atomic_load_explicit_64((volatile c89atomic_uint64*)ptr, order); + return r.f; +} +static C89ATOMIC_INLINE float c89atomic_exchange_explicit_f32(volatile float* dst, float src, c89atomic_memory_order order) +{ + c89atomic_if32 r; + c89atomic_if32 x; + x.f = src; + r.i = c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, x.i, order); + return r.f; +} +static C89ATOMIC_INLINE double c89atomic_exchange_explicit_f64(volatile double* dst, double src, c89atomic_memory_order order) +{ + c89atomic_if64 r; + c89atomic_if64 x; + x.f = src; + r.i = c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, x.i, order); + return r.f; +} +#define c89atomic_clear_f32(ptr) c89atomic_clear_explicit_f32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_clear_f64(ptr) c89atomic_clear_explicit_f64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_store_f32(dst, src) c89atomic_store_explicit_f32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_store_f64(dst, src) c89atomic_store_explicit_f64(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_load_f32(ptr) c89atomic_load_explicit_f32(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_load_f64(ptr) c89atomic_load_explicit_f64(ptr, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_f32(dst, src) c89atomic_exchange_explicit_f32(dst, src, c89atomic_memory_order_seq_cst) +#define c89atomic_exchange_f64(dst, src) c89atomic_exchange_explicit_f64(dst, src, c89atomic_memory_order_seq_cst) +#if defined(__cplusplus) +} +#endif +#endif +/* c89atomic.h end */ -#ifdef MA_64BIT -#define ma_atomic_exchange_ptr ma_atomic_exchange_64 -#endif -#ifdef MA_32BIT -#define ma_atomic_exchange_ptr ma_atomic_exchange_32 -#endif static void* ma__malloc_default(size_t sz, void* pUserData) @@ -7383,7 +9659,7 @@ static void ma__free_from_callbacks(void* p, const ma_allocation_callbacks* pAll } } -static ma_allocation_callbacks ma_allocation_callbacks_init_default() +static ma_allocation_callbacks ma_allocation_callbacks_init_default(void) { ma_allocation_callbacks callbacks; callbacks.pUserData = NULL; @@ -7426,6 +9702,10 @@ MA_API ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateO ma_resampler_config config; ma_resampler resampler; + if (sampleRateOut == sampleRateIn) { + return frameCountIn; + } + config = ma_resampler_config_init(ma_format_s16, 1, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear); result = ma_resampler_init(&config, &resampler); if (result != MA_SUCCESS) { @@ -7442,6 +9722,716 @@ MA_API ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateO #define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096 #endif + + +#if defined(MA_WIN32) +static ma_result ma_result_from_GetLastError(DWORD error) +{ + switch (error) + { + case ERROR_SUCCESS: return MA_SUCCESS; + case ERROR_PATH_NOT_FOUND: return MA_DOES_NOT_EXIST; + case ERROR_TOO_MANY_OPEN_FILES: return MA_TOO_MANY_OPEN_FILES; + case ERROR_NOT_ENOUGH_MEMORY: return MA_OUT_OF_MEMORY; + case ERROR_DISK_FULL: return MA_NO_SPACE; + case ERROR_HANDLE_EOF: return MA_END_OF_FILE; + case ERROR_NEGATIVE_SEEK: return MA_BAD_SEEK; + case ERROR_INVALID_PARAMETER: return MA_INVALID_ARGS; + case ERROR_ACCESS_DENIED: return MA_ACCESS_DENIED; + case ERROR_SEM_TIMEOUT: return MA_TIMEOUT; + case ERROR_FILE_NOT_FOUND: return MA_DOES_NOT_EXIST; + default: break; + } + + return MA_ERROR; +} +#endif /* MA_WIN32 */ + + +/******************************************************************************* + +Threading + +*******************************************************************************/ +#ifndef MA_NO_THREADING +#ifdef MA_WIN32 + #define MA_THREADCALL WINAPI + typedef unsigned long ma_thread_result; +#else + #define MA_THREADCALL + typedef void* ma_thread_result; +#endif +typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData); + +static MA_INLINE ma_result ma_spinlock_lock_ex(ma_spinlock* pSpinlock, ma_bool32 yield) +{ + if (pSpinlock == NULL) { + return MA_INVALID_ARGS; + } + + for (;;) { + if (c89atomic_flag_test_and_set_explicit(pSpinlock, c89atomic_memory_order_acquire) == 0) { + break; + } + + while (c89atomic_load_explicit_8(pSpinlock, c89atomic_memory_order_relaxed) == 1) { + if (yield) { + ma_yield(); + } + } + } + + return MA_SUCCESS; +} + +MA_API ma_result ma_spinlock_lock(ma_spinlock* pSpinlock) +{ + return ma_spinlock_lock_ex(pSpinlock, MA_TRUE); +} + +MA_API ma_result ma_spinlock_lock_noyield(ma_spinlock* pSpinlock) +{ + return ma_spinlock_lock_ex(pSpinlock, MA_FALSE); +} + +MA_API ma_result ma_spinlock_unlock(ma_spinlock* pSpinlock) +{ + if (pSpinlock == NULL) { + return MA_INVALID_ARGS; + } + + c89atomic_flag_clear_explicit(pSpinlock, c89atomic_memory_order_release); + return MA_SUCCESS; +} + +#ifdef MA_WIN32 +static int ma_thread_priority_to_win32(ma_thread_priority priority) +{ + switch (priority) { + case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE; + case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST; + case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL; + case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL; + case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL; + case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST; + case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL; + default: return THREAD_PRIORITY_NORMAL; + } +} + +static ma_result ma_thread_create__win32(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData) +{ + *pThread = CreateThread(NULL, stackSize, entryProc, pData, 0, NULL); + if (*pThread == NULL) { + return ma_result_from_GetLastError(GetLastError()); + } + + SetThreadPriority((HANDLE)*pThread, ma_thread_priority_to_win32(priority)); + + return MA_SUCCESS; +} + +static void ma_thread_wait__win32(ma_thread* pThread) +{ + WaitForSingleObject((HANDLE)*pThread, INFINITE); +} + + +static ma_result ma_mutex_init__win32(ma_mutex* pMutex) +{ + *pMutex = CreateEventW(NULL, FALSE, TRUE, NULL); + if (*pMutex == NULL) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + +static void ma_mutex_uninit__win32(ma_mutex* pMutex) +{ + CloseHandle((HANDLE)*pMutex); +} + +static void ma_mutex_lock__win32(ma_mutex* pMutex) +{ + WaitForSingleObject((HANDLE)*pMutex, INFINITE); +} + +static void ma_mutex_unlock__win32(ma_mutex* pMutex) +{ + SetEvent((HANDLE)*pMutex); +} + + +static ma_result ma_event_init__win32(ma_event* pEvent) +{ + *pEvent = CreateEventW(NULL, FALSE, FALSE, NULL); + if (*pEvent == NULL) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + +static void ma_event_uninit__win32(ma_event* pEvent) +{ + CloseHandle((HANDLE)*pEvent); +} + +static ma_result ma_event_wait__win32(ma_event* pEvent) +{ + DWORD result = WaitForSingleObject((HANDLE)*pEvent, INFINITE); + if (result == WAIT_OBJECT_0) { + return MA_SUCCESS; + } + + if (result == WAIT_TIMEOUT) { + return MA_TIMEOUT; + } + + return ma_result_from_GetLastError(GetLastError()); +} + +static ma_result ma_event_signal__win32(ma_event* pEvent) +{ + BOOL result = SetEvent((HANDLE)*pEvent); + if (result == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + + +static ma_result ma_semaphore_init__win32(int initialValue, ma_semaphore* pSemaphore) +{ + *pSemaphore = CreateSemaphoreW(NULL, (LONG)initialValue, LONG_MAX, NULL); + if (*pSemaphore == NULL) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + +static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore) +{ + CloseHandle((HANDLE)*pSemaphore); +} + +static ma_result ma_semaphore_wait__win32(ma_semaphore* pSemaphore) +{ + DWORD result = WaitForSingleObject((HANDLE)*pSemaphore, INFINITE); + if (result == WAIT_OBJECT_0) { + return MA_SUCCESS; + } + + if (result == WAIT_TIMEOUT) { + return MA_TIMEOUT; + } + + return ma_result_from_GetLastError(GetLastError()); +} + +static ma_result ma_semaphore_release__win32(ma_semaphore* pSemaphore) +{ + BOOL result = ReleaseSemaphore((HANDLE)*pSemaphore, 1, NULL); + if (result == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} +#endif + + +#ifdef MA_POSIX +static ma_result ma_thread_create__posix(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData) +{ + int result; + pthread_attr_t* pAttr = NULL; + +#if !defined(__EMSCRIPTEN__) + /* Try setting the thread priority. It's not critical if anything fails here. */ + pthread_attr_t attr; + if (pthread_attr_init(&attr) == 0) { + int scheduler = -1; + if (priority == ma_thread_priority_idle) { +#ifdef SCHED_IDLE + if (pthread_attr_setschedpolicy(&attr, SCHED_IDLE) == 0) { + scheduler = SCHED_IDLE; + } +#endif + } else if (priority == ma_thread_priority_realtime) { +#ifdef SCHED_FIFO + if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) == 0) { + scheduler = SCHED_FIFO; + } +#endif +#ifdef MA_LINUX + } else { + scheduler = sched_getscheduler(0); +#endif + } + + if (stackSize > 0) { + pthread_attr_setstacksize(&attr, stackSize); + } + + if (scheduler != -1) { + int priorityMin = sched_get_priority_min(scheduler); + int priorityMax = sched_get_priority_max(scheduler); + int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */ + + struct sched_param sched; + if (pthread_attr_getschedparam(&attr, &sched) == 0) { + if (priority == ma_thread_priority_idle) { + sched.sched_priority = priorityMin; + } else if (priority == ma_thread_priority_realtime) { + sched.sched_priority = priorityMax; + } else { + sched.sched_priority += ((int)priority + 5) * priorityStep; /* +5 because the lowest priority is -5. */ + if (sched.sched_priority < priorityMin) { + sched.sched_priority = priorityMin; + } + if (sched.sched_priority > priorityMax) { + sched.sched_priority = priorityMax; + } + } + + if (pthread_attr_setschedparam(&attr, &sched) == 0) { + pAttr = &attr; + } + } + } + + pthread_attr_destroy(&attr); + } +#else + /* It's the emscripten build. We'll have a few unused parameters. */ + (void)priority; + (void)stackSize; +#endif + + result = pthread_create(pThread, pAttr, entryProc, pData); + if (result != 0) { + return ma_result_from_errno(result); + } + + return MA_SUCCESS; +} + +static void ma_thread_wait__posix(ma_thread* pThread) +{ + pthread_join(*pThread, NULL); +} + + +static ma_result ma_mutex_init__posix(ma_mutex* pMutex) +{ + int result = pthread_mutex_init((pthread_mutex_t*)pMutex, NULL); + if (result != 0) { + return ma_result_from_errno(result); + } + + return MA_SUCCESS; +} + +static void ma_mutex_uninit__posix(ma_mutex* pMutex) +{ + pthread_mutex_destroy((pthread_mutex_t*)pMutex); +} + +static void ma_mutex_lock__posix(ma_mutex* pMutex) +{ + pthread_mutex_lock((pthread_mutex_t*)pMutex); +} + +static void ma_mutex_unlock__posix(ma_mutex* pMutex) +{ + pthread_mutex_unlock((pthread_mutex_t*)pMutex); +} + + +static ma_result ma_event_init__posix(ma_event* pEvent) +{ + int result; + + result = pthread_mutex_init(&pEvent->lock, NULL); + if (result != 0) { + return ma_result_from_errno(result); + } + + result = pthread_cond_init(&pEvent->cond, NULL); + if (result != 0) { + pthread_mutex_destroy(&pEvent->lock); + return ma_result_from_errno(result); + } + + pEvent->value = 0; + return MA_SUCCESS; +} + +static void ma_event_uninit__posix(ma_event* pEvent) +{ + pthread_cond_destroy(&pEvent->cond); + pthread_mutex_destroy(&pEvent->lock); +} + +static ma_result ma_event_wait__posix(ma_event* pEvent) +{ + pthread_mutex_lock(&pEvent->lock); + { + while (pEvent->value == 0) { + pthread_cond_wait(&pEvent->cond, &pEvent->lock); + } + pEvent->value = 0; /* Auto-reset. */ + } + pthread_mutex_unlock(&pEvent->lock); + + return MA_SUCCESS; +} + +static ma_result ma_event_signal__posix(ma_event* pEvent) +{ + pthread_mutex_lock(&pEvent->lock); + { + pEvent->value = 1; + pthread_cond_signal(&pEvent->cond); + } + pthread_mutex_unlock(&pEvent->lock); + + return MA_SUCCESS; +} + + +static ma_result ma_semaphore_init__posix(int initialValue, ma_semaphore* pSemaphore) +{ + int result; + + if (pSemaphore == NULL) { + return MA_INVALID_ARGS; + } + + pSemaphore->value = initialValue; + + result = pthread_mutex_init(&pSemaphore->lock, NULL); + if (result != 0) { + return ma_result_from_errno(result); /* Failed to create mutex. */ + } + + result = pthread_cond_init(&pSemaphore->cond, NULL); + if (result != 0) { + pthread_mutex_destroy(&pSemaphore->lock); + return ma_result_from_errno(result); /* Failed to create condition variable. */ + } + + return MA_SUCCESS; +} + +static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + return; + } + + pthread_cond_destroy(&pSemaphore->cond); + pthread_mutex_destroy(&pSemaphore->lock); +} + +static ma_result ma_semaphore_wait__posix(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + return MA_INVALID_ARGS; + } + + pthread_mutex_lock(&pSemaphore->lock); + { + /* We need to wait on a condition variable before escaping. We can't return from this function until the semaphore has been signaled. */ + while (pSemaphore->value == 0) { + pthread_cond_wait(&pSemaphore->cond, &pSemaphore->lock); + } + + pSemaphore->value -= 1; + } + pthread_mutex_unlock(&pSemaphore->lock); + + return MA_SUCCESS; +} + +static ma_result ma_semaphore_release__posix(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + return MA_INVALID_ARGS; + } + + pthread_mutex_lock(&pSemaphore->lock); + { + pSemaphore->value += 1; + pthread_cond_signal(&pSemaphore->cond); + } + pthread_mutex_unlock(&pSemaphore->lock); + + return MA_SUCCESS; +} +#endif + +static ma_result ma_thread_create(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData) +{ + if (pThread == NULL || entryProc == NULL) { + return MA_FALSE; + } + +#ifdef MA_WIN32 + return ma_thread_create__win32(pThread, priority, stackSize, entryProc, pData); +#endif +#ifdef MA_POSIX + return ma_thread_create__posix(pThread, priority, stackSize, entryProc, pData); +#endif +} + +static void ma_thread_wait(ma_thread* pThread) +{ + if (pThread == NULL) { + return; + } + +#ifdef MA_WIN32 + ma_thread_wait__win32(pThread); +#endif +#ifdef MA_POSIX + ma_thread_wait__posix(pThread); +#endif +} + + +MA_API ma_result ma_mutex_init(ma_mutex* pMutex) +{ + if (pMutex == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_mutex_init__win32(pMutex); +#endif +#ifdef MA_POSIX + return ma_mutex_init__posix(pMutex); +#endif +} + +MA_API void ma_mutex_uninit(ma_mutex* pMutex) +{ + if (pMutex == NULL) { + return; + } + +#ifdef MA_WIN32 + ma_mutex_uninit__win32(pMutex); +#endif +#ifdef MA_POSIX + ma_mutex_uninit__posix(pMutex); +#endif +} + +MA_API void ma_mutex_lock(ma_mutex* pMutex) +{ + if (pMutex == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return; + } + +#ifdef MA_WIN32 + ma_mutex_lock__win32(pMutex); +#endif +#ifdef MA_POSIX + ma_mutex_lock__posix(pMutex); +#endif +} + +MA_API void ma_mutex_unlock(ma_mutex* pMutex) +{ + if (pMutex == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return; +} + +#ifdef MA_WIN32 + ma_mutex_unlock__win32(pMutex); +#endif +#ifdef MA_POSIX + ma_mutex_unlock__posix(pMutex); +#endif +} + + +MA_API ma_result ma_event_init(ma_event* pEvent) +{ + if (pEvent == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_event_init__win32(pEvent); +#endif +#ifdef MA_POSIX + return ma_event_init__posix(pEvent); +#endif +} + +#if 0 +static ma_result ma_event_alloc_and_init(ma_event** ppEvent, ma_allocation_callbacks* pAllocationCallbacks) +{ + ma_result result; + ma_event* pEvent; + + if (ppEvent == NULL) { + return MA_INVALID_ARGS; + } + + *ppEvent = NULL; + + pEvent = ma_malloc(sizeof(*pEvent), pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/); + if (pEvent == NULL) { + return MA_OUT_OF_MEMORY; + } + + result = ma_event_init(pEvent); + if (result != MA_SUCCESS) { + ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/); + return result; + } + + *ppEvent = pEvent; + return result; +} +#endif + +MA_API void ma_event_uninit(ma_event* pEvent) +{ + if (pEvent == NULL) { + return; + } + +#ifdef MA_WIN32 + ma_event_uninit__win32(pEvent); +#endif +#ifdef MA_POSIX + ma_event_uninit__posix(pEvent); +#endif +} + +#if 0 +static void ma_event_uninit_and_free(ma_event* pEvent, ma_allocation_callbacks* pAllocationCallbacks) +{ + if (pEvent == NULL) { + return; + } + + ma_event_uninit(pEvent); + ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/); +} +#endif + +MA_API ma_result ma_event_wait(ma_event* pEvent) +{ + if (pEvent == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_event_wait__win32(pEvent); +#endif +#ifdef MA_POSIX + return ma_event_wait__posix(pEvent); +#endif +} + +MA_API ma_result ma_event_signal(ma_event* pEvent) +{ + if (pEvent == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_event_signal__win32(pEvent); +#endif +#ifdef MA_POSIX + return ma_event_signal__posix(pEvent); +#endif +} + + +MA_API ma_result ma_semaphore_init(int initialValue, ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_semaphore_init__win32(initialValue, pSemaphore); +#endif +#ifdef MA_POSIX + return ma_semaphore_init__posix(initialValue, pSemaphore); +#endif +} + +MA_API void ma_semaphore_uninit(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ + return; + } + +#ifdef MA_WIN32 + ma_semaphore_uninit__win32(pSemaphore); +#endif +#ifdef MA_POSIX + ma_semaphore_uninit__posix(pSemaphore); +#endif +} + +MA_API ma_result ma_semaphore_wait(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_semaphore_wait__win32(pSemaphore); +#endif +#ifdef MA_POSIX + return ma_semaphore_wait__posix(pSemaphore); +#endif +} + +MA_API ma_result ma_semaphore_release(ma_semaphore* pSemaphore) +{ + if (pSemaphore == NULL) { + MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ + return MA_INVALID_ARGS; + } + +#ifdef MA_WIN32 + return ma_semaphore_release__win32(pSemaphore); +#endif +#ifdef MA_POSIX + return ma_semaphore_release__posix(pSemaphore); +#endif +} +#else +/* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */ +#ifndef MA_NO_DEVICE_IO +#error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO"; +#endif +#endif /* MA_NO_THREADING */ + + + /************************************************************************************************************************************************************ ************************************************************************************************************************************************************* @@ -7462,7 +10452,6 @@ DEVICE I/O #endif #ifdef MA_POSIX - #include #include #include #include @@ -7548,6 +10537,9 @@ certain unused functions and variables can be excluded from the build to avoid w #ifdef MA_ENABLE_WEBAUDIO #define MA_HAS_WEBAUDIO #endif +#ifdef MA_ENABLE_CUSTOM + #define MA_HAS_CUSTOM +#endif #ifdef MA_ENABLE_NULL #define MA_HAS_NULL /* Everything supports the null backend. */ #endif @@ -7569,11 +10561,149 @@ MA_API const char* ma_get_backend_name(ma_backend backend) case ma_backend_aaudio: return "AAudio"; case ma_backend_opensl: return "OpenSL|ES"; case ma_backend_webaudio: return "Web Audio"; + case ma_backend_custom: return "Custom"; case ma_backend_null: return "Null"; default: return "Unknown"; } } +MA_API ma_bool32 ma_is_backend_enabled(ma_backend backend) +{ + /* + This looks a little bit gross, but we want all backends to be included in the switch to avoid warnings on some compilers + about some enums not being handled by the switch statement. + */ + switch (backend) + { + case ma_backend_wasapi: + #if defined(MA_HAS_WASAPI) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_dsound: + #if defined(MA_HAS_DSOUND) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_winmm: + #if defined(MA_HAS_WINMM) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_coreaudio: + #if defined(MA_HAS_COREAUDIO) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_sndio: + #if defined(MA_HAS_SNDIO) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_audio4: + #if defined(MA_HAS_AUDIO4) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_oss: + #if defined(MA_HAS_OSS) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_pulseaudio: + #if defined(MA_HAS_PULSEAUDIO) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_alsa: + #if defined(MA_HAS_ALSA) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_jack: + #if defined(MA_HAS_JACK) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_aaudio: + #if defined(MA_HAS_AAUDIO) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_opensl: + #if defined(MA_HAS_OPENSL) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_webaudio: + #if defined(MA_HAS_WEBAUDIO) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_custom: + #if defined(MA_HAS_CUSTOM) + return MA_TRUE; + #else + return MA_FALSE; + #endif + case ma_backend_null: + #if defined(MA_HAS_NULL) + return MA_TRUE; + #else + return MA_FALSE; + #endif + + default: return MA_FALSE; + } +} + +MA_API ma_result ma_get_enabled_backends(ma_backend* pBackends, size_t backendCap, size_t* pBackendCount) +{ + size_t backendCount; + size_t iBackend; + ma_result result = MA_SUCCESS; + + if (pBackendCount == NULL) { + return MA_INVALID_ARGS; + } + + backendCount = 0; + + for (iBackend = 0; iBackend <= ma_backend_null; iBackend += 1) { + ma_backend backend = (ma_backend)iBackend; + + if (ma_is_backend_enabled(backend)) { + /* The backend is enabled. Try adding it to the list. If there's no room, MA_NO_SPACE needs to be returned. */ + if (backendCount == backendCap) { + result = MA_NO_SPACE; + break; + } else { + pBackends[backendCount] = backend; + backendCount += 1; + } + } + } + + if (pBackendCount != NULL) { + *pBackendCount = backendCount; + } + + return result; +} + MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend) { switch (backend) @@ -7591,6 +10721,7 @@ MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend) case ma_backend_aaudio: return MA_FALSE; case ma_backend_opensl: return MA_FALSE; case ma_backend_webaudio: return MA_FALSE; + case ma_backend_custom: return MA_FALSE; /* <-- Will depend on the implementation of the backend. */ case ma_backend_null: return MA_FALSE; default: return MA_FALSE; } @@ -7599,36 +10730,6 @@ MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend) #ifdef MA_WIN32 - #define MA_THREADCALL WINAPI - typedef unsigned long ma_thread_result; -#else - #define MA_THREADCALL - typedef void* ma_thread_result; -#endif -typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData); - -#ifdef MA_WIN32 -static ma_result ma_result_from_GetLastError(DWORD error) -{ - switch (error) - { - case ERROR_SUCCESS: return MA_SUCCESS; - case ERROR_PATH_NOT_FOUND: return MA_DOES_NOT_EXIST; - case ERROR_TOO_MANY_OPEN_FILES: return MA_TOO_MANY_OPEN_FILES; - case ERROR_NOT_ENOUGH_MEMORY: return MA_OUT_OF_MEMORY; - case ERROR_DISK_FULL: return MA_NO_SPACE; - case ERROR_HANDLE_EOF: return MA_END_OF_FILE; - case ERROR_NEGATIVE_SEEK: return MA_BAD_SEEK; - case ERROR_INVALID_PARAMETER: return MA_INVALID_ARGS; - case ERROR_ACCESS_DENIED: return MA_ACCESS_DENIED; - case ERROR_SEM_TIMEOUT: return MA_TIMEOUT; - case ERROR_FILE_NOT_FOUND: return MA_DOES_NOT_EXIST; - default: break; - } - - return MA_ERROR; -} - /* WASAPI error codes. */ #define MA_AUDCLNT_E_NOT_INITIALIZED ((HRESULT)0x88890001) #define MA_AUDCLNT_E_ALREADY_INITIALIZED ((HRESULT)0x88890002) @@ -7805,12 +10906,6 @@ typedef LONG (WINAPI * MA_PFN_RegQueryValueExA)(HKEY hKey, LPCSTR lpValueName, L #endif -#define MA_STATE_UNINITIALIZED 0 -#define MA_STATE_STOPPED 1 /* The device's default state after initialization. */ -#define MA_STATE_STARTED 2 /* The worker thread is in it's main loop waiting for the driver to request or deliver audio data. */ -#define MA_STATE_STARTING 3 /* Transitioning from a stopped state to started. */ -#define MA_STATE_STOPPING 4 /* Transitioning from a started state to stopped. */ - #define MA_DEFAULT_PLAYBACK_DEVICE_NAME "Default Playback Device" #define MA_DEFAULT_CAPTURE_DEVICE_NAME "Default Capture Device" @@ -7836,20 +10931,19 @@ static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uin } } + /* All logs must be output when debug output is enabled. */ +#if defined(MA_DEBUG_OUTPUT) + printf("%s: %s\n", ma_log_level_to_string(logLevel), message); +#endif + if (pContext == NULL) { return; } - + #if defined(MA_LOG_LEVEL) if (logLevel <= MA_LOG_LEVEL) { ma_log_proc onLog; - #if defined(MA_DEBUG_OUTPUT) - if (logLevel <= MA_LOG_LEVEL) { - printf("%s: %s\n", ma_log_level_to_string(logLevel), message); - } - #endif - onLog = pContext->logCallback; if (onLog) { onLog(pContext, pDevice, logLevel, message); @@ -7858,10 +10952,55 @@ static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uin #endif } +/* +We need to emulate _vscprintf() for the VC6 build. This can be more efficient, but since it's only VC6, and it's just a +logging function, I'm happy to keep this simple. In the VC6 build we can implement this in terms of _vsnprintf(). +*/ +#if defined(_MSC_VER) && _MSC_VER < 1900 +int ma_vscprintf(const char* format, va_list args) +{ +#if _MSC_VER > 1200 + return _vscprintf(format, args); +#else + int result; + char* pTempBuffer = NULL; + size_t tempBufferCap = 1024; + + if (format == NULL) { + errno = EINVAL; + return -1; + } + + for (;;) { + char* pNewTempBuffer = (char*)ma_realloc(pTempBuffer, tempBufferCap, NULL); /* TODO: Add support for custom memory allocators? */ + if (pNewTempBuffer == NULL) { + ma_free(pTempBuffer, NULL); + errno = ENOMEM; + return -1; /* Out of memory. */ + } + + pTempBuffer = pNewTempBuffer; + + result = _vsnprintf(pTempBuffer, tempBufferCap, format, args); + ma_free(pTempBuffer, NULL); + + if (result != -1) { + break; /* Got it. */ + } + + /* Buffer wasn't big enough. Ideally it'd be nice to use an error code to know the reason for sure, but this is reliable enough. */ + tempBufferCap *= 2; + } + + return result; +#endif +} +#endif + /* Posts a formatted log message. */ static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, va_list args) { -#if (!defined(_MSC_VER) || _MSC_VER >= 1900) && !defined(__STRICT_ANSI__) +#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || ((!defined(_MSC_VER) || _MSC_VER >= 1900) && !defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) { char pFormattedMessage[1024]; vsnprintf(pFormattedMessage, sizeof(pFormattedMessage), pFormat, args); @@ -7874,7 +11013,7 @@ static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_ui need to restrict this branch to Visual Studio. For other compilers we need to just not support formatted logging because I don't want the security risk of overflowing a fixed sized stack allocated buffer. */ -#if defined (_MSC_VER) + #if defined(_MSC_VER) && _MSC_VER >= 1200 /* 1200 = VC6 */ int formattedLen; va_list args2; @@ -7883,7 +11022,7 @@ static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_ui #else args2 = args; #endif - formattedLen = _vscprintf(pFormat, args2); + formattedLen = ma_vscprintf(pFormat, args2); va_end(args2); if (formattedLen > 0) { @@ -7903,24 +11042,30 @@ static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_ui pFormattedMessage = (char*)ma_malloc(formattedLen + 1, pAllocationCallbacks); if (pFormattedMessage != NULL) { + /* We'll get errors on newer versions of Visual Studio if we try to use vsprintf(). */ + #if _MSC_VER >= 1400 /* 1400 = Visual Studio 2005 */ vsprintf_s(pFormattedMessage, formattedLen + 1, pFormat, args); + #else + vsprintf(pFormattedMessage, pFormat, args); + #endif + ma_post_log_message(pContext, pDevice, logLevel, pFormattedMessage); ma_free(pFormattedMessage, pAllocationCallbacks); } } -#else + #else /* Can't do anything because we don't have a safe way of to emulate vsnprintf() without a manual solution. */ (void)pContext; (void)pDevice; (void)logLevel; (void)pFormat; (void)args; -#endif + #endif } #endif } -static MA_INLINE void ma_post_log_messagef(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, ...) +MA_API void ma_post_log_messagef(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, ...) { va_list args; va_start(args, pFormat); @@ -8129,12 +11274,12 @@ MA_API ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symb #ifdef _WIN32 proc = (ma_proc)GetProcAddress((HMODULE)handle, symbol); #else -#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) +#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" #endif proc = (ma_proc)dlsym((void*)handle, symbol); -#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) +#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #pragma GCC diagnostic pop #endif #endif @@ -8152,578 +11297,6 @@ MA_API ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symb } -/******************************************************************************* - -Threading - -*******************************************************************************/ -#ifdef MA_WIN32 -static int ma_thread_priority_to_win32(ma_thread_priority priority) -{ - switch (priority) { - case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE; - case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST; - case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL; - case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL; - case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL; - case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST; - case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL; - default: return THREAD_PRIORITY_NORMAL; - } -} - -static ma_result ma_thread_create__win32(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData) -{ - pThread->win32.hThread = CreateThread(NULL, 0, entryProc, pData, 0, NULL); - if (pThread->win32.hThread == NULL) { - return ma_result_from_GetLastError(GetLastError()); - } - - SetThreadPriority((HANDLE)pThread->win32.hThread, ma_thread_priority_to_win32(pContext->threadPriority)); - - return MA_SUCCESS; -} - -static void ma_thread_wait__win32(ma_thread* pThread) -{ - WaitForSingleObject(pThread->win32.hThread, INFINITE); -} - -static void ma_sleep__win32(ma_uint32 milliseconds) -{ - Sleep((DWORD)milliseconds); -} - - -static ma_result ma_mutex_init__win32(ma_context* pContext, ma_mutex* pMutex) -{ - (void)pContext; - - pMutex->win32.hMutex = CreateEventW(NULL, FALSE, TRUE, NULL); - if (pMutex->win32.hMutex == NULL) { - return ma_result_from_GetLastError(GetLastError()); - } - - return MA_SUCCESS; -} - -static void ma_mutex_uninit__win32(ma_mutex* pMutex) -{ - CloseHandle(pMutex->win32.hMutex); -} - -static void ma_mutex_lock__win32(ma_mutex* pMutex) -{ - WaitForSingleObject(pMutex->win32.hMutex, INFINITE); -} - -static void ma_mutex_unlock__win32(ma_mutex* pMutex) -{ - SetEvent(pMutex->win32.hMutex); -} - - -static ma_result ma_event_init__win32(ma_context* pContext, ma_event* pEvent) -{ - (void)pContext; - - pEvent->win32.hEvent = CreateEventW(NULL, FALSE, FALSE, NULL); - if (pEvent->win32.hEvent == NULL) { - return ma_result_from_GetLastError(GetLastError()); - } - - return MA_SUCCESS; -} - -static void ma_event_uninit__win32(ma_event* pEvent) -{ - CloseHandle(pEvent->win32.hEvent); -} - -static ma_bool32 ma_event_wait__win32(ma_event* pEvent) -{ - return WaitForSingleObject(pEvent->win32.hEvent, INFINITE) == WAIT_OBJECT_0; -} - -static ma_bool32 ma_event_signal__win32(ma_event* pEvent) -{ - return SetEvent(pEvent->win32.hEvent); -} - - -static ma_result ma_semaphore_init__win32(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore) -{ - (void)pContext; - - pSemaphore->win32.hSemaphore = CreateSemaphoreW(NULL, (LONG)initialValue, LONG_MAX, NULL); - if (pSemaphore->win32.hSemaphore == NULL) { - return ma_result_from_GetLastError(GetLastError()); - } - - return MA_SUCCESS; -} - -static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore) -{ - CloseHandle((HANDLE)pSemaphore->win32.hSemaphore); -} - -static ma_bool32 ma_semaphore_wait__win32(ma_semaphore* pSemaphore) -{ - return WaitForSingleObject((HANDLE)pSemaphore->win32.hSemaphore, INFINITE) == WAIT_OBJECT_0; -} - -static ma_bool32 ma_semaphore_release__win32(ma_semaphore* pSemaphore) -{ - return ReleaseSemaphore((HANDLE)pSemaphore->win32.hSemaphore, 1, NULL) != 0; -} -#endif - - -#ifdef MA_POSIX -#include - -typedef int (* ma_pthread_create_proc)(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg); -typedef int (* ma_pthread_join_proc)(pthread_t thread, void **retval); -typedef int (* ma_pthread_mutex_init_proc)(pthread_mutex_t *__mutex, const pthread_mutexattr_t *__mutexattr); -typedef int (* ma_pthread_mutex_destroy_proc)(pthread_mutex_t *__mutex); -typedef int (* ma_pthread_mutex_lock_proc)(pthread_mutex_t *__mutex); -typedef int (* ma_pthread_mutex_unlock_proc)(pthread_mutex_t *__mutex); -typedef int (* ma_pthread_cond_init_proc)(pthread_cond_t *__restrict __cond, const pthread_condattr_t *__restrict __cond_attr); -typedef int (* ma_pthread_cond_destroy_proc)(pthread_cond_t *__cond); -typedef int (* ma_pthread_cond_signal_proc)(pthread_cond_t *__cond); -typedef int (* ma_pthread_cond_wait_proc)(pthread_cond_t *__restrict __cond, pthread_mutex_t *__restrict __mutex); -typedef int (* ma_pthread_attr_init_proc)(pthread_attr_t *attr); -typedef int (* ma_pthread_attr_destroy_proc)(pthread_attr_t *attr); -typedef int (* ma_pthread_attr_setschedpolicy_proc)(pthread_attr_t *attr, int policy); -typedef int (* ma_pthread_attr_getschedparam_proc)(const pthread_attr_t *attr, struct sched_param *param); -typedef int (* ma_pthread_attr_setschedparam_proc)(pthread_attr_t *attr, const struct sched_param *param); - -static ma_result ma_thread_create__posix(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData) -{ - int result; - pthread_attr_t* pAttr = NULL; - -#if !defined(__EMSCRIPTEN__) - /* Try setting the thread priority. It's not critical if anything fails here. */ - pthread_attr_t attr; - if (((ma_pthread_attr_init_proc)pContext->posix.pthread_attr_init)(&attr) == 0) { - int scheduler = -1; - if (pContext->threadPriority == ma_thread_priority_idle) { -#ifdef SCHED_IDLE - if (((ma_pthread_attr_setschedpolicy_proc)pContext->posix.pthread_attr_setschedpolicy)(&attr, SCHED_IDLE) == 0) { - scheduler = SCHED_IDLE; - } -#endif - } else if (pContext->threadPriority == ma_thread_priority_realtime) { -#ifdef SCHED_FIFO - if (((ma_pthread_attr_setschedpolicy_proc)pContext->posix.pthread_attr_setschedpolicy)(&attr, SCHED_FIFO) == 0) { - scheduler = SCHED_FIFO; - } -#endif -#ifdef MA_LINUX - } else { - scheduler = sched_getscheduler(0); -#endif - } - - if (scheduler != -1) { - int priorityMin = sched_get_priority_min(scheduler); - int priorityMax = sched_get_priority_max(scheduler); - int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */ - - struct sched_param sched; - if (((ma_pthread_attr_getschedparam_proc)pContext->posix.pthread_attr_getschedparam)(&attr, &sched) == 0) { - if (pContext->threadPriority == ma_thread_priority_idle) { - sched.sched_priority = priorityMin; - } else if (pContext->threadPriority == ma_thread_priority_realtime) { - sched.sched_priority = priorityMax; - } else { - sched.sched_priority += ((int)pContext->threadPriority + 5) * priorityStep; /* +5 because the lowest priority is -5. */ - if (sched.sched_priority < priorityMin) { - sched.sched_priority = priorityMin; - } - if (sched.sched_priority > priorityMax) { - sched.sched_priority = priorityMax; - } - } - - if (((ma_pthread_attr_setschedparam_proc)pContext->posix.pthread_attr_setschedparam)(&attr, &sched) == 0) { - pAttr = &attr; - } - } - } - - ((ma_pthread_attr_destroy_proc)pContext->posix.pthread_attr_destroy)(&attr); - } -#endif - - result = ((ma_pthread_create_proc)pContext->posix.pthread_create)(&pThread->posix.thread, pAttr, entryProc, pData); - if (result != 0) { - return ma_result_from_errno(result); - } - - return MA_SUCCESS; -} - -static void ma_thread_wait__posix(ma_thread* pThread) -{ - ((ma_pthread_join_proc)pThread->pContext->posix.pthread_join)(pThread->posix.thread, NULL); -} - -#if !defined(MA_EMSCRIPTEN) -static void ma_sleep__posix(ma_uint32 milliseconds) -{ -#ifdef MA_EMSCRIPTEN - (void)milliseconds; - MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */ -#else - #if _POSIX_C_SOURCE >= 199309L - struct timespec ts; - ts.tv_sec = milliseconds / 1000000; - ts.tv_nsec = milliseconds % 1000000 * 1000000; - nanosleep(&ts, NULL); - #else - struct timeval tv; - tv.tv_sec = milliseconds / 1000; - tv.tv_usec = milliseconds % 1000 * 1000; - select(0, NULL, NULL, NULL, &tv); - #endif -#endif -} -#endif /* MA_EMSCRIPTEN */ - - -static ma_result ma_mutex_init__posix(ma_context* pContext, ma_mutex* pMutex) -{ - int result = ((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pMutex->posix.mutex, NULL); - if (result != 0) { - return ma_result_from_errno(result); - } - - return MA_SUCCESS; -} - -static void ma_mutex_uninit__posix(ma_mutex* pMutex) -{ - ((ma_pthread_mutex_destroy_proc)pMutex->pContext->posix.pthread_mutex_destroy)(&pMutex->posix.mutex); -} - -static void ma_mutex_lock__posix(ma_mutex* pMutex) -{ - ((ma_pthread_mutex_lock_proc)pMutex->pContext->posix.pthread_mutex_lock)(&pMutex->posix.mutex); -} - -static void ma_mutex_unlock__posix(ma_mutex* pMutex) -{ - ((ma_pthread_mutex_unlock_proc)pMutex->pContext->posix.pthread_mutex_unlock)(&pMutex->posix.mutex); -} - - -static ma_result ma_event_init__posix(ma_context* pContext, ma_event* pEvent) -{ - int result; - - result = ((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pEvent->posix.mutex, NULL); - if (result != 0) { - return ma_result_from_errno(result); - } - - result = ((ma_pthread_cond_init_proc)pContext->posix.pthread_cond_init)(&pEvent->posix.condition, NULL); - if (result != 0) { - ((ma_pthread_mutex_destroy_proc)pEvent->pContext->posix.pthread_mutex_destroy)(&pEvent->posix.mutex); - return ma_result_from_errno(result); - } - - pEvent->posix.value = 0; - return MA_SUCCESS; -} - -static void ma_event_uninit__posix(ma_event* pEvent) -{ - ((ma_pthread_cond_destroy_proc)pEvent->pContext->posix.pthread_cond_destroy)(&pEvent->posix.condition); - ((ma_pthread_mutex_destroy_proc)pEvent->pContext->posix.pthread_mutex_destroy)(&pEvent->posix.mutex); -} - -static ma_bool32 ma_event_wait__posix(ma_event* pEvent) -{ - ((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex); - { - while (pEvent->posix.value == 0) { - ((ma_pthread_cond_wait_proc)pEvent->pContext->posix.pthread_cond_wait)(&pEvent->posix.condition, &pEvent->posix.mutex); - } - pEvent->posix.value = 0; /* Auto-reset. */ - } - ((ma_pthread_mutex_unlock_proc)pEvent->pContext->posix.pthread_mutex_unlock)(&pEvent->posix.mutex); - - return MA_TRUE; -} - -static ma_bool32 ma_event_signal__posix(ma_event* pEvent) -{ - ((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex); - { - pEvent->posix.value = 1; - ((ma_pthread_cond_signal_proc)pEvent->pContext->posix.pthread_cond_signal)(&pEvent->posix.condition); - } - ((ma_pthread_mutex_unlock_proc)pEvent->pContext->posix.pthread_mutex_unlock)(&pEvent->posix.mutex); - - return MA_TRUE; -} - - -static ma_result ma_semaphore_init__posix(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore) -{ - (void)pContext; - -#if defined(MA_APPLE) - /* Not yet implemented for Apple platforms since sem_init() is deprecated. Need to use a named semaphore via sem_open() instead. */ - (void)initialValue; - (void)pSemaphore; - return MA_INVALID_OPERATION; -#else - if (sem_init(&pSemaphore->posix.semaphore, 0, (unsigned int)initialValue) == 0) { - return ma_result_from_errno(errno); - } -#endif - - return MA_SUCCESS; -} - -static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore) -{ - sem_close(&pSemaphore->posix.semaphore); -} - -static ma_bool32 ma_semaphore_wait__posix(ma_semaphore* pSemaphore) -{ - return sem_wait(&pSemaphore->posix.semaphore) != -1; -} - -static ma_bool32 ma_semaphore_release__posix(ma_semaphore* pSemaphore) -{ - return sem_post(&pSemaphore->posix.semaphore) != -1; -} -#endif - -static ma_result ma_thread_create(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData) -{ - if (pContext == NULL || pThread == NULL || entryProc == NULL) { - return MA_FALSE; - } - - pThread->pContext = pContext; - -#ifdef MA_WIN32 - return ma_thread_create__win32(pContext, pThread, entryProc, pData); -#endif -#ifdef MA_POSIX - return ma_thread_create__posix(pContext, pThread, entryProc, pData); -#endif -} - -static void ma_thread_wait(ma_thread* pThread) -{ - if (pThread == NULL) { - return; - } - -#ifdef MA_WIN32 - ma_thread_wait__win32(pThread); -#endif -#ifdef MA_POSIX - ma_thread_wait__posix(pThread); -#endif -} - -#if !defined(MA_EMSCRIPTEN) -static void ma_sleep(ma_uint32 milliseconds) -{ -#ifdef MA_WIN32 - ma_sleep__win32(milliseconds); -#endif -#ifdef MA_POSIX - ma_sleep__posix(milliseconds); -#endif -} -#endif - - -MA_API ma_result ma_mutex_init(ma_context* pContext, ma_mutex* pMutex) -{ - if (pContext == NULL || pMutex == NULL) { - return MA_INVALID_ARGS; - } - - pMutex->pContext = pContext; - -#ifdef MA_WIN32 - return ma_mutex_init__win32(pContext, pMutex); -#endif -#ifdef MA_POSIX - return ma_mutex_init__posix(pContext, pMutex); -#endif -} - -MA_API void ma_mutex_uninit(ma_mutex* pMutex) -{ - if (pMutex == NULL || pMutex->pContext == NULL) { - return; - } - -#ifdef MA_WIN32 - ma_mutex_uninit__win32(pMutex); -#endif -#ifdef MA_POSIX - ma_mutex_uninit__posix(pMutex); -#endif -} - -MA_API void ma_mutex_lock(ma_mutex* pMutex) -{ - if (pMutex == NULL || pMutex->pContext == NULL) { - return; - } - -#ifdef MA_WIN32 - ma_mutex_lock__win32(pMutex); -#endif -#ifdef MA_POSIX - ma_mutex_lock__posix(pMutex); -#endif -} - -MA_API void ma_mutex_unlock(ma_mutex* pMutex) -{ - if (pMutex == NULL || pMutex->pContext == NULL) { - return; -} - -#ifdef MA_WIN32 - ma_mutex_unlock__win32(pMutex); -#endif -#ifdef MA_POSIX - ma_mutex_unlock__posix(pMutex); -#endif -} - - -MA_API ma_result ma_event_init(ma_context* pContext, ma_event* pEvent) -{ - if (pContext == NULL || pEvent == NULL) { - return MA_FALSE; - } - - pEvent->pContext = pContext; - -#ifdef MA_WIN32 - return ma_event_init__win32(pContext, pEvent); -#endif -#ifdef MA_POSIX - return ma_event_init__posix(pContext, pEvent); -#endif -} - -MA_API void ma_event_uninit(ma_event* pEvent) -{ - if (pEvent == NULL || pEvent->pContext == NULL) { - return; - } - -#ifdef MA_WIN32 - ma_event_uninit__win32(pEvent); -#endif -#ifdef MA_POSIX - ma_event_uninit__posix(pEvent); -#endif -} - -MA_API ma_bool32 ma_event_wait(ma_event* pEvent) -{ - if (pEvent == NULL || pEvent->pContext == NULL) { - return MA_FALSE; - } - -#ifdef MA_WIN32 - return ma_event_wait__win32(pEvent); -#endif -#ifdef MA_POSIX - return ma_event_wait__posix(pEvent); -#endif -} - -MA_API ma_bool32 ma_event_signal(ma_event* pEvent) -{ - if (pEvent == NULL || pEvent->pContext == NULL) { - return MA_FALSE; - } - -#ifdef MA_WIN32 - return ma_event_signal__win32(pEvent); -#endif -#ifdef MA_POSIX - return ma_event_signal__posix(pEvent); -#endif -} - - -MA_API ma_result ma_semaphore_init(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore) -{ - if (pContext == NULL || pSemaphore == NULL) { - return MA_INVALID_ARGS; - } - -#ifdef MA_WIN32 - return ma_semaphore_init__win32(pContext, initialValue, pSemaphore); -#endif -#ifdef MA_POSIX - return ma_semaphore_init__posix(pContext, initialValue, pSemaphore); -#endif -} - -MA_API void ma_semaphore_uninit(ma_semaphore* pSemaphore) -{ - if (pSemaphore == NULL) { - return; - } - -#ifdef MA_WIN32 - ma_semaphore_uninit__win32(pSemaphore); -#endif -#ifdef MA_POSIX - ma_semaphore_uninit__posix(pSemaphore); -#endif -} - -MA_API ma_bool32 ma_semaphore_wait(ma_semaphore* pSemaphore) -{ - if (pSemaphore == NULL) { - return MA_FALSE; - } - -#ifdef MA_WIN32 - return ma_semaphore_wait__win32(pSemaphore); -#endif -#ifdef MA_POSIX - return ma_semaphore_wait__posix(pSemaphore); -#endif -} - -MA_API ma_bool32 ma_semaphore_release(ma_semaphore* pSemaphore) -{ - if (pSemaphore == NULL) { - return MA_FALSE; - } - -#ifdef MA_WIN32 - return ma_semaphore_release__win32(pSemaphore); -#endif -#ifdef MA_POSIX - return ma_semaphore_release__posix(pSemaphore); -#endif -} - - #if 0 static ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn) { @@ -8755,228 +11328,16 @@ static ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn) } #endif -MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale) -{ - return ma_max(1, (ma_uint32)(baseBufferSize*scale)); -} - -MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate) -{ - return bufferSizeInFrames / (sampleRate/1000); -} - -MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate) -{ - return bufferSizeInMilliseconds * (sampleRate/1000); -} - -MA_API void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels) -{ - MA_ZERO_MEMORY(p, frameCount * ma_get_bytes_per_frame(format, channels)); -} - -MA_API void ma_clip_samples_f32(float* p, ma_uint32 sampleCount) -{ - ma_uint32 iSample; - - /* TODO: Research a branchless SSE implementation. */ - for (iSample = 0; iSample < sampleCount; iSample += 1) { - p[iSample] = ma_clip_f32(p[iSample]); - } -} - - -MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor) -{ - ma_uint32 iSample; - - if (pSamplesOut == NULL || pSamplesIn == NULL) { - return; - } - - for (iSample = 0; iSample < sampleCount; iSample += 1) { - pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor); - } -} - -MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor) -{ - ma_uint32 iSample; - - if (pSamplesOut == NULL || pSamplesIn == NULL) { - return; - } - - for (iSample = 0; iSample < sampleCount; iSample += 1) { - pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor); - } -} - -MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor) -{ - ma_uint32 iSample; - ma_uint8* pSamplesOut8; - ma_uint8* pSamplesIn8; - - if (pSamplesOut == NULL || pSamplesIn == NULL) { - return; - } - - pSamplesOut8 = (ma_uint8*)pSamplesOut; - pSamplesIn8 = (ma_uint8*)pSamplesIn; - - for (iSample = 0; iSample < sampleCount; iSample += 1) { - ma_int32 sampleS32; - - sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24); - sampleS32 = (ma_int32)(sampleS32 * factor); - - pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8); - pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16); - pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24); - } -} - -MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor) -{ - ma_uint32 iSample; - - if (pSamplesOut == NULL || pSamplesIn == NULL) { - return; - } - - for (iSample = 0; iSample < sampleCount; iSample += 1) { - pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor); - } -} - -MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor) -{ - ma_uint32 iSample; - - if (pSamplesOut == NULL || pSamplesIn == NULL) { - return; - } - - for (iSample = 0; iSample < sampleCount; iSample += 1) { - pSamplesOut[iSample] = pSamplesIn[iSample] * factor; - } -} - -MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor) -{ - ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor); -} - -MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor) -{ - ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor); -} - -MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor) -{ - ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor); -} - -MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor) -{ - ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor); -} - -MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor) -{ - ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_u8(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_s16(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_s24(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_s32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_f32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); -} - -MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor) -{ - switch (format) - { - case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pPCMFramesOut, (const ma_uint8*)pPCMFramesIn, frameCount, channels, factor); return; - case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pPCMFramesOut, (const ma_int16*)pPCMFramesIn, frameCount, channels, factor); return; - case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pPCMFramesOut, pPCMFramesIn, frameCount, channels, factor); return; - case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pPCMFramesOut, (const ma_int32*)pPCMFramesIn, frameCount, channels, factor); return; - case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pPCMFramesOut, (const float*)pPCMFramesIn, frameCount, channels, factor); return; - default: return; /* Do nothing. */ - } -} - -MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames_u8(pPCMFrames, pPCMFrames, frameCount, channels, factor); -} - -MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames_s16(pPCMFrames, pPCMFrames, frameCount, channels, factor); -} - -MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames_s24(pPCMFrames, pPCMFrames, frameCount, channels, factor); -} - -MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames_s32(pPCMFrames, pPCMFrames, frameCount, channels, factor); -} - -MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames_f32(pPCMFrames, pPCMFrames, frameCount, channels, factor); -} - -MA_API void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor) -{ - ma_copy_and_apply_volume_factor_pcm_frames(pPCMFrames, pPCMFrames, frameCount, format, channels, factor); -} - - -MA_API float ma_factor_to_gain_db(float factor) -{ - return (float)(20*ma_log10f(factor)); -} - -MA_API float ma_gain_db_to_factor(float gain) -{ - return (float)ma_powf(10, gain/20.0f); -} - static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { float masterVolumeFactor; - - masterVolumeFactor = pDevice->masterVolumeFactor; + + ma_device_get_master_volume(pDevice, &masterVolumeFactor); /* Use ma_device_get_master_volume() to ensure the volume is loaded atomically. */ if (pDevice->onData) { if (!pDevice->noPreZeroedOutputBuffer && pFramesOut != NULL) { - ma_zero_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels); + ma_silence_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels); } /* Volume control of input makes things a bit awkward because the input buffer is read-only. We'll need to use a temp buffer and loop in this case. */ @@ -9128,13 +11489,6 @@ static void ma_device__send_frames_to_client(ma_device* pDevice, ma_uint32 frame } } - -/* We only want to expose ma_device__handle_duplex_callback_capture() and ma_device__handle_duplex_callback_playback() if we have an asynchronous backend enabled. */ -#if defined(MA_HAS_JACK) || \ - defined(MA_HAS_COREAUDIO) || \ - defined(MA_HAS_AAUDIO) || \ - defined(MA_HAS_OPENSL) || \ - defined(MA_HAS_WEBAUDIO) static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat, ma_pcm_rb* pRB) { ma_result result; @@ -9145,7 +11499,7 @@ static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, m MA_ASSERT(frameCountInDeviceFormat > 0); MA_ASSERT(pFramesInDeviceFormat != NULL); MA_ASSERT(pRB != NULL); - + /* Write to the ring buffer. The ring buffer is in the client format which means we need to convert. */ for (;;) { ma_uint32 framesToProcessInDeviceFormat = (frameCountInDeviceFormat - totalDeviceFramesProcessed); @@ -9174,7 +11528,7 @@ static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, m break; } - result = ma_pcm_rb_commit_write(pRB, (ma_uint32)framesProcessedInDeviceFormat, pFramesInClientFormat); /* Safe cast. */ + result = ma_pcm_rb_commit_write(pRB, (ma_uint32)framesProcessedInClientFormat, pFramesInClientFormat); /* Safe cast. */ if (result != MA_SUCCESS) { ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "Failed to commit capture PCM frames to ring buffer.", result); break; @@ -9205,7 +11559,7 @@ static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, MA_ASSERT(frameCount > 0); MA_ASSERT(pFramesInInternalFormat != NULL); MA_ASSERT(pRB != NULL); - + /* Sitting in the ring buffer should be captured data from the capture callback in external format. If there's not enough data in there for the whole frameCount frames we just use silence instead for the input data. @@ -9239,7 +11593,7 @@ static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, break; /* Underrun. */ } } - + /* We're done with the captured samples. */ result = ma_pcm_rb_commit_read(pRB, inputFrameCount, pInputFrames); if (result != MA_SUCCESS) { @@ -9269,18 +11623,11 @@ static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, return MA_SUCCESS; } -#endif /* Asynchronous backends. */ /* A helper for changing the state of the device. */ static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_uint32 newState) { - ma_atomic_exchange_32(&pDevice->state, newState); -} - -/* A helper for getting the state of the device. */ -static MA_INLINE ma_uint32 ma_device__get_state(ma_device* pDevice) -{ - return pDevice->state; + c89atomic_exchange_32(&pDevice->state, newState); } @@ -9292,64 +11639,6 @@ static MA_INLINE ma_uint32 ma_device__get_state(ma_device* pDevice) #endif -typedef struct -{ - ma_device_type deviceType; - const ma_device_id* pDeviceID; - char* pName; - size_t nameBufferSize; - ma_bool32 foundDevice; -} ma_context__try_get_device_name_by_id__enum_callback_data; - -static ma_bool32 ma_context__try_get_device_name_by_id__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData) -{ - ma_context__try_get_device_name_by_id__enum_callback_data* pData = (ma_context__try_get_device_name_by_id__enum_callback_data*)pUserData; - MA_ASSERT(pData != NULL); - - if (pData->deviceType == deviceType) { - if (pContext->onDeviceIDEqual(pContext, pData->pDeviceID, &pDeviceInfo->id)) { - ma_strncpy_s(pData->pName, pData->nameBufferSize, pDeviceInfo->name, (size_t)-1); - pData->foundDevice = MA_TRUE; - } - } - - return !pData->foundDevice; -} - -/* -Generic function for retrieving the name of a device by it's ID. - -This function simply enumerates every device and then retrieves the name of the first device that has the same ID. -*/ -static ma_result ma_context__try_get_device_name_by_id(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, char* pName, size_t nameBufferSize) -{ - ma_result result; - ma_context__try_get_device_name_by_id__enum_callback_data data; - - MA_ASSERT(pContext != NULL); - MA_ASSERT(pName != NULL); - - if (pDeviceID == NULL) { - return MA_NO_DEVICE; - } - - data.deviceType = deviceType; - data.pDeviceID = pDeviceID; - data.pName = pName; - data.nameBufferSize = nameBufferSize; - data.foundDevice = MA_FALSE; - result = ma_context_enumerate_devices(pContext, ma_context__try_get_device_name_by_id__enum_callback, &data); - if (result != MA_SUCCESS) { - return result; - } - - if (!data.foundDevice) { - return MA_NO_DEVICE; - } else { - return MA_SUCCESS; - } -} - MA_API ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */ { @@ -9367,6 +11656,202 @@ MA_API ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = bette static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType); +static ma_bool32 ma_device_descriptor_is_valid(const ma_device_descriptor* pDeviceDescriptor) +{ + if (pDeviceDescriptor == NULL) { + return MA_FALSE; + } + + if (pDeviceDescriptor->format == ma_format_unknown) { + return MA_FALSE; + } + + if (pDeviceDescriptor->channels < MA_MIN_CHANNELS || pDeviceDescriptor->channels > MA_MAX_CHANNELS) { + return MA_FALSE; + } + + if (pDeviceDescriptor->sampleRate == 0) { + return MA_FALSE; + } + + return MA_TRUE; +} + + +/* TODO: Remove the pCallbacks parameter when we move all backends to the new callbacks system, at which time we can just reference the context directly. */ +static ma_result ma_device_audio_thread__default_read_write(ma_device* pDevice, ma_backend_callbacks* pCallbacks) +{ + ma_result result = MA_SUCCESS; + ma_bool32 exitLoop = MA_FALSE; + ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; + ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; + ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); + ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); + + MA_ASSERT(pDevice != NULL); + + /* Just some quick validation on the device type and the available callbacks. */ + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { + if (pCallbacks->onDeviceRead == NULL) { + return MA_NOT_IMPLEMENTED; + } + } + + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { + if (pCallbacks->onDeviceWrite == NULL) { + return MA_NOT_IMPLEMENTED; + } + } + + /* NOTE: The device was started outside of this function, in the worker thread. */ + + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + switch (pDevice->type) { + case ma_device_type_duplex: + { + /* The process is: onDeviceRead() -> convert -> callback -> convert -> onDeviceWrite() */ + ma_uint32 totalCapturedDeviceFramesProcessed = 0; + ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); + + while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { + ma_uint32 capturedDeviceFramesRemaining; + ma_uint32 capturedDeviceFramesProcessed; + ma_uint32 capturedDeviceFramesToProcess; + ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed; + if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) { + capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames; + } + + result = pCallbacks->onDeviceRead(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess); + if (result != MA_SUCCESS) { + exitLoop = MA_TRUE; + break; + } + + capturedDeviceFramesRemaining = capturedDeviceFramesToProcess; + capturedDeviceFramesProcessed = 0; + + /* At this point we have our captured data in device format and we now need to convert it to client format. */ + for (;;) { + ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; + ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; + ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); + ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); + ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames); + ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining; + ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); + + /* Convert capture data from device format to client format. */ + result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration); + if (result != MA_SUCCESS) { + break; + } + + /* + If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small + which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE. + */ + if (capturedClientFramesToProcessThisIteration == 0) { + break; + } + + ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/ + + capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ + capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ + + /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */ + for (;;) { + ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration; + ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames; + result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount); + if (result != MA_SUCCESS) { + break; + } + + result = pCallbacks->onDeviceWrite(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */ + if (result != MA_SUCCESS) { + exitLoop = MA_TRUE; + break; + } + + capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */ + if (capturedClientFramesToProcessThisIteration == 0) { + break; + } + } + + /* In case an error happened from ma_device_write__null()... */ + if (result != MA_SUCCESS) { + exitLoop = MA_TRUE; + break; + } + } + + totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed; + } + } break; + + case ma_device_type_capture: + case ma_device_type_loopback: + { + ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; + ma_uint32 framesReadThisPeriod = 0; + while (framesReadThisPeriod < periodSizeInFrames) { + ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod; + ma_uint32 framesProcessed; + ma_uint32 framesToReadThisIteration = framesRemainingInPeriod; + if (framesToReadThisIteration > capturedDeviceDataCapInFrames) { + framesToReadThisIteration = capturedDeviceDataCapInFrames; + } + + result = pCallbacks->onDeviceRead(pDevice, capturedDeviceData, framesToReadThisIteration, &framesProcessed); + if (result != MA_SUCCESS) { + exitLoop = MA_TRUE; + break; + } + + ma_device__send_frames_to_client(pDevice, framesProcessed, capturedDeviceData); + + framesReadThisPeriod += framesProcessed; + } + } break; + + case ma_device_type_playback: + { + /* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */ + ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; + ma_uint32 framesWrittenThisPeriod = 0; + while (framesWrittenThisPeriod < periodSizeInFrames) { + ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod; + ma_uint32 framesProcessed; + ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod; + if (framesToWriteThisIteration > playbackDeviceDataCapInFrames) { + framesToWriteThisIteration = playbackDeviceDataCapInFrames; + } + + ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, playbackDeviceData); + + result = pCallbacks->onDeviceWrite(pDevice, playbackDeviceData, framesToWriteThisIteration, &framesProcessed); + if (result != MA_SUCCESS) { + exitLoop = MA_TRUE; + break; + } + + framesWrittenThisPeriod += framesProcessed; + } + } break; + + /* Should never get here. */ + default: break; + } + } + + return result; +} + + + /******************************************************************************* Null Backend @@ -9385,56 +11870,53 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData) MA_ASSERT(pDevice != NULL); for (;;) { /* Keep the thread alive until the device is uninitialized. */ + ma_uint32 operation; + /* Wait for an operation to be requested. */ ma_event_wait(&pDevice->null_device.operationEvent); /* At this point an event should have been triggered. */ + operation = c89atomic_load_32(&pDevice->null_device.operation); /* Starting the device needs to put the thread into a loop. */ - if (pDevice->null_device.operation == MA_DEVICE_OP_START__NULL) { - ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL); - + if (operation == MA_DEVICE_OP_START__NULL) { /* Reset the timer just in case. */ ma_timer_init(&pDevice->null_device.timer); - /* Keep looping until an operation has been requested. */ - while (pDevice->null_device.operation != MA_DEVICE_OP_NONE__NULL && pDevice->null_device.operation != MA_DEVICE_OP_START__NULL) { - ma_sleep(10); /* Don't hog the CPU. */ - } - /* Getting here means a suspend or kill operation has been requested. */ - ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS); + c89atomic_exchange_32((c89atomic_uint32*)&pDevice->null_device.operationResult, MA_SUCCESS); ma_event_signal(&pDevice->null_device.operationCompletionEvent); + ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; } /* Suspending the device means we need to stop the timer and just continue the loop. */ - if (pDevice->null_device.operation == MA_DEVICE_OP_SUSPEND__NULL) { - ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL); - + if (operation == MA_DEVICE_OP_SUSPEND__NULL) { /* We need to add the current run time to the prior run time, then reset the timer. */ pDevice->null_device.priorRunTime += ma_timer_get_time_in_seconds(&pDevice->null_device.timer); ma_timer_init(&pDevice->null_device.timer); /* We're done. */ - ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS); + c89atomic_exchange_32((c89atomic_uint32*)&pDevice->null_device.operationResult, MA_SUCCESS); ma_event_signal(&pDevice->null_device.operationCompletionEvent); + ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; } /* Killing the device means we need to get out of this loop so that this thread can terminate. */ - if (pDevice->null_device.operation == MA_DEVICE_OP_KILL__NULL) { - ma_atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL); - ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS); + if (operation == MA_DEVICE_OP_KILL__NULL) { + c89atomic_exchange_32((c89atomic_uint32*)&pDevice->null_device.operationResult, MA_SUCCESS); ma_event_signal(&pDevice->null_device.operationCompletionEvent); + ma_semaphore_release(&pDevice->null_device.operationSemaphore); break; } /* Getting a signal on a "none" operation probably means an error. Return invalid operation. */ - if (pDevice->null_device.operation == MA_DEVICE_OP_NONE__NULL) { + if (operation == MA_DEVICE_OP_NONE__NULL) { MA_ASSERT(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */ - ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_INVALID_OPERATION); + c89atomic_exchange_32((c89atomic_uint32*)&pDevice->null_device.operationResult, (c89atomic_uint32)MA_INVALID_OPERATION); ma_event_signal(&pDevice->null_device.operationCompletionEvent); + ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; /* Continue the loop. Don't terminate. */ } } @@ -9444,16 +11926,34 @@ static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData) static ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation) { - ma_atomic_exchange_32(&pDevice->null_device.operation, operation); - if (!ma_event_signal(&pDevice->null_device.operationEvent)) { + ma_result result; + + /* + The first thing to do is wait for an operation slot to become available. We only have a single slot for this, but we could extend this later + to support queing of operations. + */ + result = ma_semaphore_wait(&pDevice->null_device.operationSemaphore); + if (result != MA_SUCCESS) { + return result; /* Failed to wait for the event. */ + } + + /* + When we get here it means the background thread is not referencing the operation code and it can be changed. After changing this we need to + signal an event to the worker thread to let it know that it can start work. + */ + c89atomic_exchange_32(&pDevice->null_device.operation, operation); + + /* Once the operation code has been set, the worker thread can start work. */ + if (ma_event_signal(&pDevice->null_device.operationEvent) != MA_SUCCESS) { return MA_ERROR; } - if (!ma_event_wait(&pDevice->null_device.operationCompletionEvent)) { + /* We want everything to be synchronous so we're going to wait for the worker thread to complete it's operation. */ + if (ma_event_wait(&pDevice->null_device.operationCompletionEvent) != MA_SUCCESS) { return MA_ERROR; } - return pDevice->null_device.operationResult; + return c89atomic_load_i32(&pDevice->null_device.operationResult); } static ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice) @@ -9465,20 +11965,9 @@ static ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice internalSampleRate = pDevice->playback.internalSampleRate; } - return (ma_uint64)((pDevice->null_device.priorRunTime + ma_timer_get_time_in_seconds(&pDevice->null_device.timer)) * internalSampleRate); } -static ma_bool32 ma_context_is_device_id_equal__null(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return pID0->nullbackend == pID1->nullbackend; -} - static ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; @@ -9502,13 +11991,13 @@ static ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enu cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } + (void)cbResult; /* Silence a static analysis warning. */ + return MA_SUCCESS; } -static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { - ma_uint32 iFormat; - MA_ASSERT(pContext != NULL); if (pDeviceID != NULL && pDeviceID->nullbackend != 0) { @@ -9523,38 +12012,55 @@ static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_devic } /* Support everything on the null backend. */ - pDeviceInfo->formatCount = ma_format_count - 1; /* Minus one because we don't want to include ma_format_unknown. */ - for (iFormat = 0; iFormat < pDeviceInfo->formatCount; ++iFormat) { - pDeviceInfo->formats[iFormat] = (ma_format)(iFormat + 1); /* +1 to skip over ma_format_unknown. */ - } - - pDeviceInfo->minChannels = 1; - pDeviceInfo->maxChannels = MA_MAX_CHANNELS; - pDeviceInfo->minSampleRate = MA_SAMPLE_RATE_8000; - pDeviceInfo->maxSampleRate = MA_SAMPLE_RATE_384000; + pDeviceInfo->nativeDataFormats[0].format = ma_format_unknown; + pDeviceInfo->nativeDataFormats[0].channels = 0; + pDeviceInfo->nativeDataFormats[0].sampleRate = 0; + pDeviceInfo->nativeDataFormats[0].flags = 0; + pDeviceInfo->nativeDataFormatCount = 1; (void)pContext; - (void)shareMode; return MA_SUCCESS; } -static void ma_device_uninit__null(ma_device* pDevice) +static ma_result ma_device_uninit__null(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* Keep it clean and wait for the device thread to finish before returning. */ ma_device_do_operation__null(pDevice, MA_DEVICE_OP_KILL__NULL); + /* Wait for the thread to finish before continuing. */ + ma_thread_wait(&pDevice->null_device.deviceThread); + /* At this point the loop in the device thread is as good as terminated so we can uninitialize our events. */ + ma_semaphore_uninit(&pDevice->null_device.operationSemaphore); ma_event_uninit(&pDevice->null_device.operationCompletionEvent); ma_event_uninit(&pDevice->null_device.operationEvent); + + return MA_SUCCESS; } -static ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_uint32 ma_calculate_buffer_size_in_frames__null(const ma_device_config* pConfig, const ma_device_descriptor* pDescriptor) +{ + if (pDescriptor->periodSizeInFrames == 0) { + if (pDescriptor->periodSizeInMilliseconds == 0) { + if (pConfig->performanceProfile == ma_performance_profile_low_latency) { + return ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY, pDescriptor->sampleRate); + } else { + return ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, pDescriptor->sampleRate); + } + } else { + return ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptor->periodSizeInMilliseconds, pDescriptor->sampleRate); + } + } else { + return pDescriptor->periodSizeInFrames; + } +} + +static ma_result ma_device_init__null(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; - ma_uint32 periodSizeInFrames; MA_ASSERT(pDevice != NULL); @@ -9564,43 +12070,51 @@ static ma_result ma_device_init__null(ma_context* pContext, const ma_device_conf return MA_DEVICE_TYPE_NOT_SUPPORTED; } - periodSizeInFrames = pConfig->periodSizeInFrames; - if (periodSizeInFrames == 0) { - periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate); + /* The null backend supports everything exactly as we specify it. */ + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { + pDescriptorCapture->format = (pDescriptorCapture->format != ma_format_unknown) ? pDescriptorCapture->format : MA_DEFAULT_FORMAT; + pDescriptorCapture->channels = (pDescriptorCapture->channels != 0) ? pDescriptorCapture->channels : MA_DEFAULT_CHANNELS; + pDescriptorCapture->sampleRate = (pDescriptorCapture->sampleRate != 0) ? pDescriptorCapture->sampleRate : MA_DEFAULT_SAMPLE_RATE; + + if (pDescriptorCapture->channelMap[0] == MA_CHANNEL_NONE) { + ma_get_standard_channel_map(ma_standard_channel_map_default, pDescriptorCapture->channels, pDescriptorCapture->channelMap); + } + + pDescriptorCapture->periodSizeInFrames = ma_calculate_buffer_size_in_frames__null(pConfig, pDescriptorCapture); } - if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), "NULL Capture Device", (size_t)-1); - pDevice->capture.internalFormat = pConfig->capture.format; - pDevice->capture.internalChannels = pConfig->capture.channels; - ma_channel_map_copy(pDevice->capture.internalChannelMap, pConfig->capture.channelMap, pConfig->capture.channels); - pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->capture.internalPeriods = pConfig->periods; - } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), "NULL Playback Device", (size_t)-1); - pDevice->playback.internalFormat = pConfig->playback.format; - pDevice->playback.internalChannels = pConfig->playback.channels; - ma_channel_map_copy(pDevice->playback.internalChannelMap, pConfig->playback.channelMap, pConfig->playback.channels); - pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->playback.internalPeriods = pConfig->periods; + pDescriptorPlayback->format = (pDescriptorPlayback->format != ma_format_unknown) ? pDescriptorPlayback->format : MA_DEFAULT_FORMAT; + pDescriptorPlayback->channels = (pDescriptorPlayback->channels != 0) ? pDescriptorPlayback->channels : MA_DEFAULT_CHANNELS; + pDescriptorPlayback->sampleRate = (pDescriptorPlayback->sampleRate != 0) ? pDescriptorPlayback->sampleRate : MA_DEFAULT_SAMPLE_RATE; + + if (pDescriptorPlayback->channelMap[0] == MA_CHANNEL_NONE) { + ma_get_standard_channel_map(ma_standard_channel_map_default, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); + } + + pDescriptorPlayback->periodSizeInFrames = ma_calculate_buffer_size_in_frames__null(pConfig, pDescriptorPlayback); } /* In order to get timing right, we need to create a thread that does nothing but keeps track of the timer. This timer is started when the first period is "written" to it, and then stopped in ma_device_stop__null(). */ - result = ma_event_init(pContext, &pDevice->null_device.operationEvent); + result = ma_event_init(&pDevice->null_device.operationEvent); if (result != MA_SUCCESS) { return result; } - result = ma_event_init(pContext, &pDevice->null_device.operationCompletionEvent); + result = ma_event_init(&pDevice->null_device.operationCompletionEvent); if (result != MA_SUCCESS) { return result; } - result = ma_thread_create(pContext, &pDevice->thread, ma_device_thread__null, pDevice); + result = ma_semaphore_init(1, &pDevice->null_device.operationSemaphore); /* <-- It's important that the initial value is set to 1. */ + if (result != MA_SUCCESS) { + return result; + } + + result = ma_thread_create(&pDevice->null_device.deviceThread, pDevice->pContext->threadPriority, 0, ma_device_thread__null, pDevice); if (result != MA_SUCCESS) { return result; } @@ -9614,7 +12128,7 @@ static ma_result ma_device_start__null(ma_device* pDevice) ma_device_do_operation__null(pDevice, MA_DEVICE_OP_START__NULL); - ma_atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE); + c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE); return MA_SUCCESS; } @@ -9624,7 +12138,7 @@ static ma_result ma_device_stop__null(ma_device* pDevice) ma_device_do_operation__null(pDevice, MA_DEVICE_OP_SUSPEND__NULL); - ma_atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE); + c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE); return MA_SUCCESS; } @@ -9731,7 +12245,7 @@ static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_u framesToProcess = framesRemaining; } - /* We need to ensured the output buffer is zeroed. */ + /* We need to ensure the output buffer is zeroed. */ MA_ZERO_MEMORY(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf); pDevice->null_device.currentPeriodFramesRemainingCapture -= framesToProcess; @@ -9779,180 +12293,6 @@ static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_u return result; } -static ma_result ma_device_main_loop__null(ma_device* pDevice) -{ - ma_result result = MA_SUCCESS; - ma_bool32 exitLoop = MA_FALSE; - - MA_ASSERT(pDevice != NULL); - - /* The capture device needs to be started immediately. */ - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - result = ma_device_start__null(pDevice); - if (result != MA_SUCCESS) { - return result; - } - } - - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { - switch (pDevice->type) - { - case ma_device_type_duplex: - { - /* The process is: device_read -> convert -> callback -> convert -> device_write */ - ma_uint32 totalCapturedDeviceFramesProcessed = 0; - ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - - while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { - ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 capturedDeviceFramesRemaining; - ma_uint32 capturedDeviceFramesProcessed; - ma_uint32 capturedDeviceFramesToProcess; - ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed; - if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) { - capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames; - } - - result = ma_device_read__null(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedDeviceFramesRemaining = capturedDeviceFramesToProcess; - capturedDeviceFramesProcessed = 0; - - /* At this point we have our captured data in device format and we now need to convert it to client format. */ - for (;;) { - ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); - ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); - ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames); - ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining; - ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); - - /* Convert capture data from device format to client format. */ - result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration); - if (result != MA_SUCCESS) { - break; - } - - /* - If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small - which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE. - */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - - ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/ - - capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - - /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */ - for (;;) { - ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration; - ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames; - result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount); - if (result != MA_SUCCESS) { - break; - } - - result = ma_device_write__null(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - } - - /* In case an error happened from ma_device_write__null()... */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - } - - totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed; - } - } break; - - case ma_device_type_capture: - { - /* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */ - ma_uint8 intermediaryBuffer[8192]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; - ma_uint32 framesReadThisPeriod = 0; - while (framesReadThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToReadThisIteration = framesRemainingInPeriod; - if (framesToReadThisIteration > intermediaryBufferSizeInFrames) { - framesToReadThisIteration = intermediaryBufferSizeInFrames; - } - - result = ma_device_read__null(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer); - - framesReadThisPeriod += framesProcessed; - } - } break; - - case ma_device_type_playback: - { - /* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */ - ma_uint8 intermediaryBuffer[8192]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; - ma_uint32 framesWrittenThisPeriod = 0; - while (framesWrittenThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod; - if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) { - framesToWriteThisIteration = intermediaryBufferSizeInFrames; - } - - ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer); - - result = ma_device_write__null(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - framesWrittenThisPeriod += framesProcessed; - } - } break; - - /* To silence a warning. Will never hit this. */ - case ma_device_type_loopback: - default: break; - } - } - - - /* Here is where the device is started. */ - ma_device_stop__null(pDevice); - - return result; -} - static ma_result ma_context_uninit__null(ma_context* pContext) { MA_ASSERT(pContext != NULL); @@ -9962,21 +12302,23 @@ static ma_result ma_context_uninit__null(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__null(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__null(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); (void)pConfig; - pContext->onUninit = ma_context_uninit__null; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__null; - pContext->onEnumDevices = ma_context_enumerate_devices__null; - pContext->onGetDeviceInfo = ma_context_get_device_info__null; - pContext->onDeviceInit = ma_device_init__null; - pContext->onDeviceUninit = ma_device_uninit__null; - pContext->onDeviceStart = NULL; /* Not required for synchronous backends. */ - pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */ - pContext->onDeviceMainLoop = ma_device_main_loop__null; + pCallbacks->onContextInit = ma_context_init__null; + pCallbacks->onContextUninit = ma_context_uninit__null; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__null; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__null; + pCallbacks->onDeviceInit = ma_device_init__null; + pCallbacks->onDeviceUninit = ma_device_uninit__null; + pCallbacks->onDeviceStart = ma_device_start__null; + pCallbacks->onDeviceStop = ma_device_stop__null; + pCallbacks->onDeviceRead = ma_device_read__null; + pCallbacks->onDeviceWrite = ma_device_write__null; + pCallbacks->onDeviceAudioThread = NULL; /* Our backend is asynchronous with a blocking read-write API which means we can get miniaudio to deal with the audio thread. */ /* The null backend always works. */ return MA_SUCCESS; @@ -9984,6 +12326,7 @@ static ma_result ma_context_init__null(const ma_context_config* pConfig, ma_cont #endif + /******************************************************************************* WIN32 COMMON @@ -10004,7 +12347,7 @@ WIN32 COMMON #define ma_PropVariantClear(pContext, pvar) PropVariantClear(pvar) #endif -#if !defined(MAXULONG_PTR) +#if !defined(MAXULONG_PTR) && !defined(__WATCOMC__) typedef size_t DWORD_PTR; #endif @@ -10071,8 +12414,6 @@ typedef struct #define WAVE_FORMAT_IEEE_FLOAT 0x0003 #endif -static GUID MA_GUID_NULL = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; - /* Converts an individual Win32-style channel identifier (SPEAKER_FRONT_LEFT, etc.) to miniaudio. */ static ma_uint8 ma_channel_id_to_ma__win32(DWORD id) { @@ -10129,39 +12470,39 @@ static DWORD ma_channel_id_to_win32(DWORD id) } /* Converts a channel mapping to a Win32-style channel mask. */ -static DWORD ma_channel_map_to_channel_mask__win32(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels) +static DWORD ma_channel_map_to_channel_mask__win32(const ma_channel* pChannelMap, ma_uint32 channels) { DWORD dwChannelMask = 0; ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { - dwChannelMask |= ma_channel_id_to_win32(channelMap[iChannel]); + dwChannelMask |= ma_channel_id_to_win32(pChannelMap[iChannel]); } return dwChannelMask; } /* Converts a Win32-style channel mask to a miniaudio channel map. */ -static void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel* pChannelMap) { if (channels == 1 && dwChannelMask == 0) { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } else if (channels == 2 && dwChannelMask == 0) { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; } else { if (channels == 1 && (dwChannelMask & SPEAKER_FRONT_CENTER) != 0) { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } else { /* Just iterate over each bit. */ ma_uint32 iChannel = 0; ma_uint32 iBit; - for (iBit = 0; iBit < 32; ++iBit) { + for (iBit = 0; iBit < 32 && iChannel < channels; ++iBit) { DWORD bitValue = (dwChannelMask & (1UL << iBit)); if (bitValue != 0) { /* The bit is set. */ - channelMap[iChannel] = ma_channel_id_to_ma__win32(bitValue); + pChannelMap[iChannel] = ma_channel_id_to_ma__win32(bitValue); iChannel += 1; } } @@ -10178,6 +12519,12 @@ static ma_bool32 ma_is_guid_equal(const void* a, const void* b) #define ma_is_guid_equal(a, b) IsEqualGUID((const GUID*)a, (const GUID*)b) #endif +static MA_INLINE ma_bool32 ma_is_guid_null(const void* guid) +{ + static GUID nullguid = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; + return ma_is_guid_equal(guid, &nullguid); +} + static ma_format ma_format_from_WAVEFORMATEX(const WAVEFORMATEX* pWF) { MA_ASSERT(pWF != NULL); @@ -10288,12 +12635,14 @@ typedef ULONGLONG (WINAPI * ma_PFNVerSetConditionMask)(ULONGLONG dwlConditionMas #ifndef PROPERTYKEY_DEFINED #define PROPERTYKEY_DEFINED +#ifndef __WATCOMC__ typedef struct { GUID fmtid; DWORD pid; } PROPERTYKEY; #endif +#endif /* Some compilers don't define PropVariantInit(). We just do this ourselves since it's just a memset(). */ static MA_INLINE void ma_PropVariantInit(PROPVARIANT* pProp) @@ -10306,7 +12655,9 @@ static const PROPERTYKEY MA_PKEY_Device_FriendlyName = {{0xA45C254E, static const PROPERTYKEY MA_PKEY_AudioEngine_DeviceFormat = {{0xF19F064D, 0x82C, 0x4E27, {0xBC, 0x73, 0x68, 0x82, 0xA1, 0xBB, 0x8E, 0x4C}}, 0}; static const IID MA_IID_IUnknown = {0x00000000, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; /* 00000000-0000-0000-C000-000000000046 */ +#ifndef MA_WIN32_DESKTOP static const IID MA_IID_IAgileObject = {0x94EA2B94, 0xE9CC, 0x49E0, {0xC0, 0xFF, 0xEE, 0x64, 0xCA, 0x8F, 0x5B, 0x90}}; /* 94EA2B94-E9CC-49E0-C0FF-EE64CA8F5B90 */ +#endif static const IID MA_IID_IAudioClient = {0x1CB9AD4C, 0xDBFA, 0x4C32, {0xB1, 0x78, 0xC2, 0xF5, 0x68, 0xA7, 0x03, 0xB2}}; /* 1CB9AD4C-DBFA-4C32-B178-C2F568A703B2 = __uuidof(IAudioClient) */ static const IID MA_IID_IAudioClient2 = {0x726778CD, 0xF60A, 0x4EDA, {0x82, 0xDE, 0xE4, 0x76, 0x10, 0xCD, 0x78, 0xAA}}; /* 726778CD-F60A-4EDA-82DE-E47610CD78AA = __uuidof(IAudioClient2) */ @@ -10396,7 +12747,7 @@ typedef enum typedef struct { - UINT32 cbSize; + ma_uint32 cbSize; BOOL bIsOffload; MA_AUDIO_STREAM_CATEGORY eCategory; } ma_AudioClientProperties; @@ -10683,9 +13034,9 @@ typedef struct HRESULT (STDMETHODCALLTYPE * GetBufferSizeLimits)(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration); /* IAudioClient3 */ - HRESULT (STDMETHODCALLTYPE * GetSharedModeEnginePeriod) (ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames); - HRESULT (STDMETHODCALLTYPE * GetCurrentSharedModeEnginePeriod)(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames); - HRESULT (STDMETHODCALLTYPE * InitializeSharedAudioStream) (ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); + HRESULT (STDMETHODCALLTYPE * GetSharedModeEnginePeriod) (ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, ma_uint32* pDefaultPeriodInFrames, ma_uint32* pFundamentalPeriodInFrames, ma_uint32* pMinPeriodInFrames, ma_uint32* pMaxPeriodInFrames); + HRESULT (STDMETHODCALLTYPE * GetCurrentSharedModeEnginePeriod)(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, ma_uint32* pCurrentPeriodInFrames); + HRESULT (STDMETHODCALLTYPE * InitializeSharedAudioStream) (ma_IAudioClient3* pThis, DWORD streamFlags, ma_uint32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); } ma_IAudioClient3Vtbl; struct ma_IAudioClient3 { @@ -10709,9 +13060,9 @@ static MA_INLINE HRESULT ma_IAudioClient3_GetService(ma_IAudioClient3* pThis, co static MA_INLINE HRESULT ma_IAudioClient3_IsOffloadCapable(ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); } static MA_INLINE HRESULT ma_IAudioClient3_SetClientProperties(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); } static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSizeLimits(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); } -static MA_INLINE HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); } -static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); } -static MA_INLINE HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); } +static MA_INLINE HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, ma_uint32* pDefaultPeriodInFrames, ma_uint32* pFundamentalPeriodInFrames, ma_uint32* pMinPeriodInFrames, ma_uint32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); } +static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, ma_uint32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); } +static MA_INLINE HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, ma_uint32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); } /* IAudioRenderClient */ @@ -10801,12 +13152,12 @@ static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_com static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis) { - return (ULONG)ma_atomic_increment_32(&pThis->counter); + return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1; } static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis) { - ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter); + ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1; if (newRefCount == 0) { return 0; /* We don't free anything here because we never allocate the object on the heap. */ } @@ -10878,12 +13229,12 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMN static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis) { - return (ULONG)ma_atomic_increment_32(&pThis->counter); + return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1; } static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis) { - ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter); + ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1; if (newRefCount == 0) { return 0; /* We don't free anything here because we never allocate the object on the heap. */ } @@ -10891,23 +13242,45 @@ static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificati return (ULONG)newRefCount; } - static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState) { + ma_bool32 isThisDevice = MA_FALSE; + #ifdef MA_DEBUG_OUTPUT - printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState); + /*printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);*/ #endif - (void)pThis; - (void)pDeviceID; - (void)dwNewState; + if ((dwNewState & MA_MM_DEVICE_STATE_ACTIVE) != 0) { + return S_OK; + } + + /* + There have been reports of a hang when a playback device is disconnected. The idea with this code is to explicitly stop the device if we detect + that the device is disabled or has been unplugged. + */ + if (pThis->pDevice->wasapi.allowCaptureAutoStreamRouting && (pThis->pDevice->type == ma_device_type_capture || pThis->pDevice->type == ma_device_type_duplex || pThis->pDevice->type == ma_device_type_loopback)) { + if (wcscmp(pThis->pDevice->capture.id.wasapi, pDeviceID) == 0) { + isThisDevice = MA_TRUE; + } + } + + if (pThis->pDevice->wasapi.allowPlaybackAutoStreamRouting && (pThis->pDevice->type == ma_device_type_playback || pThis->pDevice->type == ma_device_type_duplex)) { + if (wcscmp(pThis->pDevice->playback.id.wasapi, pDeviceID) == 0) { + isThisDevice = MA_TRUE; + } + } + + if (isThisDevice) { + ma_device_stop(pThis->pDevice); + } + return S_OK; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID) { #ifdef MA_DEBUG_OUTPUT - printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)"); + /*printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif /* We don't need to worry about this event for our purposes. */ @@ -10919,7 +13292,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNo static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID) { #ifdef MA_DEBUG_OUTPUT - printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)"); + /*printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif /* We don't need to worry about this event for our purposes. */ @@ -10931,7 +13304,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMM static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID) { #ifdef MA_DEBUG_OUTPUT - printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)"); + /*printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");*/ #endif /* We only ever use the eConsole role in miniaudio. */ @@ -10967,10 +13340,10 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged that properly. */ if (dataFlow == ma_eRender && pThis->pDevice->type != ma_device_type_loopback) { - ma_atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_TRUE); + c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_TRUE); } if (dataFlow == ma_eCapture || pThis->pDevice->type == ma_device_type_loopback) { - ma_atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_TRUE); + c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_TRUE); } (void)pDefaultDeviceID; @@ -10980,7 +13353,7 @@ static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key) { #ifdef MA_DEBUG_OUTPUT - printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)"); + /*printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif (void)pThis; @@ -11008,150 +13381,146 @@ typedef ma_IUnknown ma_WASAPIDeviceInterface; #endif - -static ma_bool32 ma_context_is_device_id_equal__wasapi(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return memcmp(pID0->wasapi, pID1->wasapi, sizeof(pID0->wasapi)) == 0; -} - -static void ma_set_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_device_info* pInfo) +static void ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_share_mode shareMode, ma_device_info* pInfo) { MA_ASSERT(pWF != NULL); MA_ASSERT(pInfo != NULL); - pInfo->formatCount = 1; - pInfo->formats[0] = ma_format_from_WAVEFORMATEX(pWF); - pInfo->minChannels = pWF->nChannels; - pInfo->maxChannels = pWF->nChannels; - pInfo->minSampleRate = pWF->nSamplesPerSec; - pInfo->maxSampleRate = pWF->nSamplesPerSec; + if (pInfo->nativeDataFormatCount >= ma_countof(pInfo->nativeDataFormats)) { + return; /* Too many data formats. Need to ignore this one. Don't think this should ever happen with WASAPI. */ + } + + pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].format = ma_format_from_WAVEFORMATEX(pWF); + pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].channels = pWF->nChannels; + pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].sampleRate = pWF->nSamplesPerSec; + pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].flags = (shareMode == ma_share_mode_exclusive) ? MA_DATA_FORMAT_FLAG_EXCLUSIVE_MODE : 0; + pInfo->nativeDataFormatCount += 1; } -static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_share_mode shareMode, ma_device_info* pInfo) +static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_device_info* pInfo) { + HRESULT hr; + WAVEFORMATEX* pWF = NULL; +#ifdef MA_WIN32_DESKTOP + ma_IPropertyStore *pProperties; +#endif + MA_ASSERT(pAudioClient != NULL); MA_ASSERT(pInfo != NULL); - /* We use a different technique to retrieve the device information depending on whether or not we are using shared or exclusive mode. */ - if (shareMode == ma_share_mode_shared) { - /* Shared Mode. We use GetMixFormat() here. */ - WAVEFORMATEX* pWF = NULL; - HRESULT hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pAudioClient, (WAVEFORMATEX**)&pWF); - if (SUCCEEDED(hr)) { - ma_set_device_info_from_WAVEFORMATEX(pWF, pInfo); - return MA_SUCCESS; - } else { - return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval.", ma_result_from_HRESULT(hr)); - } + /* Shared Mode. We use GetMixFormat() here. */ + hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pAudioClient, (WAVEFORMATEX**)&pWF); + if (SUCCEEDED(hr)) { + ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(pWF, ma_share_mode_shared, pInfo); } else { - /* Exlcusive Mode. We repeatedly call IsFormatSupported() here. This is not currently support on UWP. */ + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval.", ma_result_from_HRESULT(hr)); + } + + /* Exlcusive Mode. We repeatedly call IsFormatSupported() here. This is not currently support on UWP. */ #ifdef MA_WIN32_DESKTOP - /* - The first thing to do is get the format from PKEY_AudioEngine_DeviceFormat. This should give us a channel count we assume is - correct which will simplify our searching. - */ - ma_IPropertyStore *pProperties; - HRESULT hr = ma_IMMDevice_OpenPropertyStore((ma_IMMDevice*)pMMDevice, STGM_READ, &pProperties); + /* + The first thing to do is get the format from PKEY_AudioEngine_DeviceFormat. This should give us a channel count we assume is + correct which will simplify our searching. + */ + hr = ma_IMMDevice_OpenPropertyStore((ma_IMMDevice*)pMMDevice, STGM_READ, &pProperties); + if (SUCCEEDED(hr)) { + PROPVARIANT var; + ma_PropVariantInit(&var); + + hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_AudioEngine_DeviceFormat, &var); if (SUCCEEDED(hr)) { - PROPVARIANT var; - ma_PropVariantInit(&var); + pWF = (WAVEFORMATEX*)var.blob.pBlobData; - hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_AudioEngine_DeviceFormat, &var); + /* + In my testing, the format returned by PKEY_AudioEngine_DeviceFormat is suitable for exclusive mode so we check this format + first. If this fails, fall back to a search. + */ + hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pWF, NULL); if (SUCCEEDED(hr)) { - WAVEFORMATEX* pWF = (WAVEFORMATEX*)var.blob.pBlobData; - ma_set_device_info_from_WAVEFORMATEX(pWF, pInfo); - + /* The format returned by PKEY_AudioEngine_DeviceFormat is supported. */ + ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(pWF, ma_share_mode_exclusive, pInfo); + } else { /* - In my testing, the format returned by PKEY_AudioEngine_DeviceFormat is suitable for exclusive mode so we check this format - first. If this fails, fall back to a search. + The format returned by PKEY_AudioEngine_DeviceFormat is not supported, so fall back to a search. We assume the channel + count returned by MA_PKEY_AudioEngine_DeviceFormat is valid and correct. For simplicity we're only returning one format. */ - hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pWF, NULL); - ma_PropVariantClear(pContext, &var); + ma_uint32 channels = pInfo->minChannels; + ma_format formatsToSearch[] = { + ma_format_s16, + ma_format_s24, + /*ma_format_s24_32,*/ + ma_format_f32, + ma_format_s32, + ma_format_u8 + }; + ma_channel defaultChannelMap[MA_MAX_CHANNELS]; + WAVEFORMATEXTENSIBLE wf; + ma_bool32 found; + ma_uint32 iFormat; - if (FAILED(hr)) { - /* - The format returned by PKEY_AudioEngine_DeviceFormat is not supported, so fall back to a search. We assume the channel - count returned by MA_PKEY_AudioEngine_DeviceFormat is valid and correct. For simplicity we're only returning one format. - */ - ma_uint32 channels = pInfo->minChannels; - ma_format formatsToSearch[] = { - ma_format_s16, - ma_format_s24, - /*ma_format_s24_32,*/ - ma_format_f32, - ma_format_s32, - ma_format_u8 - }; - ma_channel defaultChannelMap[MA_MAX_CHANNELS]; - WAVEFORMATEXTENSIBLE wf; - ma_bool32 found; - ma_uint32 iFormat; + /* Make sure we don't overflow the channel map. */ + if (channels > MA_MAX_CHANNELS) { + channels = MA_MAX_CHANNELS; + } - ma_get_standard_channel_map(ma_standard_channel_map_microsoft, channels, defaultChannelMap); + ma_get_standard_channel_map(ma_standard_channel_map_microsoft, channels, defaultChannelMap); - MA_ZERO_OBJECT(&wf); - wf.Format.cbSize = sizeof(wf); - wf.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; - wf.Format.nChannels = (WORD)channels; - wf.dwChannelMask = ma_channel_map_to_channel_mask__win32(defaultChannelMap, channels); + MA_ZERO_OBJECT(&wf); + wf.Format.cbSize = sizeof(wf); + wf.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; + wf.Format.nChannels = (WORD)channels; + wf.dwChannelMask = ma_channel_map_to_channel_mask__win32(defaultChannelMap, channels); - found = MA_FALSE; - for (iFormat = 0; iFormat < ma_countof(formatsToSearch); ++iFormat) { - ma_format format = formatsToSearch[iFormat]; - ma_uint32 iSampleRate; + found = MA_FALSE; + for (iFormat = 0; iFormat < ma_countof(formatsToSearch); ++iFormat) { + ma_format format = formatsToSearch[iFormat]; + ma_uint32 iSampleRate; - wf.Format.wBitsPerSample = (WORD)ma_get_bytes_per_sample(format)*8; - wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8; - wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; - wf.Samples.wValidBitsPerSample = /*(format == ma_format_s24_32) ? 24 :*/ wf.Format.wBitsPerSample; - if (format == ma_format_f32) { - wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; - } else { - wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; - } + wf.Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8); + wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); + wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; + wf.Samples.wValidBitsPerSample = /*(format == ma_format_s24_32) ? 24 :*/ wf.Format.wBitsPerSample; + if (format == ma_format_f32) { + wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; + } else { + wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; + } - for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iSampleRate) { - wf.Format.nSamplesPerSec = g_maStandardSampleRatePriorities[iSampleRate]; + for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iSampleRate) { + wf.Format.nSamplesPerSec = g_maStandardSampleRatePriorities[iSampleRate]; - hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, (WAVEFORMATEX*)&wf, NULL); - if (SUCCEEDED(hr)) { - ma_set_device_info_from_WAVEFORMATEX((WAVEFORMATEX*)&wf, pInfo); - found = MA_TRUE; - break; - } - } - - if (found) { + hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, (WAVEFORMATEX*)&wf, NULL); + if (SUCCEEDED(hr)) { + ma_add_native_data_format_to_device_info_from_WAVEFORMATEX((WAVEFORMATEX*)&wf, ma_share_mode_exclusive, pInfo); + found = MA_TRUE; break; } } - if (!found) { - ma_IPropertyStore_Release(pProperties); - return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to find suitable device format for device info retrieval.", MA_FORMAT_NOT_SUPPORTED); + if (found) { + break; } } - } else { - ma_IPropertyStore_Release(pProperties); - return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve device format for device info retrieval.", ma_result_from_HRESULT(hr)); - } - ma_IPropertyStore_Release(pProperties); + ma_PropVariantClear(pContext, &var); + + if (!found) { + ma_IPropertyStore_Release(pProperties); + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to find suitable device format for device info retrieval.", MA_FORMAT_NOT_SUPPORTED); + } + } } else { - return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to open property store for device info retrieval.", ma_result_from_HRESULT(hr)); + ma_IPropertyStore_Release(pProperties); + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve device format for device info retrieval.", ma_result_from_HRESULT(hr)); } - return MA_SUCCESS; -#else - /* Exclusive mode not fully supported in UWP right now. */ - return MA_ERROR; -#endif + ma_IPropertyStore_Release(pProperties); + } else { + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to open property store for device info retrieval.", ma_result_from_HRESULT(hr)); } +#endif + + return MA_SUCCESS; } #ifdef MA_WIN32_DESKTOP @@ -11175,6 +13544,8 @@ static ma_result ma_context_create_IMMDeviceEnumerator__wasapi(ma_context* pCont MA_ASSERT(pContext != NULL); MA_ASSERT(ppDeviceEnumerator != NULL); + *ppDeviceEnumerator = NULL; /* Safety. */ + hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); if (FAILED(hr)) { return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr)); @@ -11233,7 +13604,7 @@ static LPWSTR ma_context_get_default_device_id__wasapi(ma_context* pContext, ma_ } pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType); - + ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); return pDefaultDeviceID; } @@ -11265,7 +13636,7 @@ static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device return MA_SUCCESS; } -static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, ma_share_mode shareMode, LPWSTR pDefaultDeviceID, ma_bool32 onlySimpleInfo, ma_device_info* pInfo) +static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, LPWSTR pDefaultDeviceID, ma_bool32 onlySimpleInfo, ma_device_info* pInfo) { LPWSTR pDeviceID; HRESULT hr; @@ -11290,7 +13661,7 @@ static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pC if (pDefaultDeviceID != NULL) { if (wcscmp(pDeviceID, pDefaultDeviceID) == 0) { /* It's a default device. */ - pInfo->_private.isDefault = MA_TRUE; + pInfo->isDefault = MA_TRUE; } } @@ -11320,8 +13691,8 @@ static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pC ma_IAudioClient* pAudioClient; hr = ma_IMMDevice_Activate(pMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)&pAudioClient); if (SUCCEEDED(hr)) { - ma_result result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, pMMDevice, pAudioClient, shareMode, pInfo); - + ma_result result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, pMMDevice, pAudioClient, pInfo); + ma_IAudioClient_Release(pAudioClient); return result; } else { @@ -11340,7 +13711,7 @@ static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pConte ma_uint32 iDevice; LPWSTR pDefaultDeviceID = NULL; ma_IMMDeviceCollection* pDeviceCollection = NULL; - + MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); @@ -11359,12 +13730,12 @@ static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pConte for (iDevice = 0; iDevice < deviceCount; ++iDevice) { ma_device_info deviceInfo; ma_IMMDevice* pMMDevice; - + MA_ZERO_OBJECT(&deviceInfo); hr = ma_IMMDeviceCollection_Item(pDeviceCollection, iDevice, &pMMDevice); if (SUCCEEDED(hr)) { - result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, ma_share_mode_shared, pDefaultDeviceID, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */ + result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, pDefaultDeviceID, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */ ma_IMMDevice_Release(pMMDevice); if (result == MA_SUCCESS) { @@ -11522,10 +13893,10 @@ static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_e #else /* UWP - + The MMDevice API is only supported on desktop applications. For now, while I'm still figuring out how to properly enumerate over devices without using MMDevice, I'm restricting devices to defaults. - + Hint: DeviceInformation::FindAllAsync() with DeviceClass.AudioCapture/AudioRender. https://blogs.windows.com/buildingapps/2014/05/15/real-time-audio-in-windows-store-and-windows-phone-apps/ */ if (callback) { @@ -11536,7 +13907,7 @@ static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_e ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); - deviceInfo._private.isDefault = MA_TRUE; + deviceInfo.isDefault = MA_TRUE; cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } @@ -11545,7 +13916,7 @@ static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_e ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); - deviceInfo._private.isDefault = MA_TRUE; + deviceInfo.isDefault = MA_TRUE; cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } @@ -11554,13 +13925,13 @@ static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_e return MA_SUCCESS; } -static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { #ifdef MA_WIN32_DESKTOP ma_result result; ma_IMMDevice* pMMDevice = NULL; LPWSTR pDefaultDeviceID = NULL; - + result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, &pMMDevice); if (result != MA_SUCCESS) { return result; @@ -11569,7 +13940,7 @@ static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_dev /* We need the default device ID so we can set the isDefault flag in the device info. */ pDefaultDeviceID = ma_context_get_default_device_id__wasapi(pContext, deviceType); - result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, shareMode, pDefaultDeviceID, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */ + result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, pDefaultDeviceID, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */ if (pDefaultDeviceID != NULL) { ma_CoTaskMemFree(pContext, pDefaultDeviceID); @@ -11590,26 +13961,21 @@ static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_dev ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } - /* Not currently supporting exclusive mode on UWP. */ - if (shareMode == ma_share_mode_exclusive) { - return MA_ERROR; - } - result = ma_context_get_IAudioClient_UWP__wasapi(pContext, deviceType, pDeviceID, &pAudioClient, NULL); if (result != MA_SUCCESS) { return result; } - result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, NULL, pAudioClient, shareMode, pDeviceInfo); + result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, NULL, pAudioClient, pDeviceInfo); - pDeviceInfo->_private.isDefault = MA_TRUE; /* UWP only supports default devices. */ + pDeviceInfo->isDefault = MA_TRUE; /* UWP only supports default devices. */ ma_IAudioClient_Release(pAudioClient); return result; #endif } -static void ma_device_uninit__wasapi(ma_device* pDevice) +static ma_result ma_device_uninit__wasapi(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); @@ -11640,6 +14006,8 @@ static void ma_device_uninit__wasapi(ma_device* pDevice) if (pDevice->wasapi.hEventCapture) { CloseHandle(pDevice->wasapi.hEventCapture); } + + return MA_SUCCESS; } @@ -11653,11 +14021,12 @@ typedef struct ma_uint32 periodSizeInFramesIn; ma_uint32 periodSizeInMillisecondsIn; ma_uint32 periodsIn; - ma_bool32 usingDefaultFormat; + /*ma_bool32 usingDefaultFormat; ma_bool32 usingDefaultChannels; ma_bool32 usingDefaultSampleRate; - ma_bool32 usingDefaultChannelMap; + ma_bool32 usingDefaultChannelMap;*/ ma_share_mode shareMode; + ma_performance_profile performanceProfile; ma_bool32 noAutoConvertSRC; ma_bool32 noDefaultQualitySRC; ma_bool32 noHardwareOffloading; @@ -11703,10 +14072,10 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device pData->pCaptureClient = NULL; streamFlags = MA_AUDCLNT_STREAMFLAGS_EVENTCALLBACK; - if (!pData->noAutoConvertSRC && !pData->usingDefaultSampleRate && pData->shareMode != ma_share_mode_exclusive) { /* <-- Exclusive streams must use the native sample rate. */ + if (!pData->noAutoConvertSRC && pData->sampleRateIn != 0 && pData->shareMode != ma_share_mode_exclusive) { /* <-- Exclusive streams must use the native sample rate. */ streamFlags |= MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM; } - if (!pData->noDefaultQualitySRC && !pData->usingDefaultSampleRate && (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) != 0) { + if (!pData->noDefaultQualitySRC && pData->sampleRateIn != 0 && (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) != 0) { streamFlags |= MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY; } if (deviceType == ma_device_type_loopback) { @@ -11767,7 +14136,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device I do not know how to query the device's native format on UWP so for now I'm just disabling support for exclusive mode. The alternative is to enumerate over different formats and check IsFormatSupported() until you find one that works. - + TODO: Add support for exclusive mode to UWP. */ hr = S_FALSE; @@ -11807,11 +14176,27 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device */ nativeSampleRate = wf.Format.nSamplesPerSec; if (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) { - wf.Format.nSamplesPerSec = pData->sampleRateIn; + wf.Format.nSamplesPerSec = (pData->sampleRateIn != 0) ? pData->sampleRateIn : MA_DEFAULT_SAMPLE_RATE; wf.Format.nAvgBytesPerSec = wf.Format.nSamplesPerSec * wf.Format.nBlockAlign; } pData->formatOut = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)&wf); + if (pData->formatOut == ma_format_unknown) { + /* + The format isn't supported. This is almost certainly because the exclusive mode format isn't supported by miniaudio. We need to return MA_SHARE_MODE_NOT_SUPPORTED + in this case so that the caller can detect it and fall back to shared mode if desired. We should never get here if shared mode was requested, but just for + completeness we'll check for it and return MA_FORMAT_NOT_SUPPORTED. + */ + if (shareMode == MA_AUDCLNT_SHAREMODE_EXCLUSIVE) { + result = MA_SHARE_MODE_NOT_SUPPORTED; + } else { + result = MA_FORMAT_NOT_SUPPORTED; + } + + errorMsg = "[WASAPI] Native format not supported."; + goto done; + } + pData->channelsOut = wf.Format.nChannels; pData->sampleRateOut = wf.Format.nSamplesPerSec; @@ -11819,10 +14204,18 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pData->channelsOut, pData->channelMapOut); /* Period size. */ - pData->periodsOut = pData->periodsIn; + pData->periodsOut = (pData->periodsIn != 0) ? pData->periodsIn : MA_DEFAULT_PERIODS; pData->periodSizeInFramesOut = pData->periodSizeInFramesIn; if (pData->periodSizeInFramesOut == 0) { - pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, wf.Format.nSamplesPerSec); + if (pData->periodSizeInMillisecondsIn == 0) { + if (pData->performanceProfile == ma_performance_profile_low_latency) { + pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY, wf.Format.nSamplesPerSec); + } else { + pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, wf.Format.nSamplesPerSec); + } + } else { + pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, wf.Format.nSamplesPerSec); + } } periodDurationInMicroseconds = ((ma_uint64)pData->periodSizeInFramesOut * 1000 * 1000) / wf.Format.nSamplesPerSec; @@ -11854,7 +14247,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device break; } } - + if (hr == MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) { ma_uint32 bufferSizeInFrames; hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames); @@ -11905,14 +14298,14 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device ma_IAudioClient3* pAudioClient3 = NULL; hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient3, (void**)&pAudioClient3); if (SUCCEEDED(hr)) { - UINT32 defaultPeriodInFrames; - UINT32 fundamentalPeriodInFrames; - UINT32 minPeriodInFrames; - UINT32 maxPeriodInFrames; + ma_uint32 defaultPeriodInFrames; + ma_uint32 fundamentalPeriodInFrames; + ma_uint32 minPeriodInFrames; + ma_uint32 maxPeriodInFrames; hr = ma_IAudioClient3_GetSharedModeEnginePeriod(pAudioClient3, (WAVEFORMATEX*)&wf, &defaultPeriodInFrames, &fundamentalPeriodInFrames, &minPeriodInFrames, &maxPeriodInFrames); if (SUCCEEDED(hr)) { - UINT32 desiredPeriodInFrames = pData->periodSizeInFramesOut; - UINT32 actualPeriodInFrames = desiredPeriodInFrames; + ma_uint32 desiredPeriodInFrames = pData->periodSizeInFramesOut; + ma_uint32 actualPeriodInFrames = desiredPeriodInFrames; /* Make sure the period size is a multiple of fundamentalPeriodInFrames. */ actualPeriodInFrames = actualPeriodInFrames / fundamentalPeriodInFrames; @@ -11946,7 +14339,7 @@ static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device } else { #if defined(MA_DEBUG_OUTPUT) printf("[WASAPI] IAudioClient3_InitializeSharedAudioStream failed. Falling back to IAudioClient.\n"); - #endif + #endif } } else { #if defined(MA_DEBUG_OUTPUT) @@ -12084,24 +14477,18 @@ static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type dev data.channelsIn = pDevice->playback.channels; MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap)); data.shareMode = pDevice->playback.shareMode; - data.usingDefaultFormat = pDevice->playback.usingDefaultFormat; - data.usingDefaultChannels = pDevice->playback.usingDefaultChannels; - data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap; } else { data.formatIn = pDevice->capture.format; data.channelsIn = pDevice->capture.channels; MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap)); data.shareMode = pDevice->capture.shareMode; - data.usingDefaultFormat = pDevice->capture.usingDefaultFormat; - data.usingDefaultChannels = pDevice->capture.usingDefaultChannels; - data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap; } - + data.sampleRateIn = pDevice->sampleRate; - data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; data.periodSizeInFramesIn = pDevice->wasapi.originalPeriodSizeInFrames; data.periodSizeInMillisecondsIn = pDevice->wasapi.originalPeriodSizeInMilliseconds; data.periodsIn = pDevice->wasapi.originalPeriods; + data.performanceProfile = pDevice->wasapi.originalPerformanceProfile; data.noAutoConvertSRC = pDevice->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pDevice->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pDevice->wasapi.noHardwareOffloading; @@ -12186,22 +14573,21 @@ static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type dev return MA_SUCCESS; } -static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_result ma_device_init__wasapi(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result = MA_SUCCESS; - (void)pContext; +#ifdef MA_WIN32_DESKTOP + HRESULT hr; + ma_IMMDeviceEnumerator* pDeviceEnumerator; +#endif - MA_ASSERT(pContext != NULL); MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->wasapi); - pDevice->wasapi.originalPeriodSizeInFrames = pConfig->periodSizeInFrames; - pDevice->wasapi.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; - pDevice->wasapi.originalPeriods = pConfig->periods; - pDevice->wasapi.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; - pDevice->wasapi.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; - pDevice->wasapi.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; + pDevice->wasapi.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; + pDevice->wasapi.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; + pDevice->wasapi.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; /* Exclusive mode is not allowed with loopback. */ if (pConfig->deviceType == ma_device_type_loopback && pConfig->playback.shareMode == ma_share_mode_exclusive) { @@ -12210,37 +14596,30 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { ma_device_init_internal_data__wasapi data; - data.formatIn = pConfig->capture.format; - data.channelsIn = pConfig->capture.channels; - data.sampleRateIn = pConfig->sampleRate; - MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap)); - data.usingDefaultFormat = pDevice->capture.usingDefaultFormat; - data.usingDefaultChannels = pDevice->capture.usingDefaultChannels; - data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; - data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap; - data.shareMode = pConfig->capture.shareMode; - data.periodSizeInFramesIn = pConfig->periodSizeInFrames; - data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds; - data.periodsIn = pConfig->periods; + data.formatIn = pDescriptorCapture->format; + data.channelsIn = pDescriptorCapture->channels; + data.sampleRateIn = pDescriptorCapture->sampleRate; + MA_COPY_MEMORY(data.channelMapIn, pDescriptorCapture->channelMap, sizeof(pDescriptorCapture->channelMap)); + data.periodSizeInFramesIn = pDescriptorCapture->periodSizeInFrames; + data.periodSizeInMillisecondsIn = pDescriptorCapture->periodSizeInMilliseconds; + data.periodsIn = pDescriptorCapture->periodCount; + data.shareMode = pDescriptorCapture->shareMode; + data.performanceProfile = pConfig->performanceProfile; data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; - result = ma_device_init_internal__wasapi(pDevice->pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture, pConfig->capture.pDeviceID, &data); + result = ma_device_init_internal__wasapi(pDevice->pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture, pDescriptorCapture->pDeviceID, &data); if (result != MA_SUCCESS) { return result; } - pDevice->wasapi.pAudioClientCapture = data.pAudioClient; - pDevice->wasapi.pCaptureClient = data.pCaptureClient; - - pDevice->capture.internalFormat = data.formatOut; - pDevice->capture.internalChannels = data.channelsOut; - pDevice->capture.internalSampleRate = data.sampleRateOut; - MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); - pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut; - pDevice->capture.internalPeriods = data.periodsOut; - ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName); + pDevice->wasapi.pAudioClientCapture = data.pAudioClient; + pDevice->wasapi.pCaptureClient = data.pCaptureClient; + pDevice->wasapi.originalPeriodSizeInMilliseconds = pDescriptorCapture->periodSizeInMilliseconds; + pDevice->wasapi.originalPeriodSizeInFrames = pDescriptorCapture->periodSizeInFrames; + pDevice->wasapi.originalPeriods = pDescriptorCapture->periodCount; + pDevice->wasapi.originalPerformanceProfile = pConfig->performanceProfile; /* The event for capture needs to be manual reset for the same reason as playback. We keep the initial state set to unsignaled, @@ -12265,27 +14644,32 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualPeriodSizeInFramesCapture); + + /* The descriptor needs to be updated with actual values. */ + pDescriptorCapture->format = data.formatOut; + pDescriptorCapture->channels = data.channelsOut; + pDescriptorCapture->sampleRate = data.sampleRateOut; + MA_COPY_MEMORY(pDescriptorCapture->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); + pDescriptorCapture->periodSizeInFrames = data.periodSizeInFramesOut; + pDescriptorCapture->periodCount = data.periodsOut; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__wasapi data; - data.formatIn = pConfig->playback.format; - data.channelsIn = pConfig->playback.channels; - data.sampleRateIn = pConfig->sampleRate; - MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap)); - data.usingDefaultFormat = pDevice->playback.usingDefaultFormat; - data.usingDefaultChannels = pDevice->playback.usingDefaultChannels; - data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; - data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap; - data.shareMode = pConfig->playback.shareMode; - data.periodSizeInFramesIn = pConfig->periodSizeInFrames; - data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds; - data.periodsIn = pConfig->periods; + data.formatIn = pDescriptorPlayback->format; + data.channelsIn = pDescriptorPlayback->channels; + data.sampleRateIn = pDescriptorPlayback->sampleRate; + MA_COPY_MEMORY(data.channelMapIn, pDescriptorPlayback->channelMap, sizeof(pDescriptorPlayback->channelMap)); + data.periodSizeInFramesIn = pDescriptorPlayback->periodSizeInFrames; + data.periodSizeInMillisecondsIn = pDescriptorPlayback->periodSizeInMilliseconds; + data.periodsIn = pDescriptorPlayback->periodCount; + data.shareMode = pDescriptorPlayback->shareMode; + data.performanceProfile = pConfig->performanceProfile; data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; - result = ma_device_init_internal__wasapi(pDevice->pContext, ma_device_type_playback, pConfig->playback.pDeviceID, &data); + result = ma_device_init_internal__wasapi(pDevice->pContext, ma_device_type_playback, pDescriptorPlayback->pDeviceID, &data); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { if (pDevice->wasapi.pCaptureClient != NULL) { @@ -12303,16 +14687,12 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co return result; } - pDevice->wasapi.pAudioClientPlayback = data.pAudioClient; - pDevice->wasapi.pRenderClient = data.pRenderClient; - - pDevice->playback.internalFormat = data.formatOut; - pDevice->playback.internalChannels = data.channelsOut; - pDevice->playback.internalSampleRate = data.sampleRateOut; - MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); - pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut; - pDevice->playback.internalPeriods = data.periodsOut; - ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName); + pDevice->wasapi.pAudioClientPlayback = data.pAudioClient; + pDevice->wasapi.pRenderClient = data.pRenderClient; + pDevice->wasapi.originalPeriodSizeInMilliseconds = pDescriptorPlayback->periodSizeInMilliseconds; + pDevice->wasapi.originalPeriodSizeInFrames = pDescriptorPlayback->periodSizeInFrames; + pDevice->wasapi.originalPeriods = pDescriptorPlayback->periodCount; + pDevice->wasapi.originalPerformanceProfile = pConfig->performanceProfile; /* The event for playback is needs to be manual reset because we want to explicitly control the fact that it becomes signalled @@ -12354,11 +14734,21 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualPeriodSizeInFramesPlayback); + + + /* The descriptor needs to be updated with actual values. */ + pDescriptorPlayback->format = data.formatOut; + pDescriptorPlayback->channels = data.channelsOut; + pDescriptorPlayback->sampleRate = data.sampleRateOut; + MA_COPY_MEMORY(pDescriptorPlayback->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); + pDescriptorPlayback->periodSizeInFrames = data.periodSizeInFramesOut; + pDescriptorPlayback->periodCount = data.periodsOut; } /* - We need to get notifications of when the default device changes. We do this through a device enumerator by - registering a IMMNotificationClient with it. We only care about this if it's the default device. + We need to register a notification client to detect when the device has been disabled, unplugged or re-routed (when the default device changes). When + we are connecting to the default device we want to do automatic stream routing when the device is disabled or unplugged. Otherwise we want to just + stop the device outright and let the application handle it. */ #ifdef MA_WIN32_DESKTOP if (pConfig->wasapi.noAutoStreamRouting == MA_FALSE) { @@ -12368,32 +14758,29 @@ static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_co if ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID == NULL) { pDevice->wasapi.allowPlaybackAutoStreamRouting = MA_TRUE; } + } - if (pDevice->wasapi.allowCaptureAutoStreamRouting || pDevice->wasapi.allowPlaybackAutoStreamRouting) { - ma_IMMDeviceEnumerator* pDeviceEnumerator; - HRESULT hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); - if (FAILED(hr)) { - ma_device_uninit__wasapi(pDevice); - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr)); - } + hr = ma_CoCreateInstance(pDevice->pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); + if (FAILED(hr)) { + ma_device_uninit__wasapi(pDevice); + return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr)); + } - pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl; - pDevice->wasapi.notificationClient.counter = 1; - pDevice->wasapi.notificationClient.pDevice = pDevice; + pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl; + pDevice->wasapi.notificationClient.counter = 1; + pDevice->wasapi.notificationClient.pDevice = pDevice; - hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient); - if (SUCCEEDED(hr)) { - pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator; - } else { - /* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */ - ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); - } - } + hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient); + if (SUCCEEDED(hr)) { + pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator; + } else { + /* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */ + ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); } #endif - ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); - ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); return MA_SUCCESS; } @@ -12406,7 +14793,7 @@ static ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_ MA_ASSERT(pDevice != NULL); MA_ASSERT(pFrameCount != NULL); - + *pFrameCount = 0; if ((ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientPlayback && (ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientCapture) { @@ -12444,7 +14831,7 @@ static ma_bool32 ma_device_is_reroute_required__wasapi(ma_device* pDevice, ma_de if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) { return pDevice->wasapi.hasDefaultCaptureDeviceChanged; } - + return MA_FALSE; } @@ -12457,12 +14844,12 @@ static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type de } if (deviceType == ma_device_type_playback) { - ma_atomic_exchange_32(&pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_FALSE); } if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) { - ma_atomic_exchange_32(&pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_FALSE); } - + #ifdef MA_DEBUG_OUTPUT printf("=== CHANGING DEVICE ===\n"); @@ -12484,18 +14871,24 @@ static ma_result ma_device_stop__wasapi(ma_device* pDevice) MA_ASSERT(pDevice != NULL); /* - We need to explicitly signal the capture event in loopback mode to ensure we return from WaitForSingleObject() when nothing is being played. When nothing + It's possible for the main loop to get stuck if the device is disconnected. + + In loopback mode it's possible for WaitForSingleObject() to get stuck in a deadlock when nothing is being played. When nothing is being played, the event is never signalled internally by WASAPI which means we will deadlock when stopping the device. */ - if (pDevice->type == ma_device_type_loopback) { + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { SetEvent((HANDLE)pDevice->wasapi.hEventCapture); } + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { + SetEvent((HANDLE)pDevice->wasapi.hEventPlayback); + } + return MA_SUCCESS; } -static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) +static ma_result ma_device_audio_thread__wasapi(ma_device* pDevice) { ma_result result; HRESULT hr; @@ -12529,10 +14922,10 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) if (FAILED(hr)) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device.", ma_result_from_HRESULT(hr)); } - ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE); } - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { /* We may need to reroute the device. */ if (ma_device_is_reroute_required__wasapi(pDevice, ma_device_type_playback)) { result = ma_device_reroute__wasapi(pDevice, ma_device_type_playback); @@ -12561,7 +14954,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) if (pMappedDeviceBufferPlayback == NULL) { /* WASAPI is weird with exclusive mode. You need to wait on the event _before_ querying the available frames. */ if (pDevice->playback.shareMode == ma_share_mode_exclusive) { - if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) != WAIT_OBJECT_0) { return MA_ERROR; /* Wait failed. */ } } @@ -12585,7 +14978,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) if (framesAvailablePlayback == 0) { /* In exclusive mode we waited at the top. */ if (pDevice->playback.shareMode != ma_share_mode_exclusive) { - if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) != WAIT_OBJECT_0) { return MA_ERROR; /* Wait failed. */ } } @@ -12610,7 +15003,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) /* Try grabbing some captured data if we haven't already got a mapped buffer. */ if (pMappedDeviceBufferCapture == NULL) { if (pDevice->capture.shareMode == ma_share_mode_shared) { - if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) != WAIT_OBJECT_0) { return MA_ERROR; /* Wait failed. */ } } @@ -12627,7 +15020,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) if (framesAvailableCapture == 0) { /* In exclusive mode we waited at the top. */ if (pDevice->capture.shareMode != ma_share_mode_shared) { - if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) != WAIT_OBJECT_0) { return MA_ERROR; /* Wait failed. */ } } @@ -12669,7 +15062,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture; - + if (framesAvailableCapture > 0) { mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture); hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL); @@ -12690,7 +15083,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } else { #ifdef MA_DEBUG_OUTPUT if (flagsCapture != 0) { - printf("[WASAPI] Capture Flags: %d\n", flagsCapture); + printf("[WASAPI] Capture Flags: %ld\n", flagsCapture); } #endif } @@ -12708,7 +15101,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) pRunningDeviceBufferCapture = pMappedDeviceBufferCapture + ((mappedDeviceBufferSizeInFramesCapture - mappedDeviceBufferFramesRemainingCapture ) * bpfCaptureDevice); pRunningDeviceBufferPlayback = pMappedDeviceBufferPlayback + ((mappedDeviceBufferSizeInFramesPlayback - mappedDeviceBufferFramesRemainingPlayback) * bpfPlaybackDevice); - + /* There may be some data sitting in the converter that needs to be processed first. Once this is exhaused, run the data callback again. */ if (!pDevice->playback.converter.isPassthrough && outputDataInClientFormatConsumed < outputDataInClientFormatCount) { ma_uint64 convertedFrameCountClient = (outputDataInClientFormatCount - outputDataInClientFormatConsumed); @@ -12793,7 +15186,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } ma_device__on_data(pDevice, outputDataInClientFormat, inputDataInClientFormat, (ma_uint32)capturedClientFramesToProcess); - + mappedDeviceBufferFramesRemainingCapture -= (ma_uint32)capturedDeviceFramesToProcess; outputDataInClientFormatCount = (ma_uint32)capturedClientFramesToProcess; outputDataInClientFormatConsumed = 0; @@ -12856,7 +15249,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", ma_result_from_HRESULT(hr)); } - ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE); } } } break; @@ -12870,7 +15263,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) DWORD flagsCapture; /* Passed to IAudioCaptureClient_GetBuffer(). */ /* Wait for data to become available first. */ - if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) != WAIT_OBJECT_0) { exitLoop = MA_TRUE; break; /* Wait failed. */ } @@ -12919,7 +15312,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture; - + if (framesAvailableCapture > 0) { mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture); hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL); @@ -12940,7 +15333,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } else { #ifdef MA_DEBUG_OUTPUT if (flagsCapture != 0) { - printf("[WASAPI] Capture Flags: %d\n", flagsCapture); + printf("[WASAPI] Capture Flags: %ld\n", flagsCapture); } #endif } @@ -12968,7 +15361,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) ma_uint32 framesAvailablePlayback; /* Wait for space to become available first. */ - if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) { + if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) != WAIT_OBJECT_0) { exitLoop = MA_TRUE; break; /* Wait failed. */ } @@ -13015,7 +15408,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) exitLoop = MA_TRUE; break; } - ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE); } } } break; @@ -13042,7 +15435,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal capture device.", ma_result_from_HRESULT(hr)); } - ma_atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { @@ -13056,8 +15449,11 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) the speakers. This is a problem for very short sounds because it'll result in a significant portion of it not getting played. */ if (pDevice->wasapi.isStartedPlayback) { + /* We need to make sure we put a timeout here or else we'll risk getting stuck in a deadlock in some cases. */ + DWORD waitTime = pDevice->wasapi.actualPeriodSizeInFramesPlayback / pDevice->playback.internalSampleRate; + if (pDevice->playback.shareMode == ma_share_mode_exclusive) { - WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE); + WaitForSingleObject(pDevice->wasapi.hEventPlayback, waitTime); } else { ma_uint32 prevFramesAvaialablePlayback = (ma_uint32)-1; ma_uint32 framesAvailablePlayback; @@ -13080,7 +15476,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) } prevFramesAvaialablePlayback = framesAvailablePlayback; - WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE); + WaitForSingleObject(pDevice->wasapi.hEventPlayback, waitTime); ResetEvent(pDevice->wasapi.hEventPlayback); /* Manual reset. */ } } @@ -13097,7 +15493,7 @@ static ma_result ma_device_main_loop__wasapi(ma_device* pDevice) return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal playback device.", ma_result_from_HRESULT(hr)); } - ma_atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); + c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); } return MA_SUCCESS; @@ -13112,7 +15508,7 @@ static ma_result ma_context_uninit__wasapi(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__wasapi(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { ma_result result = MA_SUCCESS; @@ -13125,7 +15521,7 @@ static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_co WASAPI is only supported in Vista SP1 and newer. The reason for SP1 and not the base version of Vista is that event-driven exclusive mode does not work until SP1. - Unfortunately older compilers don't define these functions so we need to dynamically load them in order to avoid a lin error. + Unfortunately older compilers don't define these functions so we need to dynamically load them in order to avoid a link error. */ { ma_OSVERSIONINFOEXW osvi; @@ -13138,7 +15534,7 @@ static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_co return MA_NO_BACKEND; } - _VerifyVersionInfoW = (ma_PFNVerifyVersionInfoW)ma_dlsym(pContext, kernel32DLL, "VerifyVersionInfoW"); + _VerifyVersionInfoW = (ma_PFNVerifyVersionInfoW )ma_dlsym(pContext, kernel32DLL, "VerifyVersionInfoW"); _VerSetConditionMask = (ma_PFNVerSetConditionMask)ma_dlsym(pContext, kernel32DLL, "VerSetConditionMask"); if (_VerifyVersionInfoW == NULL || _VerSetConditionMask == NULL) { ma_dlclose(pContext, kernel32DLL); @@ -13164,15 +15560,17 @@ static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_co return result; } - pContext->onUninit = ma_context_uninit__wasapi; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__wasapi; - pContext->onEnumDevices = ma_context_enumerate_devices__wasapi; - pContext->onGetDeviceInfo = ma_context_get_device_info__wasapi; - pContext->onDeviceInit = ma_device_init__wasapi; - pContext->onDeviceUninit = ma_device_uninit__wasapi; - pContext->onDeviceStart = NULL; /* Not used. Started in onDeviceMainLoop. */ - pContext->onDeviceStop = ma_device_stop__wasapi; /* Required to ensure the capture event is signalled when stopping a loopback device while nothing is playing. */ - pContext->onDeviceMainLoop = ma_device_main_loop__wasapi; + pCallbacks->onContextInit = ma_context_init__wasapi; + pCallbacks->onContextUninit = ma_context_uninit__wasapi; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__wasapi; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__wasapi; + pCallbacks->onDeviceInit = ma_device_init__wasapi; + pCallbacks->onDeviceUninit = ma_device_uninit__wasapi; + pCallbacks->onDeviceStart = NULL; /* Not used. Started in onDeviceAudioThread. */ + pCallbacks->onDeviceStop = ma_device_stop__wasapi; /* Required to ensure the capture event is signalled when stopping a loopback device while nothing is playing. */ + pCallbacks->onDeviceRead = NULL; /* Not used. Reading is done manually in the audio thread. */ + pCallbacks->onDeviceWrite = NULL; /* Not used. Writing is done manually in the audio thread. */ + pCallbacks->onDeviceAudioThread = ma_device_audio_thread__wasapi; return result; } @@ -13186,7 +15584,7 @@ DirectSound Backend #ifdef MA_HAS_DSOUND /*#include */ -static const GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}}; +/*static const GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}};*/ /* miniaudio only uses priority or exclusive modes. */ #define MA_DSSCL_NORMAL 1 @@ -13738,16 +16136,6 @@ static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_c return MA_SUCCESS; } -static ma_bool32 ma_context_is_device_id_equal__dsound(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return memcmp(pID0->dsound, pID1->dsound, sizeof(pID0->dsound)) == 0; -} - typedef struct { @@ -13761,7 +16149,9 @@ typedef struct static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext) { ma_context_enumerate_devices_callback_data__dsound* pData = (ma_context_enumerate_devices_callback_data__dsound*)lpContext; - ma_device_info deviceInfo; + ma_device_info deviceInfo; + + (void)lpcstrModule; MA_ZERO_OBJECT(&deviceInfo); @@ -13770,6 +16160,7 @@ static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid MA_COPY_MEMORY(deviceInfo.id.dsound, lpGuid, 16); } else { MA_ZERO_MEMORY(deviceInfo.id.dsound, 16); + deviceInfo.isDefault = MA_TRUE; } /* Name / Description */ @@ -13784,8 +16175,6 @@ static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid } else { return TRUE; /* Continue enumeration. */ } - - (void)lpcstrModule; } static ma_result ma_context_enumerate_devices__dsound(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) @@ -13828,9 +16217,10 @@ static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, ma_context_get_device_info_callback_data__dsound* pData = (ma_context_get_device_info_callback_data__dsound*)lpContext; MA_ASSERT(pData != NULL); - if ((pData->pDeviceID == NULL || ma_is_guid_equal(pData->pDeviceID->dsound, &MA_GUID_NULL)) && (lpGuid == NULL || ma_is_guid_equal(lpGuid, &MA_GUID_NULL))) { + if ((pData->pDeviceID == NULL || ma_is_guid_null(pData->pDeviceID->dsound)) && (lpGuid == NULL || ma_is_guid_null(lpGuid))) { /* Default device. */ ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1); + pData->pDeviceInfo->isDefault = MA_TRUE; pData->found = MA_TRUE; return FALSE; /* Stop enumeration. */ } else { @@ -13848,16 +16238,11 @@ static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, return TRUE; } -static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_result result; HRESULT hr; - /* Exclusive mode and capture not supported with DirectSound. */ - if (deviceType == ma_device_type_capture && shareMode == ma_share_mode_exclusive) { - return MA_SHARE_MODE_NOT_SUPPORTED; - } - if (pDeviceID != NULL) { ma_context_get_device_info_callback_data__dsound data; @@ -13889,6 +16274,8 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } + + pDeviceInfo->isDefault = MA_TRUE; } /* Retrieving detailed information is slightly different depending on the device type. */ @@ -13896,9 +16283,9 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev /* Playback. */ ma_IDirectSound* pDirectSound; MA_DSCAPS caps; - ma_uint32 iFormat; + WORD channels; - result = ma_context_create_IDirectSound__dsound(pContext, shareMode, pDeviceID, &pDirectSound); + result = ma_context_create_IDirectSound__dsound(pContext, ma_share_mode_shared, pDeviceID, &pDirectSound); if (result != MA_SUCCESS) { return result; } @@ -13910,50 +16297,50 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr)); } + + /* Channels. Only a single channel count is reported for DirectSound. */ if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) { /* It supports at least stereo, but could support more. */ - WORD channels = 2; + DWORD speakerConfig; + + channels = 2; /* Look at the speaker configuration to get a better idea on the channel count. */ - DWORD speakerConfig; hr = ma_IDirectSound_GetSpeakerConfig(pDirectSound, &speakerConfig); if (SUCCEEDED(hr)) { ma_get_channels_from_speaker_config__dsound(speakerConfig, &channels, NULL); } - - pDeviceInfo->minChannels = channels; - pDeviceInfo->maxChannels = channels; } else { /* It does not support stereo, which means we are stuck with mono. */ - pDeviceInfo->minChannels = 1; - pDeviceInfo->maxChannels = 1; + channels = 1; } - /* Sample rate. */ - if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) { - pDeviceInfo->minSampleRate = caps.dwMinSecondarySampleRate; - pDeviceInfo->maxSampleRate = caps.dwMaxSecondarySampleRate; - /* - On my machine the min and max sample rates can return 100 and 200000 respectively. I'd rather these be within - the range of our standard sample rates so I'm clamping. - */ - if (caps.dwMinSecondarySampleRate < MA_MIN_SAMPLE_RATE && caps.dwMaxSecondarySampleRate >= MA_MIN_SAMPLE_RATE) { - pDeviceInfo->minSampleRate = MA_MIN_SAMPLE_RATE; - } - if (caps.dwMaxSecondarySampleRate > MA_MAX_SAMPLE_RATE && caps.dwMinSecondarySampleRate <= MA_MAX_SAMPLE_RATE) { - pDeviceInfo->maxSampleRate = MA_MAX_SAMPLE_RATE; + /* + In DirectSound, our native formats are centered around sample rates. All formats are supported, and we're only reporting a single channel + count. However, DirectSound can report a range of supported sample rates. We're only going to include standard rates known by miniaudio + in order to keep the size of this within reason. + */ + if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) { + /* Multiple sample rates are supported. We'll report in order of our preferred sample rates. */ + size_t iStandardSampleRate; + for (iStandardSampleRate = 0; iStandardSampleRate < ma_countof(g_maStandardSampleRatePriorities); iStandardSampleRate += 1) { + ma_uint32 sampleRate = g_maStandardSampleRatePriorities[iStandardSampleRate]; + if (sampleRate >= caps.dwMinSecondarySampleRate && sampleRate <= caps.dwMaxSecondarySampleRate) { + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = ma_format_unknown; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = sampleRate; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; + pDeviceInfo->nativeDataFormatCount += 1; + } } } else { - /* Only supports a single sample rate. Set both min an max to the same thing. Do not clamp within the standard rates. */ - pDeviceInfo->minSampleRate = caps.dwMaxSecondarySampleRate; - pDeviceInfo->maxSampleRate = caps.dwMaxSecondarySampleRate; - } - - /* DirectSound can support all formats. */ - pDeviceInfo->formatCount = ma_format_count - 1; /* Minus one because we don't want to include ma_format_unknown. */ - for (iFormat = 0; iFormat < pDeviceInfo->formatCount; ++iFormat) { - pDeviceInfo->formats[iFormat] = (ma_format)(iFormat + 1); /* +1 to skip over ma_format_unknown. */ + /* Only a single sample rate is supported. */ + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = ma_format_unknown; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = caps.dwMaxSecondarySampleRate; + pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; + pDeviceInfo->nativeDataFormatCount += 1; } ma_IDirectSound_Release(pDirectSound); @@ -13968,7 +16355,7 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev WORD bitsPerSample; DWORD sampleRate; - result = ma_context_create_IDirectSoundCapture__dsound(pContext, shareMode, pDeviceID, &pDirectSoundCapture); + result = ma_context_create_IDirectSoundCapture__dsound(pContext, ma_share_mode_shared, pDeviceID, &pDirectSoundCapture); if (result != MA_SUCCESS) { return result; } @@ -13979,11 +16366,9 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev return result; } - pDeviceInfo->minChannels = channels; - pDeviceInfo->maxChannels = channels; - pDeviceInfo->minSampleRate = sampleRate; - pDeviceInfo->maxSampleRate = sampleRate; - pDeviceInfo->formatCount = 1; + ma_IDirectSoundCapture_Release(pDirectSoundCapture); + + /* The format is always an integer format and is based on the bits per sample. */ if (bitsPerSample == 8) { pDeviceInfo->formats[0] = ma_format_u8; } else if (bitsPerSample == 16) { @@ -13993,11 +16378,13 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev } else if (bitsPerSample == 32) { pDeviceInfo->formats[0] = ma_format_s32; } else { - ma_IDirectSoundCapture_Release(pDirectSoundCapture); return MA_FORMAT_NOT_SUPPORTED; } - ma_IDirectSoundCapture_Release(pDirectSoundCapture); + pDeviceInfo->nativeDataFormats[0].channels = channels; + pDeviceInfo->nativeDataFormats[0].sampleRate = sampleRate; + pDeviceInfo->nativeDataFormats[0].flags = 0; + pDeviceInfo->nativeDataFormatCount = 1; } return MA_SUCCESS; @@ -14005,7 +16392,7 @@ static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_dev -static void ma_device_uninit__dsound(ma_device* pDevice) +static ma_result ma_device_uninit__dsound(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); @@ -14025,12 +16412,26 @@ static void ma_device_uninit__dsound(ma_device* pDevice) if (pDevice->dsound.pPlayback != NULL) { ma_IDirectSound_Release((ma_IDirectSound*)pDevice->dsound.pPlayback); } + + return MA_SUCCESS; } static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* pChannelMap, WAVEFORMATEXTENSIBLE* pWF) { GUID subformat; + if (format == ma_format_unknown) { + format = MA_DEFAULT_FORMAT; + } + + if (channels == 0) { + channels = MA_DEFAULT_CHANNELS; + } + + if (sampleRate == 0) { + sampleRate = MA_DEFAULT_SAMPLE_RATE; + } + switch (format) { case ma_format_u8: @@ -14056,8 +16457,8 @@ static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 c pWF->Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; pWF->Format.nChannels = (WORD)channels; pWF->Format.nSamplesPerSec = (DWORD)sampleRate; - pWF->Format.wBitsPerSample = (WORD)ma_get_bytes_per_sample(format)*8; - pWF->Format.nBlockAlign = (pWF->Format.nChannels * pWF->Format.wBitsPerSample) / 8; + pWF->Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8); + pWF->Format.nBlockAlign = (WORD)(pWF->Format.nChannels * pWF->Format.wBitsPerSample / 8); pWF->Format.nAvgBytesPerSec = pWF->Format.nBlockAlign * pWF->Format.nSamplesPerSec; pWF->Samples.wValidBitsPerSample = pWF->Format.wBitsPerSample; pWF->dwChannelMask = ma_channel_map_to_channel_mask__win32(pChannelMap, channels); @@ -14066,38 +16467,43 @@ static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 c return MA_SUCCESS; } -static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_uint32 ma_calculate_period_size_in_frames__dsound(ma_uint32 periodSizeInFrames, ma_uint32 periodSizeInMilliseconds, ma_uint32 sampleRate, ma_performance_profile performanceProfile) +{ + /* DirectSound has a minimum period size of 20ms. */ + ma_uint32 minPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(20, sampleRate); + + if (periodSizeInFrames == 0) { + if (periodSizeInMilliseconds == 0) { + if (performanceProfile == ma_performance_profile_low_latency) { + periodSizeInFrames = minPeriodSizeInFrames; + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, sampleRate); + } + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, sampleRate); + } + } + + if (periodSizeInFrames < minPeriodSizeInFrames) { + periodSizeInFrames = minPeriodSizeInFrames; + } + + return periodSizeInFrames; +} + +static ma_result ma_device_init__dsound(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; HRESULT hr; - ma_uint32 periodSizeInMilliseconds; MA_ASSERT(pDevice != NULL); + MA_ZERO_OBJECT(&pDevice->dsound); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } - periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; - if (periodSizeInMilliseconds == 0) { - periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate); - } - - /* DirectSound should use a latency of about 20ms per period for low latency mode. */ - if (pDevice->usingDefaultBufferSize) { - if (pConfig->performanceProfile == ma_performance_profile_low_latency) { - periodSizeInMilliseconds = 20; - } else { - periodSizeInMilliseconds = 200; - } - } - - /* DirectSound breaks down with tiny buffer sizes (bad glitching and silent output). I am therefore restricting the size of the buffer to a minimum of 20 milliseconds. */ - if (periodSizeInMilliseconds < 20) { - periodSizeInMilliseconds = 20; - } - /* Unfortunately DirectSound uses different APIs and data structures for playback and catpure devices. We need to initialize the capture device first because we'll want to match it's buffer size and period count on the playback side if we're using @@ -14107,39 +16513,41 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co WAVEFORMATEXTENSIBLE wf; MA_DSCBUFFERDESC descDS; ma_uint32 periodSizeInFrames; + ma_uint32 periodCount; char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */ WAVEFORMATEXTENSIBLE* pActualFormat; - result = ma_config_to_WAVEFORMATEXTENSIBLE(pConfig->capture.format, pConfig->capture.channels, pConfig->sampleRate, pConfig->capture.channelMap, &wf); + result = ma_config_to_WAVEFORMATEXTENSIBLE(pDescriptorCapture->format, pDescriptorCapture->channels, pDescriptorCapture->sampleRate, pDescriptorCapture->channelMap, &wf); if (result != MA_SUCCESS) { return result; } - result = ma_context_create_IDirectSoundCapture__dsound(pContext, pConfig->capture.shareMode, pConfig->capture.pDeviceID, (ma_IDirectSoundCapture**)&pDevice->dsound.pCapture); + result = ma_context_create_IDirectSoundCapture__dsound(pDevice->pContext, pDescriptorCapture->shareMode, pDescriptorCapture->pDeviceID, (ma_IDirectSoundCapture**)&pDevice->dsound.pCapture); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; } - result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pContext, (ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &wf.Format.nChannels, &wf.Format.wBitsPerSample, &wf.Format.nSamplesPerSec); + result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pDevice->pContext, (ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &wf.Format.nChannels, &wf.Format.wBitsPerSample, &wf.Format.nSamplesPerSec); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; } - wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8; + wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; wf.Samples.wValidBitsPerSample = wf.Format.wBitsPerSample; wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; /* The size of the buffer must be a clean multiple of the period count. */ - periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, wf.Format.nSamplesPerSec); + periodSizeInFrames = ma_calculate_period_size_in_frames__dsound(pDescriptorCapture->periodSizeInFrames, pDescriptorCapture->periodSizeInMilliseconds, wf.Format.nSamplesPerSec, pConfig->performanceProfile); + periodCount = (pDescriptorCapture->periodCount > 0) ? pDescriptorCapture->periodCount : MA_DEFAULT_PERIODS; MA_ZERO_OBJECT(&descDS); - descDS.dwSize = sizeof(descDS); - descDS.dwFlags = 0; - descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels); - descDS.lpwfxFormat = (WAVEFORMATEX*)&wf; + descDS.dwSize = sizeof(descDS); + descDS.dwFlags = 0; + descDS.dwBufferBytes = periodSizeInFrames * periodCount * wf.Format.nBlockAlign; + descDS.lpwfxFormat = (WAVEFORMATEX*)&wf; hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); @@ -14154,23 +16562,24 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the capture device's buffer.", ma_result_from_HRESULT(hr)); } - pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); - pDevice->capture.internalChannels = pActualFormat->Format.nChannels; - pDevice->capture.internalSampleRate = pActualFormat->Format.nSamplesPerSec; + /* We can now start setting the output data formats. */ + pDescriptorCapture->format = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); + pDescriptorCapture->channels = pActualFormat->Format.nChannels; + pDescriptorCapture->sampleRate = pActualFormat->Format.nSamplesPerSec; - /* Get the internal channel map based on the channel mask. */ + /* Get the native channel map based on the channel mask. */ if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) { - ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); + ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDescriptorCapture->channels, pDescriptorCapture->channelMap); } else { - ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); + ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDescriptorCapture->channels, pDescriptorCapture->channelMap); } /* After getting the actual format the size of the buffer in frames may have actually changed. However, we want this to be as close to what the user has asked for as possible, so let's go ahead and release the old capture buffer and create a new one in this case. */ - if (periodSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pConfig->periods)) { - descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels) * pConfig->periods; + if (periodSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) / periodCount)) { + descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) * periodCount; ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL); @@ -14181,8 +16590,8 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co } /* DirectSound should give us a buffer exactly the size we asked for. */ - pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->capture.internalPeriods = pConfig->periods; + pDescriptorCapture->periodSizeInFrames = periodSizeInFrames; + pDescriptorCapture->periodCount = periodCount; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { @@ -14192,14 +16601,15 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */ WAVEFORMATEXTENSIBLE* pActualFormat; ma_uint32 periodSizeInFrames; + ma_uint32 periodCount; MA_DSBUFFERDESC descDS; - result = ma_config_to_WAVEFORMATEXTENSIBLE(pConfig->playback.format, pConfig->playback.channels, pConfig->sampleRate, pConfig->playback.channelMap, &wf); + result = ma_config_to_WAVEFORMATEXTENSIBLE(pDescriptorPlayback->format, pDescriptorPlayback->channels, pDescriptorPlayback->sampleRate, pDescriptorPlayback->channelMap, &wf); if (result != MA_SUCCESS) { return result; } - result = ma_context_create_IDirectSound__dsound(pContext, pConfig->playback.shareMode, pConfig->playback.pDeviceID, (ma_IDirectSound**)&pDevice->dsound.pPlayback); + result = ma_context_create_IDirectSound__dsound(pDevice->pContext, pDescriptorPlayback->shareMode, pDescriptorPlayback->pDeviceID, (ma_IDirectSound**)&pDevice->dsound.pPlayback); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; @@ -14224,7 +16634,7 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr)); } - if (pDevice->playback.usingDefaultChannels) { + if (pDescriptorPlayback->channels == 0) { if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) { DWORD speakerConfig; @@ -14241,7 +16651,7 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co } } - if (pDevice->usingDefaultSampleRate) { + if (pDescriptorPlayback->sampleRate == 0) { /* We base the sample rate on the values returned by GetCaps(). */ if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) { wf.Format.nSamplesPerSec = ma_get_best_sample_rate_within_range(caps.dwMinSecondarySampleRate, caps.dwMaxSecondarySampleRate); @@ -14250,12 +16660,12 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co } } - wf.Format.nBlockAlign = (wf.Format.nChannels * wf.Format.wBitsPerSample) / 8; + wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; /* From MSDN: - + The method succeeds even if the hardware does not support the requested format; DirectSound sets the buffer to the closest supported format. To determine whether this has happened, an application can call the GetFormat method for the primary buffer and compare the result with the format that was requested with the SetFormat method. @@ -14274,30 +16684,32 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the playback device's primary buffer.", ma_result_from_HRESULT(hr)); } - pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); - pDevice->playback.internalChannels = pActualFormat->Format.nChannels; - pDevice->playback.internalSampleRate = pActualFormat->Format.nSamplesPerSec; + /* We now have enough information to start setting some output properties. */ + pDescriptorPlayback->format = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); + pDescriptorPlayback->channels = pActualFormat->Format.nChannels; + pDescriptorPlayback->sampleRate = pActualFormat->Format.nSamplesPerSec; /* Get the internal channel map based on the channel mask. */ if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) { - ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); + ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); } else { - ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); + ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); } /* The size of the buffer must be a clean multiple of the period count. */ - periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate); + periodSizeInFrames = ma_calculate_period_size_in_frames__dsound(pDescriptorPlayback->periodSizeInFrames, pDescriptorPlayback->periodSizeInMilliseconds, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); + periodCount = (pDescriptorPlayback->periodCount > 0) ? pDescriptorPlayback->periodCount : MA_DEFAULT_PERIODS; /* Meaning of dwFlags (from MSDN): - + DSBCAPS_CTRLPOSITIONNOTIFY The buffer has position notification capability. - + DSBCAPS_GLOBALFOCUS With this flag set, an application using DirectSound can continue to play its buffers if the user switches focus to another application, even if the new application uses DirectSound. - + DSBCAPS_GETCURRENTPOSITION2 In the first version of DirectSound, the play cursor was significantly ahead of the actual playing sound on emulated sound cards; it was directly behind the write cursor. Now, if the DSBCAPS_GETCURRENTPOSITION2 flag is specified, the @@ -14306,7 +16718,7 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co MA_ZERO_OBJECT(&descDS); descDS.dwSize = sizeof(descDS); descDS.dwFlags = MA_DSBCAPS_CTRLPOSITIONNOTIFY | MA_DSBCAPS_GLOBALFOCUS | MA_DSBCAPS_GETCURRENTPOSITION2; - descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); + descDS.dwBufferBytes = periodSizeInFrames * periodCount * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels); descDS.lpwfxFormat = (WAVEFORMATEX*)&wf; hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL); if (FAILED(hr)) { @@ -14315,16 +16727,15 @@ static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_co } /* DirectSound should give us a buffer exactly the size we asked for. */ - pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->playback.internalPeriods = pConfig->periods; + pDescriptorPlayback->periodSizeInFrames = periodSizeInFrames; + pDescriptorPlayback->periodCount = periodCount; } - (void)pContext; return MA_SUCCESS; } -static ma_result ma_device_main_loop__dsound(ma_device* pDevice) +static ma_result ma_device_audio_thread__dsound(ma_device* pDevice) { ma_result result = MA_SUCCESS; ma_uint32 bpfDeviceCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); @@ -14356,8 +16767,8 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Start() failed.", MA_FAILED_TO_START_BACKEND_DEVICE); } } - - while (ma_device__get_state(pDevice) == MA_STATE_STARTED) { + + while (ma_device_get_state(pDevice) == MA_STATE_STARTED) { switch (pDevice->type) { case ma_device_type_duplex: @@ -14461,7 +16872,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) } else { /* This is an error. */ #ifdef MA_DEBUG_OUTPUT - printf("[DirectSound] (Duplex/Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); + printf("[DirectSound] (Duplex/Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); #endif availableBytesPlayback = 0; } @@ -14472,7 +16883,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) } else { /* This is an error. */ #ifdef MA_DEBUG_OUTPUT - printf("[DirectSound] (Duplex/Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); + printf("[DirectSound] (Duplex/Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); #endif availableBytesPlayback = 0; } @@ -14528,7 +16939,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) } #ifdef MA_DEBUG_OUTPUT - printf("[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%d, silentPaddingInBytes=%d\n", availableBytesPlayback, silentPaddingInBytes); + printf("[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%ld, silentPaddingInBytes=%ld\n", availableBytesPlayback, silentPaddingInBytes); #endif } } @@ -14551,7 +16962,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) outputFramesInClientFormatConsumed += (ma_uint32)convertedFrameCountOut; framesWrittenThisIteration = (ma_uint32)convertedFrameCountOut; } - + hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, framesWrittenThisIteration*bpfDevicePlayback, NULL, 0); if (FAILED(hr)) { @@ -14564,7 +16975,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) virtualWriteCursorInBytesPlayback = 0; virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback; } - + /* We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds a bit of a buffer to prevent the playback buffer from getting starved. @@ -14653,7 +17064,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) #ifdef MA_DEBUG_OUTPUT if (lockSizeInBytesCapture != mappedSizeInBytesCapture) { - printf("[DirectSound] (Capture) lockSizeInBytesCapture=%d != mappedSizeInBytesCapture=%d\n", lockSizeInBytesCapture, mappedSizeInBytesCapture); + printf("[DirectSound] (Capture) lockSizeInBytesCapture=%ld != mappedSizeInBytesCapture=%ld\n", lockSizeInBytesCapture, mappedSizeInBytesCapture); } #endif @@ -14696,7 +17107,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) } else { /* This is an error. */ #ifdef MA_DEBUG_OUTPUT - printf("[DirectSound] (Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); + printf("[DirectSound] (Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); #endif availableBytesPlayback = 0; } @@ -14707,7 +17118,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) } else { /* This is an error. */ #ifdef MA_DEBUG_OUTPUT - printf("[DirectSound] (Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%d, virtualWriteCursorInBytes=%d.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); + printf("[DirectSound] (Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); #endif availableBytesPlayback = 0; } @@ -14762,7 +17173,7 @@ static ma_result ma_device_main_loop__dsound(ma_device* pDevice) virtualWriteCursorInBytesPlayback = 0; virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback; } - + /* We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds a bit of a buffer to prevent the playback buffer from getting starved. @@ -14857,7 +17268,7 @@ static ma_result ma_context_uninit__dsound(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__dsound(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__dsound(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); @@ -14873,15 +17284,17 @@ static ma_result ma_context_init__dsound(const ma_context_config* pConfig, ma_co pContext->dsound.DirectSoundCaptureCreate = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureCreate"); pContext->dsound.DirectSoundCaptureEnumerateA = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureEnumerateA"); - pContext->onUninit = ma_context_uninit__dsound; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__dsound; - pContext->onEnumDevices = ma_context_enumerate_devices__dsound; - pContext->onGetDeviceInfo = ma_context_get_device_info__dsound; - pContext->onDeviceInit = ma_device_init__dsound; - pContext->onDeviceUninit = ma_device_uninit__dsound; - pContext->onDeviceStart = NULL; /* Not used. Started in onDeviceMainLoop. */ - pContext->onDeviceStop = NULL; /* Not used. Stopped in onDeviceMainLoop. */ - pContext->onDeviceMainLoop = ma_device_main_loop__dsound; + pCallbacks->onContextInit = ma_context_init__dsound; + pCallbacks->onContextUninit = ma_context_uninit__dsound; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__dsound; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__dsound; + pCallbacks->onDeviceInit = ma_device_init__dsound; + pCallbacks->onDeviceUninit = ma_device_uninit__dsound; + pCallbacks->onDeviceStart = NULL; /* Not used. Started in onDeviceAudioThread. */ + pCallbacks->onDeviceStop = NULL; /* Not used. Stopped in onDeviceAudioThread. */ + pCallbacks->onDeviceRead = NULL; /* Not used. Data is read directly in onDeviceAudioThread. */ + pCallbacks->onDeviceWrite = NULL; /* Not used. Data is written directly in onDeviceAudioThread. */ + pCallbacks->onDeviceAudioThread = ma_device_audio_thread__dsound; return MA_SUCCESS; } @@ -15082,6 +17495,8 @@ static ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WOR static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels, WAVEFORMATEX* pWF) { + ma_result result; + MA_ASSERT(pWF != NULL); MA_ZERO_OBJECT(pWF); @@ -15092,65 +17507,12 @@ static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD c pWF->nChannels = 2; } - if (channels == 1) { - pWF->wBitsPerSample = 16; - if ((dwFormats & WAVE_FORMAT_48M16) != 0) { - pWF->nSamplesPerSec = 48000; - } else if ((dwFormats & WAVE_FORMAT_44M16) != 0) { - pWF->nSamplesPerSec = 44100; - } else if ((dwFormats & WAVE_FORMAT_2M16) != 0) { - pWF->nSamplesPerSec = 22050; - } else if ((dwFormats & WAVE_FORMAT_1M16) != 0) { - pWF->nSamplesPerSec = 11025; - } else if ((dwFormats & WAVE_FORMAT_96M16) != 0) { - pWF->nSamplesPerSec = 96000; - } else { - pWF->wBitsPerSample = 8; - if ((dwFormats & WAVE_FORMAT_48M08) != 0) { - pWF->nSamplesPerSec = 48000; - } else if ((dwFormats & WAVE_FORMAT_44M08) != 0) { - pWF->nSamplesPerSec = 44100; - } else if ((dwFormats & WAVE_FORMAT_2M08) != 0) { - pWF->nSamplesPerSec = 22050; - } else if ((dwFormats & WAVE_FORMAT_1M08) != 0) { - pWF->nSamplesPerSec = 11025; - } else if ((dwFormats & WAVE_FORMAT_96M08) != 0) { - pWF->nSamplesPerSec = 96000; - } else { - return MA_FORMAT_NOT_SUPPORTED; - } - } - } else { - pWF->wBitsPerSample = 16; - if ((dwFormats & WAVE_FORMAT_48S16) != 0) { - pWF->nSamplesPerSec = 48000; - } else if ((dwFormats & WAVE_FORMAT_44S16) != 0) { - pWF->nSamplesPerSec = 44100; - } else if ((dwFormats & WAVE_FORMAT_2S16) != 0) { - pWF->nSamplesPerSec = 22050; - } else if ((dwFormats & WAVE_FORMAT_1S16) != 0) { - pWF->nSamplesPerSec = 11025; - } else if ((dwFormats & WAVE_FORMAT_96S16) != 0) { - pWF->nSamplesPerSec = 96000; - } else { - pWF->wBitsPerSample = 8; - if ((dwFormats & WAVE_FORMAT_48S08) != 0) { - pWF->nSamplesPerSec = 48000; - } else if ((dwFormats & WAVE_FORMAT_44S08) != 0) { - pWF->nSamplesPerSec = 44100; - } else if ((dwFormats & WAVE_FORMAT_2S08) != 0) { - pWF->nSamplesPerSec = 22050; - } else if ((dwFormats & WAVE_FORMAT_1S08) != 0) { - pWF->nSamplesPerSec = 11025; - } else if ((dwFormats & WAVE_FORMAT_96S08) != 0) { - pWF->nSamplesPerSec = 96000; - } else { - return MA_FORMAT_NOT_SUPPORTED; - } - } + result = ma_get_best_info_from_formats_flags__winmm(dwFormats, channels, &pWF->wBitsPerSample, &pWF->nSamplesPerSec); + if (result != MA_SUCCESS) { + return result; } - pWF->nBlockAlign = (pWF->nChannels * pWF->wBitsPerSample) / 8; + pWF->nBlockAlign = (WORD)(pWF->nChannels * pWF->wBitsPerSample / 8); pWF->nAvgBytesPerSec = pWF->nBlockAlign * pWF->nSamplesPerSec; return MA_SUCCESS; @@ -15168,7 +17530,7 @@ static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, /* Name / Description - + Unfortunately the name specified in WAVE(OUT/IN)CAPS2 is limited to 31 characters. This results in an unprofessional looking situation where the names of the devices are truncated. To help work around this, we need to look at the name GUID and try looking in the registry for the full name. If we can't find it there, we need to just fall back to the default name. @@ -15187,7 +17549,7 @@ static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, usually fit within the 31 characters of the fixed sized buffer, so what I'm going to do is parse that string for the component name, and then concatenate the name from the registry. */ - if (!ma_is_guid_equal(&pCaps->NameGuid, &MA_GUID_NULL)) { + if (!ma_is_guid_null(&pCaps->NameGuid)) { wchar_t guidStrW[256]; if (((MA_PFN_StringFromGUID2)pContext->win32.StringFromGUID2)(&pCaps->NameGuid, guidStrW, ma_countof(guidStrW)) > 0) { char guidStr[256]; @@ -15233,22 +17595,21 @@ static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, return result; } - pDeviceInfo->minChannels = pCaps->wChannels; - pDeviceInfo->maxChannels = pCaps->wChannels; - pDeviceInfo->minSampleRate = sampleRate; - pDeviceInfo->maxSampleRate = sampleRate; - pDeviceInfo->formatCount = 1; if (bitsPerSample == 8) { - pDeviceInfo->formats[0] = ma_format_u8; + pDeviceInfo->nativeDataFormats[0].format = ma_format_u8; } else if (bitsPerSample == 16) { - pDeviceInfo->formats[0] = ma_format_s16; + pDeviceInfo->nativeDataFormats[0].format = ma_format_s16; } else if (bitsPerSample == 24) { - pDeviceInfo->formats[0] = ma_format_s24; + pDeviceInfo->nativeDataFormats[0].format = ma_format_s24; } else if (bitsPerSample == 32) { - pDeviceInfo->formats[0] = ma_format_s32; + pDeviceInfo->nativeDataFormats[0].format = ma_format_s32; } else { return MA_FORMAT_NOT_SUPPORTED; } + pDeviceInfo->nativeDataFormats[0].channels = pCaps->wChannels; + pDeviceInfo->nativeDataFormats[0].sampleRate = sampleRate; + pDeviceInfo->nativeDataFormats[0].flags = 0; + pDeviceInfo->nativeDataFormatCount = 1; return MA_SUCCESS; } @@ -15264,7 +17625,7 @@ static ma_result ma_context_get_device_info_from_WAVEOUTCAPS2(ma_context* pConte MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname)); caps.dwFormats = pCaps->dwFormats; caps.wChannels = pCaps->wChannels; - caps.NameGuid = pCaps->NameGuid; + caps.NameGuid = pCaps->NameGuid; return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo); } @@ -15279,21 +17640,11 @@ static ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContex MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname)); caps.dwFormats = pCaps->dwFormats; caps.wChannels = pCaps->wChannels; - caps.NameGuid = pCaps->NameGuid; + caps.NameGuid = pCaps->NameGuid; return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo); } -static ma_bool32 ma_context_is_device_id_equal__winmm(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return pID0->winmm == pID1->winmm; -} - static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { UINT playbackDeviceCount; @@ -15319,6 +17670,11 @@ static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_en MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.winmm = iPlaybackDevice; + /* The first enumerated device is the default device. */ + if (iPlaybackDevice == 0) { + deviceInfo.isDefault = MA_TRUE; + } + if (ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) { ma_bool32 cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { @@ -15343,6 +17699,11 @@ static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_en MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.winmm = iCaptureDevice; + /* The first enumerated device is the default device. */ + if (iCaptureDevice == 0) { + deviceInfo.isDefault = MA_TRUE; + } + if (ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) { ma_bool32 cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { @@ -15355,16 +17716,12 @@ static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_en return MA_SUCCESS; } -static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { UINT winMMDeviceID; MA_ASSERT(pContext != NULL); - if (shareMode == ma_share_mode_exclusive) { - return MA_SHARE_MODE_NOT_SUPPORTED; - } - winMMDeviceID = 0; if (pDeviceID != NULL) { winMMDeviceID = (UINT)pDeviceID->winmm; @@ -15372,12 +17729,17 @@ static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_devi pDeviceInfo->id.winmm = winMMDeviceID; + /* The first ID is the default device. */ + if (winMMDeviceID == 0) { + pDeviceInfo->isDefault = MA_TRUE; + } + if (deviceType == ma_device_type_playback) { MMRESULT result; MA_WAVEOUTCAPS2A caps; MA_ZERO_OBJECT(&caps); - + result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceID, (WAVEOUTCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { return ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, pDeviceInfo); @@ -15387,7 +17749,7 @@ static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_devi MA_WAVEINCAPS2A caps; MA_ZERO_OBJECT(&caps); - + result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceID, (WAVEINCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { return ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, pDeviceInfo); @@ -15398,7 +17760,7 @@ static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_devi } -static void ma_device_uninit__winmm(ma_device* pDevice) +static ma_result ma_device_uninit__winmm(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); @@ -15416,9 +17778,35 @@ static void ma_device_uninit__winmm(ma_device* pDevice) ma__free_from_callbacks(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks); MA_ZERO_OBJECT(&pDevice->winmm); /* Safety. */ + + return MA_SUCCESS; } -static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_uint32 ma_calculate_period_size_in_frames__winmm(ma_uint32 periodSizeInFrames, ma_uint32 periodSizeInMilliseconds, ma_uint32 sampleRate, ma_performance_profile performanceProfile) +{ + /* WinMM has a minimum period size of 40ms. */ + ma_uint32 minPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(40, sampleRate); + + if (periodSizeInFrames == 0) { + if (periodSizeInMilliseconds == 0) { + if (performanceProfile == ma_performance_profile_low_latency) { + periodSizeInFrames = minPeriodSizeInFrames; + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, sampleRate); + } + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, sampleRate); + } + } + + if (periodSizeInFrames < minPeriodSizeInFrames) { + periodSizeInFrames = minPeriodSizeInFrames; + } + + return periodSizeInFrames; +} + +static ma_result ma_device_init__winmm(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { const char* errorMsg = ""; ma_result errorCode = MA_ERROR; @@ -15426,9 +17814,9 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con ma_uint32 heapSize; UINT winMMDeviceIDPlayback = 0; UINT winMMDeviceIDCapture = 0; - ma_uint32 periodSizeInMilliseconds; MA_ASSERT(pDevice != NULL); + MA_ZERO_OBJECT(&pDevice->winmm); if (pConfig->deviceType == ma_device_type_loopback) { @@ -15436,31 +17824,16 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con } /* No exlusive mode with WinMM. */ - if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) || - ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) { + if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || + ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } - periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; - if (periodSizeInMilliseconds == 0) { - periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate); + if (pDescriptorPlayback->pDeviceID != NULL) { + winMMDeviceIDPlayback = (UINT)pDescriptorPlayback->pDeviceID->winmm; } - - /* WinMM has horrible latency. */ - if (pDevice->usingDefaultBufferSize) { - if (pConfig->performanceProfile == ma_performance_profile_low_latency) { - periodSizeInMilliseconds = 40; - } else { - periodSizeInMilliseconds = 400; - } - } - - - if (pConfig->playback.pDeviceID != NULL) { - winMMDeviceIDPlayback = (UINT)pConfig->playback.pDeviceID->winmm; - } - if (pConfig->capture.pDeviceID != NULL) { - winMMDeviceIDCapture = (UINT)pConfig->capture.pDeviceID->winmm; + if (pDescriptorCapture->pDeviceID != NULL) { + winMMDeviceIDCapture = (UINT)pDescriptorCapture->pDeviceID->winmm; } /* The capture device needs to be initialized first. */ @@ -15477,7 +17850,7 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con } /* The format should be based on the device's actual format. */ - if (((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceIDCapture, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { + if (((MA_PFN_waveInGetDevCapsA)pDevice->pContext->winmm.waveInGetDevCapsA)(winMMDeviceIDCapture, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED; goto on_error; } @@ -15494,12 +17867,12 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con goto on_error; } - pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX(&wf); - pDevice->capture.internalChannels = wf.nChannels; - pDevice->capture.internalSampleRate = wf.nSamplesPerSec; - ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); - pDevice->capture.internalPeriods = pConfig->periods; - pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->capture.internalSampleRate); + pDescriptorCapture->format = ma_format_from_WAVEFORMATEX(&wf); + pDescriptorCapture->channels = wf.nChannels; + pDescriptorCapture->sampleRate = wf.nSamplesPerSec; + ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDescriptorCapture->channels, pDescriptorCapture->channelMap); + pDescriptorCapture->periodCount = pDescriptorCapture->periodCount; + pDescriptorCapture->periodSizeInFrames = ma_calculate_period_size_in_frames__winmm(pDescriptorCapture->periodSizeInFrames, pDescriptorCapture->periodSizeInMilliseconds, pDescriptorCapture->sampleRate, pConfig->performanceProfile); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { @@ -15515,7 +17888,7 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con } /* The format should be based on the device's actual format. */ - if (((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceIDPlayback, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { + if (((MA_PFN_waveOutGetDevCapsA)pDevice->pContext->winmm.waveOutGetDevCapsA)(winMMDeviceIDPlayback, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED; goto on_error; } @@ -15526,34 +17899,34 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con goto on_error; } - resultMM = ((MA_PFN_waveOutOpen)pContext->winmm.waveOutOpen)((LPHWAVEOUT)&pDevice->winmm.hDevicePlayback, winMMDeviceIDPlayback, &wf, (DWORD_PTR)pDevice->winmm.hEventPlayback, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC); + resultMM = ((MA_PFN_waveOutOpen)pDevice->pContext->winmm.waveOutOpen)((LPHWAVEOUT)&pDevice->winmm.hDevicePlayback, winMMDeviceIDPlayback, &wf, (DWORD_PTR)pDevice->winmm.hEventPlayback, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC); if (resultMM != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to open playback device.", errorCode = MA_FAILED_TO_OPEN_BACKEND_DEVICE; goto on_error; } - pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX(&wf); - pDevice->playback.internalChannels = wf.nChannels; - pDevice->playback.internalSampleRate = wf.nSamplesPerSec; - ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); - pDevice->playback.internalPeriods = pConfig->periods; - pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate); + pDescriptorPlayback->format = ma_format_from_WAVEFORMATEX(&wf); + pDescriptorPlayback->channels = wf.nChannels; + pDescriptorPlayback->sampleRate = wf.nSamplesPerSec; + ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); + pDescriptorPlayback->periodCount = pDescriptorPlayback->periodCount; + pDescriptorPlayback->periodSizeInFrames = ma_calculate_period_size_in_frames__winmm(pDescriptorPlayback->periodSizeInFrames, pDescriptorPlayback->periodSizeInMilliseconds, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); } /* The heap allocated data is allocated like so: - + [Capture WAVEHDRs][Playback WAVEHDRs][Capture Intermediary Buffer][Playback Intermediary Buffer] */ heapSize = 0; if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - heapSize += sizeof(WAVEHDR)*pDevice->capture.internalPeriods + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); + heapSize += sizeof(WAVEHDR)*pDescriptorCapture->periodCount + (pDescriptorCapture->periodSizeInFrames * pDescriptorCapture->periodCount * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels)); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - heapSize += sizeof(WAVEHDR)*pDevice->playback.internalPeriods + (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); + heapSize += sizeof(WAVEHDR)*pDescriptorPlayback->periodCount + (pDescriptorPlayback->periodSizeInFrames * pDescriptorPlayback->periodCount * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels)); } - pDevice->winmm._pHeapData = (ma_uint8*)ma__calloc_from_callbacks(heapSize, &pContext->allocationCallbacks); + pDevice->winmm._pHeapData = (ma_uint8*)ma__calloc_from_callbacks(heapSize, &pDevice->pContext->allocationCallbacks); if (pDevice->winmm._pHeapData == NULL) { errorMsg = "[WinMM] Failed to allocate memory for the intermediary buffer.", errorCode = MA_OUT_OF_MEMORY; goto on_error; @@ -15566,21 +17939,21 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con if (pConfig->deviceType == ma_device_type_capture) { pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData; - pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods)); + pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount)); } else { pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData; - pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods)); + pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount + pDescriptorPlayback->periodCount)); } /* Prepare headers. */ - for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { - ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalFormat, pDevice->capture.internalChannels); + for (iPeriod = 0; iPeriod < pDescriptorCapture->periodCount; ++iPeriod) { + ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDescriptorCapture->periodSizeInFrames, pDescriptorCapture->format, pDescriptorCapture->channels); ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferCapture + (periodSizeInBytes*iPeriod)); ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwBufferLength = periodSizeInBytes; ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwFlags = 0L; ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwLoops = 0L; - ((MA_PFN_waveInPrepareHeader)pContext->winmm.waveInPrepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); + ((MA_PFN_waveInPrepareHeader)pDevice->pContext->winmm.waveInPrepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); /* The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means @@ -15589,26 +17962,27 @@ static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_con ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwUser = 0; } } + if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_uint32 iPeriod; if (pConfig->deviceType == ma_device_type_playback) { pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData; - pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*pDevice->playback.internalPeriods); + pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*pDescriptorPlayback->periodCount); } else { - pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods)); - pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods)) + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); + pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount)); + pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount + pDescriptorPlayback->periodCount)) + (pDescriptorCapture->periodSizeInFrames*pDescriptorCapture->periodCount*ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels)); } /* Prepare headers. */ - for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) { - ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalFormat, pDevice->playback.internalChannels); + for (iPeriod = 0; iPeriod < pDescriptorPlayback->periodCount; ++iPeriod) { + ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDescriptorPlayback->periodSizeInFrames, pDescriptorPlayback->format, pDescriptorPlayback->channels); ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferPlayback + (periodSizeInBytes*iPeriod)); ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwBufferLength = periodSizeInBytes; ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwFlags = 0L; ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwLoops = 0L; - ((MA_PFN_waveOutPrepareHeader)pContext->winmm.waveOutPrepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); + ((MA_PFN_waveOutPrepareHeader)pDevice->pContext->winmm.waveOutPrepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); /* The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means @@ -15624,29 +17998,68 @@ on_error: if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { if (pDevice->winmm.pWAVEHDRCapture != NULL) { ma_uint32 iPeriod; - for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { - ((MA_PFN_waveInUnprepareHeader)pContext->winmm.waveInUnprepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); + for (iPeriod = 0; iPeriod < pDescriptorCapture->periodCount; ++iPeriod) { + ((MA_PFN_waveInUnprepareHeader)pDevice->pContext->winmm.waveInUnprepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); } } - ((MA_PFN_waveInClose)pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture); + ((MA_PFN_waveInClose)pDevice->pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { if (pDevice->winmm.pWAVEHDRCapture != NULL) { ma_uint32 iPeriod; - for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) { - ((MA_PFN_waveOutUnprepareHeader)pContext->winmm.waveOutUnprepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); + for (iPeriod = 0; iPeriod < pDescriptorPlayback->periodCount; ++iPeriod) { + ((MA_PFN_waveOutUnprepareHeader)pDevice->pContext->winmm.waveOutUnprepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); } } - ((MA_PFN_waveOutClose)pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback); + ((MA_PFN_waveOutClose)pDevice->pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback); } - ma__free_from_callbacks(pDevice->winmm._pHeapData, &pContext->allocationCallbacks); + ma__free_from_callbacks(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, errorMsg, errorCode); } +static ma_result ma_device_start__winmm(ma_device* pDevice) +{ + MA_ASSERT(pDevice != NULL); + + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { + MMRESULT resultMM; + WAVEHDR* pWAVEHDR; + ma_uint32 iPeriod; + + pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture; + + /* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */ + ResetEvent((HANDLE)pDevice->winmm.hEventCapture); + + /* To start the device we attach all of the buffers and then start it. As the buffers are filled with data we will get notifications. */ + for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { + resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); + if (resultMM != MMSYSERR_NOERROR) { + return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to attach input buffers to capture device in preparation for capture.", ma_result_from_MMRESULT(resultMM)); + } + + /* Make sure all of the buffers start out locked. We don't want to access them until the backend tells us we can. */ + pWAVEHDR[iPeriod].dwUser = 1; /* 1 = locked. */ + } + + /* Capture devices need to be explicitly started, unlike playback devices. */ + resultMM = ((MA_PFN_waveInStart)pDevice->pContext->winmm.waveInStart)((HWAVEIN)pDevice->winmm.hDeviceCapture); + if (resultMM != MMSYSERR_NOERROR) { + return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to start backend device.", ma_result_from_MMRESULT(resultMM)); + } + } + + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { + /* Don't need to do anything for playback. It'll be started automatically in ma_device_start__winmm(). */ + } + + return MA_SUCCESS; +} + static ma_result ma_device_stop__winmm(ma_device* pDevice) { MMRESULT resultMM; @@ -15773,7 +18186,7 @@ static ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFram } /* If the device has been stopped we need to break. */ - if (ma_device__get_state(pDevice) != MA_STATE_STARTED) { + if (ma_device_get_state(pDevice) != MA_STATE_STARTED) { break; } } @@ -15862,7 +18275,7 @@ static ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_ } /* If the device has been stopped we need to break. */ - if (ma_device__get_state(pDevice) != MA_STATE_STARTED) { + if (ma_device_get_state(pDevice) != MA_STATE_STARTED) { break; } } @@ -15874,201 +18287,6 @@ static ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_ return result; } -static ma_result ma_device_main_loop__winmm(ma_device* pDevice) -{ - ma_result result = MA_SUCCESS; - ma_bool32 exitLoop = MA_FALSE; - - MA_ASSERT(pDevice != NULL); - - /* The capture device needs to be started immediately. */ - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - MMRESULT resultMM; - WAVEHDR* pWAVEHDR; - ma_uint32 iPeriod; - - pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture; - - /* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */ - ResetEvent((HANDLE)pDevice->winmm.hEventCapture); - - /* To start the device we attach all of the buffers and then start it. As the buffers are filled with data we will get notifications. */ - for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { - resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); - if (resultMM != MMSYSERR_NOERROR) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to attach input buffers to capture device in preparation for capture.", ma_result_from_MMRESULT(resultMM)); - } - - /* Make sure all of the buffers start out locked. We don't want to access them until the backend tells us we can. */ - pWAVEHDR[iPeriod].dwUser = 1; /* 1 = locked. */ - } - - /* Capture devices need to be explicitly started, unlike playback devices. */ - resultMM = ((MA_PFN_waveInStart)pDevice->pContext->winmm.waveInStart)((HWAVEIN)pDevice->winmm.hDeviceCapture); - if (resultMM != MMSYSERR_NOERROR) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to start backend device.", ma_result_from_MMRESULT(resultMM)); - } - } - - - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { - switch (pDevice->type) - { - case ma_device_type_duplex: - { - /* The process is: device_read -> convert -> callback -> convert -> device_write */ - ma_uint32 totalCapturedDeviceFramesProcessed = 0; - ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - - while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { - ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 capturedDeviceFramesRemaining; - ma_uint32 capturedDeviceFramesProcessed; - ma_uint32 capturedDeviceFramesToProcess; - ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed; - if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) { - capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames; - } - - result = ma_device_read__winmm(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedDeviceFramesRemaining = capturedDeviceFramesToProcess; - capturedDeviceFramesProcessed = 0; - - for (;;) { - ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); - ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); - ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames); - ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining; - ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); - - /* Convert capture data from device format to client format. */ - result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration); - if (result != MA_SUCCESS) { - break; - } - - /* - If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small - which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE. - */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - - ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/ - - capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - - /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */ - for (;;) { - ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration; - ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames; - result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount); - if (result != MA_SUCCESS) { - break; - } - - result = ma_device_write__winmm(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - } - - /* In case an error happened from ma_device_write__winmm()... */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - } - - totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed; - } - } break; - - case ma_device_type_capture: - { - /* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */ - ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; - ma_uint32 framesReadThisPeriod = 0; - while (framesReadThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToReadThisIteration = framesRemainingInPeriod; - if (framesToReadThisIteration > intermediaryBufferSizeInFrames) { - framesToReadThisIteration = intermediaryBufferSizeInFrames; - } - - result = ma_device_read__winmm(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer); - - framesReadThisPeriod += framesProcessed; - } - } break; - - case ma_device_type_playback: - { - /* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */ - ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; - ma_uint32 framesWrittenThisPeriod = 0; - while (framesWrittenThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod; - if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) { - framesToWriteThisIteration = intermediaryBufferSizeInFrames; - } - - ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer); - - result = ma_device_write__winmm(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - framesWrittenThisPeriod += framesProcessed; - } - } break; - - /* To silence a warning. Will never hit this. */ - case ma_device_type_loopback: - default: break; - } - } - - - /* Here is where the device is started. */ - ma_device_stop__winmm(pDevice); - - return result; -} - static ma_result ma_context_uninit__winmm(ma_context* pContext) { MA_ASSERT(pContext != NULL); @@ -16078,7 +18296,7 @@ static ma_result ma_context_uninit__winmm(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__winmm(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__winmm(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); @@ -16107,15 +18325,17 @@ static ma_result ma_context_init__winmm(const ma_context_config* pConfig, ma_con pContext->winmm.waveInStart = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInStart"); pContext->winmm.waveInReset = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInReset"); - pContext->onUninit = ma_context_uninit__winmm; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__winmm; - pContext->onEnumDevices = ma_context_enumerate_devices__winmm; - pContext->onGetDeviceInfo = ma_context_get_device_info__winmm; - pContext->onDeviceInit = ma_device_init__winmm; - pContext->onDeviceUninit = ma_device_uninit__winmm; - pContext->onDeviceStart = NULL; /* Not used with synchronous backends. */ - pContext->onDeviceStop = NULL; /* Not used with synchronous backends. */ - pContext->onDeviceMainLoop = ma_device_main_loop__winmm; + pCallbacks->onContextInit = ma_context_init__winmm; + pCallbacks->onContextUninit = ma_context_uninit__winmm; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__winmm; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__winmm; + pCallbacks->onDeviceInit = ma_device_init__winmm; + pCallbacks->onDeviceUninit = ma_device_uninit__winmm; + pCallbacks->onDeviceStart = ma_device_start__winmm; + pCallbacks->onDeviceStop = ma_device_stop__winmm; + pCallbacks->onDeviceRead = ma_device_read__winmm; + pCallbacks->onDeviceWrite = ma_device_write__winmm; + pCallbacks->onDeviceAudioThread = NULL; /* This is a blocking read-write API, so this can be NULL since miniaudio will manage the audio thread for us. */ return MA_SUCCESS; } @@ -16132,7 +18352,22 @@ ALSA Backend #ifdef MA_HAS_ALSA #ifdef MA_NO_RUNTIME_LINKING + +/* asoundlib.h marks some functions with "inline" which isn't always supported. Need to emulate it. */ +#if !defined(__cplusplus) + #if defined(__STRICT_ANSI__) + #if !defined(inline) + #define inline __inline__ __attribute__((always_inline)) + #define MA_INLINE_DEFINED + #endif + #endif +#endif #include +#if defined(MA_INLINE_DEFINED) + #undef inline + #undef MA_INLINE_DEFINED +#endif + typedef snd_pcm_uframes_t ma_snd_pcm_uframes_t; typedef snd_pcm_sframes_t ma_snd_pcm_sframes_t; typedef snd_pcm_stream_t ma_snd_pcm_stream_t; @@ -16145,6 +18380,7 @@ typedef snd_pcm_format_mask_t ma_snd_pcm_format_mask_t; typedef snd_pcm_info_t ma_snd_pcm_info_t; typedef snd_pcm_channel_area_t ma_snd_pcm_channel_area_t; typedef snd_pcm_chmap_t ma_snd_pcm_chmap_t; +typedef snd_pcm_state_t ma_snd_pcm_state_t; /* snd_pcm_stream_t */ #define MA_SND_PCM_STREAM_PLAYBACK SND_PCM_STREAM_PLAYBACK @@ -16225,6 +18461,7 @@ typedef long ma_snd_pcm_sframes_t; typedef int ma_snd_pcm_stream_t; typedef int ma_snd_pcm_format_t; typedef int ma_snd_pcm_access_t; +typedef int ma_snd_pcm_state_t; typedef struct ma_snd_pcm_t ma_snd_pcm_t; typedef struct ma_snd_pcm_hw_params_t ma_snd_pcm_hw_params_t; typedef struct ma_snd_pcm_sw_params_t ma_snd_pcm_sw_params_t; @@ -16353,7 +18590,7 @@ typedef int (* ma_snd_pcm_hw_params_get_access_proc) ( typedef int (* ma_snd_pcm_hw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params); typedef size_t (* ma_snd_pcm_sw_params_sizeof_proc) (void); typedef int (* ma_snd_pcm_sw_params_current_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params); -typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val); +typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (const ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val); typedef int (* ma_snd_pcm_sw_params_set_avail_min_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); typedef int (* ma_snd_pcm_sw_params_set_start_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); typedef int (* ma_snd_pcm_sw_params_set_stop_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); @@ -16361,7 +18598,7 @@ typedef int (* ma_snd_pcm_sw_params_proc) ( typedef size_t (* ma_snd_pcm_format_mask_sizeof_proc) (void); typedef int (* ma_snd_pcm_format_mask_test_proc) (const ma_snd_pcm_format_mask_t *mask, ma_snd_pcm_format_t val); typedef ma_snd_pcm_chmap_t * (* ma_snd_pcm_get_chmap_proc) (ma_snd_pcm_t *pcm); -typedef int (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm); +typedef ma_snd_pcm_state_t (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_prepare_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_start_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_drop_proc) (ma_snd_pcm_t *pcm); @@ -16379,9 +18616,9 @@ typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_proc) ( typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_update_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_wait_proc) (ma_snd_pcm_t *pcm, int timeout); typedef int (* ma_snd_pcm_info_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_info_t* info); -typedef size_t (* ma_snd_pcm_info_sizeof_proc) (); +typedef size_t (* ma_snd_pcm_info_sizeof_proc) (void); typedef const char* (* ma_snd_pcm_info_get_name_proc) (const ma_snd_pcm_info_t* info); -typedef int (* ma_snd_config_update_free_global_proc) (); +typedef int (* ma_snd_config_update_free_global_proc) (void); /* This array specifies each of the common devices that can be used for both playback and capture. */ static const char* g_maCommonDeviceNamesALSA[] = { @@ -16777,7 +19014,7 @@ static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode s } else { /* We're trying to open a specific device. There's a few things to consider here: - + miniaudio recongnizes a special format of device id that excludes the "hw", "dmix", etc. prefix. It looks like this: ":0,0", ":0,1", etc. When an ID of this format is specified, it indicates to miniaudio that it can try different combinations of plugins ("hw", "dmix", etc.) until it finds an appropriate one that works. This comes in very handy when trying to open a device in shared mode ("dmix"), vs exclusive mode ("hw"). @@ -16829,16 +19066,6 @@ static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode s } -static ma_bool32 ma_context_is_device_id_equal__alsa(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->alsa, pID1->alsa) == 0; -} - static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { int resultALSA; @@ -16920,12 +19147,21 @@ static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enu MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.id.alsa, sizeof(deviceInfo.id.alsa), hwid, (size_t)-1); + /* + There's no good way to determine whether or not a device is the default on Linux. We're just going to do something simple and + just use the name of "default" as the indicator. + */ + if (ma_strcmp(deviceInfo.id.alsa, "default") == 0) { + deviceInfo.isDefault = MA_TRUE; + } + + /* DESC is the friendly name. We treat this slightly differently depending on whether or not we are using verbose device enumeration. In verbose mode we want to take the entire description so that the end-user can distinguish between the subdevices of each card/dev pair. In simplified mode, however, we only want the first part of the description. - + The value in DESC seems to be split into two lines, with the first line being the name of the device and the second line being a description of the device. I don't like having the description be across two lines because it makes formatting ugly and annoying. I'm therefore deciding to put it all on a single line with the second line @@ -17014,11 +19250,13 @@ static ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pCon ma_context_get_device_info_enum_callback_data__alsa* pData = (ma_context_get_device_info_enum_callback_data__alsa*)pUserData; MA_ASSERT(pData != NULL); + (void)pContext; + if (pData->pDeviceID == NULL && ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1); pData->foundDevice = MA_TRUE; } else { - if (pData->deviceType == deviceType && ma_context_is_device_id_equal__alsa(pContext, pData->pDeviceID, &pDeviceInfo->id)) { + if (pData->deviceType == deviceType && (pData->pDeviceID != NULL && ma_strcmp(pData->pDeviceID->alsa, pDeviceInfo->id.alsa) == 0)) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1); pData->foundDevice = MA_TRUE; } @@ -17041,9 +19279,9 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic MA_ASSERT(pContext != NULL); /* We just enumerate to find basic information about the device. */ - data.deviceType = deviceType; - data.pDeviceID = pDeviceID; - data.shareMode = shareMode; + data.deviceType = deviceType; + data.pDeviceID = pDeviceID; + data.shareMode = shareMode; data.pDeviceInfo = pDeviceInfo; data.foundDevice = MA_FALSE; result = ma_context_enumerate_devices__alsa(pContext, ma_context_get_device_info_enum_callback__alsa, &data); @@ -17055,6 +19293,10 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic return MA_NO_DEVICE; } + if (ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) { + pDeviceInfo->isDefault = MA_TRUE; + } + /* For detailed info we need to open the device. */ result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, 0, &pPCM); if (result != MA_SUCCESS) { @@ -17064,12 +19306,14 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic /* We need to initialize a HW parameters object in order to know what formats are supported. */ pHWParams = (ma_snd_pcm_hw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks); if (pHWParams == NULL) { + ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); return MA_OUT_OF_MEMORY; } resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams); if (resultALSA < 0) { ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks); + ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", ma_result_from_errno(-resultALSA)); } @@ -17082,6 +19326,7 @@ static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_devic pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks); if (pFormatMask == NULL) { ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks); + ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); return MA_OUT_OF_MEMORY; } @@ -17182,7 +19427,7 @@ static ma_uint32 ma_device__wait_for_frames__alsa(ma_device* pDevice, ma_bool32* static ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); - if (!ma_device_is_started(pDevice) && ma_device__get_state(pDevice) != MA_STATE_STARTING) { + if (!ma_device_is_started(pDevice) && ma_device_get_state(pDevice) != MA_STATE_STARTING) { return MA_FALSE; } if (pDevice->alsa.breakFromMainLoop) { @@ -17400,7 +19645,7 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev ma_bool32 isUsingMMap; ma_snd_pcm_format_t formatALSA; ma_share_mode shareMode; - ma_device_id* pDeviceID; + const ma_device_id* pDeviceID; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; @@ -17597,7 +19842,7 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed.", ma_result_from_errno(-resultALSA)); } - + internalFormat = ma_format_from_alsa(formatALSA); if (internalFormat == ma_format_unknown) { ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks); @@ -17626,16 +19871,16 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev It appears there's either a bug in ALSA, a bug in some drivers, or I'm doing something silly; but having resampling enabled causes problems with some device configurations when used in conjunction with MMAP access mode. To fix this problem we need to disable resampling. - + To reproduce this problem, open the "plug:dmix" device, and set the sample rate to 44100. Internally, it looks like dmix uses a sample rate of 48000. The hardware parameters will get set correctly with no errors, but it looks like the 44100 -> 48000 resampling doesn't work properly - but only with MMAP access mode. You will notice skipping/crackling in the audio, and it'll run at a slightly faster rate. - + miniaudio has built-in support for sample rate conversion (albeit low quality at the moment), so disabling resampling should be fine for us. The only problem is that it won't be taking advantage of any kind of hardware-accelerated resampling and it won't be very good quality until I get a chance to improve the quality of miniaudio's software sample rate conversion. - + I don't currently know if the dmix plugin is the only one with this error. Indeed, this is the only one I've been able to reproduce this error with. In the future, we may want to restrict the disabling of resampling to only known bad plugins. */ @@ -17819,7 +20064,7 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev pDevice->capture.internalFormat = internalFormat; pDevice->capture.internalChannels = internalChannels; pDevice->capture.internalSampleRate = internalSampleRate; - ma_channel_map_copy(pDevice->capture.internalChannelMap, internalChannelMap, internalChannels); + ma_channel_map_copy(pDevice->capture.internalChannelMap, internalChannelMap, ma_min(internalChannels, MA_MAX_CHANNELS)); pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames; pDevice->capture.internalPeriods = internalPeriods; } else { @@ -17828,7 +20073,7 @@ static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_dev pDevice->playback.internalFormat = internalFormat; pDevice->playback.internalChannels = internalChannels; pDevice->playback.internalSampleRate = internalSampleRate; - ma_channel_map_copy(pDevice->playback.internalChannelMap, internalChannelMap, internalChannels); + ma_channel_map_copy(pDevice->playback.internalChannelMap, internalChannelMap, ma_min(internalChannels, MA_MAX_CHANNELS)); pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames; pDevice->playback.internalPeriods = internalPeriods; } @@ -17986,7 +20231,7 @@ static ma_result ma_device_main_loop__alsa(ma_device* pDevice) } } - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { switch (pDevice->type) { case ma_device_type_duplex: @@ -18000,7 +20245,7 @@ static ma_result ma_device_main_loop__alsa(ma_device* pDevice) /* The process is: device_read -> convert -> callback -> convert -> device_write */ ma_uint32 totalCapturedDeviceFramesProcessed = 0; ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - + while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; @@ -18155,7 +20400,7 @@ static ma_result ma_device_main_loop__alsa(ma_device* pDevice) /* To silence a warning. Will never hit this. */ case ma_device_type_loopback: default: break; - } + } } /* Here is where the device needs to be stopped. */ @@ -18355,6 +20600,8 @@ static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_cont pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)_snd_pcm_hw_params_get_channels_min; pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)_snd_pcm_hw_params_get_channels_max; pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)_snd_pcm_hw_params_get_rate; + pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)_snd_pcm_hw_params_get_rate_min; + pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)_snd_pcm_hw_params_get_rate_max; pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)_snd_pcm_hw_params_get_buffer_size; pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)_snd_pcm_hw_params_get_periods; pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)_snd_pcm_hw_params_get_access; @@ -18394,12 +20641,11 @@ static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_cont pContext->alsa.useVerboseDeviceEnumeration = pConfig->alsa.useVerboseDeviceEnumeration; - if (ma_mutex_init(pContext, &pContext->alsa.internalDeviceEnumLock) != MA_SUCCESS) { + if (ma_mutex_init(&pContext->alsa.internalDeviceEnumLock) != MA_SUCCESS) { ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] WARNING: Failed to initialize mutex for internal device enumeration.", MA_ERROR); } pContext->onUninit = ma_context_uninit__alsa; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__alsa; pContext->onEnumDevices = ma_context_enumerate_devices__alsa; pContext->onGetDeviceInfo = ma_context_get_device_info__alsa; pContext->onDeviceInit = ma_device_init__alsa; @@ -18421,14 +20667,137 @@ PulseAudio Backend ******************************************************************************/ #ifdef MA_HAS_PULSEAUDIO /* -It is assumed pulseaudio.h is available when compile-time linking is being used. We use this for type safety when using -compile time linking (we don't have this luxury when using runtime linking without headers). +The PulseAudio API, along with Apple's Core Audio, is the worst of the maintream audio APIs. This is a brief description of what's going on +in the PulseAudio backend. I apologize if this gets a bit ranty for your liking - you might want to skip this discussion. -When using compile time linking, each of our ma_* equivalents should use the sames types as defined by the header. The -reason for this is that it allow us to take advantage of proper type safety. +PulseAudio has something they call the "Simple API", which unfortunately isn't suitable for miniaudio. I've not seen anywhere where it +allows you to enumerate over devices, nor does it seem to support the ability to stop and start streams. Looking at the documentation, it +appears as though the stream is constantly running and you prevent sound from being emitted or captured by simply not calling the read or +write functions. This is not a professional solution as it would be much better to *actually* stop the underlying stream. Perhaps the +simple API has some smarts to do this automatically, but I'm not sure. Another limitation with the simple API is that it seems inefficient +when you want to have multiple streams to a single context. For these reasons, miniaudio is not using the simple API. + +Since we're not using the simple API, we're left with the asynchronous API as our only other option. And boy, is this where it starts to +get fun, and I don't mean that in a good way... + +The problems start with the very name of the API - "asynchronous". Yes, this is an asynchronous oriented API which means your commands +don't immediately take effect. You instead need to issue your commands, and then wait for them to complete. The waiting mechanism is +enabled through the use of a "main loop". In the asychronous API you cannot get away from the main loop, and the main loop is where almost +all of PulseAudio's problems stem from. + +When you first initialize PulseAudio you need an object referred to as "main loop". You can implement this yourself by defining your own +vtable, but it's much easier to just use one of the built-in main loop implementations. There's two generic implementations called +pa_mainloop and pa_threaded_mainloop, and another implementation specific to GLib called pa_glib_mainloop. We're using pa_threaded_mainloop +because it simplifies management of the worker thread. The idea of the main loop object is pretty self explanatory - you're supposed to use +it to implement a worker thread which runs in a loop. The main loop is where operations are actually executed. + +To initialize the main loop, you just use `pa_threaded_mainloop_new()`. This is the first function you'll call. You can then get a pointer +to the vtable with `pa_threaded_mainloop_get_api()` (the main loop vtable is called `pa_mainloop_api`). Again, you can bypass the threaded +main loop object entirely and just implement `pa_mainloop_api` directly, but there's no need for it unless you're doing something extremely +specialized such as if you want to integrate it into your application's existing main loop infrastructure. + +Once you have your main loop vtable (the `pa_mainloop_api` object) you can create the PulseAudio context. This is very similar to +miniaudio's context and they map to each other quite well. You have one context to many streams, which is basically the same as miniaudio's +one `ma_context` to many `ma_device`s. Here's where it starts to get annoying, however. When you first create the PulseAudio context, which +is done with `pa_context_new()`, it's not actually connected to anything. When you connect, you call `pa_context_connect()`. However, if +you remember, PulseAudio is an asynchronous API. That means you cannot just assume the context is connected after `pa_context_context()` +has returned. You instead need to wait for it to connect. To do this, you need to either wait for a callback to get fired, which you can +set with `pa_context_set_state_callback()`, or you can continuously poll the context's state. Either way, you need to run this in a loop. +All objects from here out are created from the context, and, I believe, you can't be creating these objects until the context is connected. +This waiting loop is therefore unavoidable. In order for the waiting to ever complete, however, the main loop needs to be running. Before +attempting to connect the context, the main loop needs to be started with `pa_threaded_mainloop_start()`. + +The reason for this asynchronous design is to support cases where you're connecting to a remote server, say through a local network or an +internet connection. However, the *VAST* majority of cases don't involve this at all - they just connect to a local "server" running on the +host machine. The fact that this would be the default rather than making `pa_context_connect()` synchronous tends to boggle the mind. + +Once the context has been created and connected you can start creating a stream. A PulseAudio stream is analogous to miniaudio's device. +The initialization of a stream is fairly standard - you configure some attributes (analogous to miniaudio's device config) and then call +`pa_stream_new()` to actually create it. Here is where we start to get into "operations". When configuring the stream, you can get +information about the source (such as sample format, sample rate, etc.), however it's not synchronous. Instead, a `pa_operation` object +is returned from `pa_context_get_source_info_by_name()` (capture) or `pa_context_get_sink_info_by_name()` (playback). Then, you need to +run a loop (again!) to wait for the operation to complete which you can determine via a callback or polling, just like we did with the +context. Then, as an added bonus, you need to decrement the reference counter of the `pa_operation` object to ensure memory is cleaned up. +All of that just to retrieve basic information about a device! + +Once the basic information about the device has been retrieved, miniaudio can now create the stream with `ma_stream_new()`. Like the +context, this needs to be connected. But we need to be careful here, because we're now about to introduce one of the most horrific design +choices in PulseAudio. + +PulseAudio allows you to specify a callback that is fired when data can be written to or read from a stream. The language is important here +because PulseAudio takes it literally, specifically the "can be". You would think these callbacks would be appropriate as the place for +writing and reading data to and from the stream, and that would be right, except when it's not. When you initialize the stream, you can +set a flag that tells PulseAudio to not start the stream automatically. This is required because miniaudio does not auto-start devices +straight after initialization - you need to call `ma_device_start()` manually. The problem is that even when this flag is specified, +PulseAudio will immediately fire it's write or read callback. This is *technically* correct (based on the wording in the documentation) +because indeed, data *can* be written at this point. The problem is that it's not *practical*. It makes sense that the write/read callback +would be where a program will want to write or read data to or from the stream, but when it's called before the application has even +requested that the stream be started, it's just not practical because the program probably isn't ready for any kind of data delivery at +that point (it may still need to load files or whatnot). Instead, this callback should only be fired when the application requests the +stream be started which is how it works with literally *every* other callback-based audio API. Since miniaudio forbids firing of the data +callback until the device has been started (as it should be with *all* callback based APIs), logic needs to be added to ensure miniaudio +doesn't just blindly fire the application-defined data callback from within the PulseAudio callback before the stream has actually been +started. The device state is used for this - if the state is anything other than `MA_STATE_STARTING` or `MA_STATE_STARTED`, the main data +callback is not fired. + +This, unfortunately, is not the end of the problems with the PulseAudio write callback. Any normal callback based audio API will +continuously fire the callback at regular intervals based on the size of the internal buffer. This will only ever be fired when the device +is running, and will be fired regardless of whether or not the user actually wrote anything to the device/stream. This not the case in +PulseAudio. In PulseAudio, the data callback will *only* be called if you wrote something to it previously. That means, if you don't call +`pa_stream_write()`, the callback will not get fired. On the surface you wouldn't think this would matter because you should be always +writing data, and if you don't have anything to write, just write silence. That's fine until you want to drain the stream. You see, if +you're continuously writing data to the stream, the stream will never get drained! That means in order to drain the stream, you need to +*not* write data to it! But remember, when you don't write data to the stream, the callback won't get fired again! Why is draining +important? Because that's how we've defined stopping to work in miniaudio. In miniaudio, stopping the device requires it to be drained +before returning from ma_device_stop(). So we've stopped the device, which requires us to drain, but draining requires us to *not* write +data to the stream (or else it won't ever complete draining), but not writing to the stream means the callback won't get fired again! + +This becomes a problem when stopping and then restarting the device. When the device is stopped, it's drained, which requires us to *not* +write anything to the stream. But then, since we didn't write anything to it, the write callback will *never* get called again if we just +resume the stream naively. This means that starting the stream requires us to write data to the stream from outside the callback. This +disconnect is something PulseAudio has got seriously wrong - there should only ever be a single source of data delivery, that being the +callback. (I have tried using `pa_stream_flush()` to trigger the write callback to fire, but this just doesn't work for some reason.) + +Once you've created the stream, you need to connect it which involves the whole waiting procedure. This is the same process as the context, +only this time you'll poll for the state with `pa_stream_get_status()`. The starting and stopping of a streaming is referred to as +"corking" in PulseAudio. The analogy is corking a barrel. To start the stream, you uncork it, to stop it you cork it. Personally I think +it's silly - why would you not just call it "starting" and "stopping" like any other normal audio API? Anyway, the act of corking is, you +guessed it, asynchronous. This means you'll need our waiting loop as usual. Again, why this asynchronous design is the default is +absolutely beyond me. Would it really be that hard to just make it run synchronously? + +Teardown is pretty simple (what?!). It's just a matter of calling the relevant `_unref()` function on each object in reverse order that +they were initialized in. + +That's about it from the PulseAudio side. A bit ranty, I know, but they really need to fix that main loop and callback system. They're +embarrassingly unpractical. The main loop thing is an easy fix - have synchronous versions of all APIs. If an application wants these to +run asynchronously, they can execute them in a separate thread themselves. The desire to run these asynchronously is such a niche +requirement - it makes no sense to make it the default. The stream write callback needs to be change, or an alternative provided, that is +constantly fired, regardless of whether or not `pa_stream_write()` has been called, and it needs to take a pointer to a buffer as a +parameter which the program just writes to directly rather than having to call `pa_stream_writable_size()` and `pa_stream_write()`. These +changes alone will change PulseAudio from one of the worst audio APIs to one of the best. +*/ + + +/* +It is assumed pulseaudio.h is available when linking at compile time. When linking at compile time, we use the declarations in the header +to check for type safety. We cannot do this when linking at run time because the header might not be available. */ #ifdef MA_NO_RUNTIME_LINKING + +/* pulseaudio.h marks some functions with "inline" which isn't always supported. Need to emulate it. */ +#if !defined(__cplusplus) + #if defined(__STRICT_ANSI__) + #if !defined(inline) + #define inline __inline__ __attribute__((always_inline)) + #define MA_INLINE_DEFINED + #endif + #endif +#endif #include +#if defined(MA_INLINE_DEFINED) + #undef inline + #undef MA_INLINE_DEFINED +#endif #define MA_PA_OK PA_OK #define MA_PA_ERR_ACCESS PA_ERR_ACCESS @@ -18610,18 +20979,19 @@ typedef pa_sample_format_t ma_pa_sample_format_t; #define MA_PA_SAMPLE_S24_32LE PA_SAMPLE_S24_32LE #define MA_PA_SAMPLE_S24_32BE PA_SAMPLE_S24_32BE -typedef pa_mainloop ma_pa_mainloop; -typedef pa_mainloop_api ma_pa_mainloop_api; -typedef pa_context ma_pa_context; -typedef pa_operation ma_pa_operation; -typedef pa_stream ma_pa_stream; -typedef pa_spawn_api ma_pa_spawn_api; -typedef pa_buffer_attr ma_pa_buffer_attr; -typedef pa_channel_map ma_pa_channel_map; -typedef pa_cvolume ma_pa_cvolume; -typedef pa_sample_spec ma_pa_sample_spec; -typedef pa_sink_info ma_pa_sink_info; -typedef pa_source_info ma_pa_source_info; +typedef pa_mainloop ma_pa_mainloop; +typedef pa_threaded_mainloop ma_pa_threaded_mainloop; +typedef pa_mainloop_api ma_pa_mainloop_api; +typedef pa_context ma_pa_context; +typedef pa_operation ma_pa_operation; +typedef pa_stream ma_pa_stream; +typedef pa_spawn_api ma_pa_spawn_api; +typedef pa_buffer_attr ma_pa_buffer_attr; +typedef pa_channel_map ma_pa_channel_map; +typedef pa_cvolume ma_pa_cvolume; +typedef pa_sample_spec ma_pa_sample_spec; +typedef pa_sink_info ma_pa_sink_info; +typedef pa_source_info ma_pa_source_info; typedef pa_context_notify_cb_t ma_pa_context_notify_cb_t; typedef pa_sink_info_cb_t ma_pa_sink_info_cb_t; @@ -18810,12 +21180,13 @@ typedef int ma_pa_sample_format_t; #define MA_PA_SAMPLE_S24_32LE 11 #define MA_PA_SAMPLE_S24_32BE 12 -typedef struct ma_pa_mainloop ma_pa_mainloop; -typedef struct ma_pa_mainloop_api ma_pa_mainloop_api; -typedef struct ma_pa_context ma_pa_context; -typedef struct ma_pa_operation ma_pa_operation; -typedef struct ma_pa_stream ma_pa_stream; -typedef struct ma_pa_spawn_api ma_pa_spawn_api; +typedef struct ma_pa_mainloop ma_pa_mainloop; +typedef struct ma_pa_threaded_mainloop ma_pa_threaded_mainloop; +typedef struct ma_pa_mainloop_api ma_pa_mainloop_api; +typedef struct ma_pa_context ma_pa_context; +typedef struct ma_pa_operation ma_pa_operation; +typedef struct ma_pa_stream ma_pa_stream; +typedef struct ma_pa_spawn_api ma_pa_spawn_api; typedef struct { @@ -18910,11 +21281,25 @@ typedef void (* ma_pa_free_cb_t) (void* p); #endif -typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) (); +typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) (void); typedef void (* ma_pa_mainloop_free_proc) (ma_pa_mainloop* m); +typedef void (* ma_pa_mainloop_quit_proc) (ma_pa_mainloop* m, int retval); typedef ma_pa_mainloop_api* (* ma_pa_mainloop_get_api_proc) (ma_pa_mainloop* m); typedef int (* ma_pa_mainloop_iterate_proc) (ma_pa_mainloop* m, int block, int* retval); typedef void (* ma_pa_mainloop_wakeup_proc) (ma_pa_mainloop* m); +typedef ma_pa_threaded_mainloop* (* ma_pa_threaded_mainloop_new_proc) (void); +typedef void (* ma_pa_threaded_mainloop_free_proc) (ma_pa_threaded_mainloop* m); +typedef int (* ma_pa_threaded_mainloop_start_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_stop_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_lock_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_unlock_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_wait_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_signal_proc) (ma_pa_threaded_mainloop* m, int wait_for_accept); +typedef void (* ma_pa_threaded_mainloop_accept_proc) (ma_pa_threaded_mainloop* m); +typedef int (* ma_pa_threaded_mainloop_get_retval_proc) (ma_pa_threaded_mainloop* m); +typedef ma_pa_mainloop_api* (* ma_pa_threaded_mainloop_get_api_proc) (ma_pa_threaded_mainloop* m); +typedef int (* ma_pa_threaded_mainloop_in_thread_proc) (ma_pa_threaded_mainloop* m); +typedef void (* ma_pa_threaded_mainloop_set_name_proc) (ma_pa_threaded_mainloop* m, const char* name); typedef ma_pa_context* (* ma_pa_context_new_proc) (ma_pa_mainloop_api* mainloop, const char* name); typedef void (* ma_pa_context_unref_proc) (ma_pa_context* c); typedef int (* ma_pa_context_connect_proc) (ma_pa_context* c, const char* server, ma_pa_context_flags_t flags, const ma_pa_spawn_api* api); @@ -18964,12 +21349,16 @@ typedef struct static ma_result ma_result_from_pulse(int result) { + if (result < 0) { + return MA_ERROR; + } + switch (result) { case MA_PA_OK: return MA_SUCCESS; case MA_PA_ERR_ACCESS: return MA_ACCESS_DENIED; case MA_PA_ERR_INVALID: return MA_INVALID_ARGS; case MA_PA_ERR_NOENTITY: return MA_NO_DEVICE; - default: return MA_ERROR; + default: return MA_ERROR; } } @@ -19132,389 +21521,111 @@ static ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position } #endif -static ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_mainloop* pMainLoop, ma_pa_operation* pOP) +static void ma_mainloop_lock__pulse(ma_context* pContext, const char* what) { + (void)what; + + MA_ASSERT(pContext != NULL); + + /*printf("locking mainloop by %s\n", what);*/ + ((ma_pa_threaded_mainloop_lock_proc)pContext->pulse.pa_threaded_mainloop_lock)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop); +} + +static void ma_mainloop_unlock__pulse(ma_context* pContext, const char* what) +{ + (void)what; + + MA_ASSERT(pContext != NULL); + + /*printf("unlocking mainloop by %s\n", what);*/ + ((ma_pa_threaded_mainloop_unlock_proc)pContext->pulse.pa_threaded_mainloop_unlock)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop); +} + +static ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_operation* pOP) +{ + ma_pa_operation_state_t state; + MA_ASSERT(pContext != NULL); - MA_ASSERT(pMainLoop != NULL); MA_ASSERT(pOP != NULL); - while (((ma_pa_operation_get_state_proc)pContext->pulse.pa_operation_get_state)(pOP) == MA_PA_OPERATION_RUNNING) { - int error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL); - if (error < 0) { - return ma_result_from_pulse(error); + for (;;) { + ma_mainloop_lock__pulse(pContext, "ma_wait_for_operation__pulse"); + state = ((ma_pa_operation_get_state_proc)pContext->pulse.pa_operation_get_state)(pOP); + ma_mainloop_unlock__pulse(pContext, "ma_wait_for_operation__pulse"); + + if (state != MA_PA_OPERATION_RUNNING) { + break; /* Done. */ } + + ma_yield(); } return MA_SUCCESS; } -static ma_result ma_device__wait_for_operation__pulse(ma_device* pDevice, ma_pa_operation* pOP) +static ma_result ma_wait_for_operation_and_unref__pulse(ma_context* pContext, ma_pa_operation* pOP) { - MA_ASSERT(pDevice != NULL); - MA_ASSERT(pOP != NULL); + ma_result result; - return ma_wait_for_operation__pulse(pDevice->pContext, (ma_pa_mainloop*)pDevice->pulse.pMainLoop, pOP); -} - - -static ma_bool32 ma_context_is_device_id_equal__pulse(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->pulse, pID1->pulse) == 0; -} - - -typedef struct -{ - ma_context* pContext; - ma_enum_devices_callback_proc callback; - void* pUserData; - ma_bool32 isTerminated; -} ma_context_enumerate_devices_callback_data__pulse; - -static void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData) -{ - ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; - ma_device_info deviceInfo; - - MA_ASSERT(pData != NULL); - - if (endOfList || pData->isTerminated) { - return; + if (pOP == NULL) { + return MA_INVALID_ARGS; } - MA_ZERO_OBJECT(&deviceInfo); + result = ma_wait_for_operation__pulse(pContext, pOP); + ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - /* The name from PulseAudio is the ID for miniaudio. */ - if (pSinkInfo->name != NULL) { - ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1); - } - - /* The description from PulseAudio is the name for miniaudio. */ - if (pSinkInfo->description != NULL) { - ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1); - } - - pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_playback, &deviceInfo, pData->pUserData); - - (void)pPulseContext; /* Unused. */ -} - -static void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSinkInfo, int endOfList, void* pUserData) -{ - ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; - ma_device_info deviceInfo; - - MA_ASSERT(pData != NULL); - - if (endOfList || pData->isTerminated) { - return; - } - - MA_ZERO_OBJECT(&deviceInfo); - - /* The name from PulseAudio is the ID for miniaudio. */ - if (pSinkInfo->name != NULL) { - ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1); - } - - /* The description from PulseAudio is the name for miniaudio. */ - if (pSinkInfo->description != NULL) { - ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1); - } - - pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_capture, &deviceInfo, pData->pUserData); - - (void)pPulseContext; /* Unused. */ -} - -static ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) -{ - ma_result result = MA_SUCCESS; - ma_context_enumerate_devices_callback_data__pulse callbackData; - ma_pa_operation* pOP = NULL; - ma_pa_mainloop* pMainLoop; - ma_pa_mainloop_api* pAPI; - ma_pa_context* pPulseContext; - int error; - - MA_ASSERT(pContext != NULL); - MA_ASSERT(callback != NULL); - - callbackData.pContext = pContext; - callbackData.callback = callback; - callbackData.pUserData = pUserData; - callbackData.isTerminated = MA_FALSE; - - pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)(); - if (pMainLoop == NULL) { - return MA_FAILED_TO_INIT_BACKEND; - } - - pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop); - if (pAPI == NULL) { - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return MA_FAILED_TO_INIT_BACKEND; - } - - pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName); - if (pPulseContext == NULL) { - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return MA_FAILED_TO_INIT_BACKEND; - } - - error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, (pContext->pulse.tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL); - if (error != MA_PA_OK) { - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return ma_result_from_pulse(error); - } - - for (;;) { - ma_pa_context_state_t state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext); - if (state == MA_PA_CONTEXT_READY) { - break; /* Success. */ - } - if (state == MA_PA_CONTEXT_CONNECTING || state == MA_PA_CONTEXT_AUTHORIZING || state == MA_PA_CONTEXT_SETTING_NAME) { - error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL); - if (error < 0) { - result = ma_result_from_pulse(error); - goto done; - } - -#ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] pa_context_get_state() returned %d. Waiting.\n", state); -#endif - continue; /* Keep trying. */ - } - if (state == MA_PA_CONTEXT_UNCONNECTED || state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) { -#ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] pa_context_get_state() returned %d. Failed.\n", state); -#endif - goto done; /* Failed. */ - } - } - - - /* Playback. */ - if (!callbackData.isTerminated) { - pOP = ((ma_pa_context_get_sink_info_list_proc)pContext->pulse.pa_context_get_sink_info_list)(pPulseContext, ma_context_enumerate_devices_sink_callback__pulse, &callbackData); - if (pOP == NULL) { - result = MA_ERROR; - goto done; - } - - result = ma_wait_for_operation__pulse(pContext, pMainLoop, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - if (result != MA_SUCCESS) { - goto done; - } - } - - - /* Capture. */ - if (!callbackData.isTerminated) { - pOP = ((ma_pa_context_get_source_info_list_proc)pContext->pulse.pa_context_get_source_info_list)(pPulseContext, ma_context_enumerate_devices_source_callback__pulse, &callbackData); - if (pOP == NULL) { - result = MA_ERROR; - goto done; - } - - result = ma_wait_for_operation__pulse(pContext, pMainLoop, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - if (result != MA_SUCCESS) { - goto done; - } - } - -done: - ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext); - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); return result; } - -typedef struct +static ma_result ma_context_wait_for_pa_context_to_connect__pulse(ma_context* pContext) { - ma_device_info* pDeviceInfo; - ma_bool32 foundDevice; -} ma_context_get_device_info_callback_data__pulse; - -static void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) -{ - ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; - - if (endOfList > 0) { - return; - } - - MA_ASSERT(pData != NULL); - pData->foundDevice = MA_TRUE; - - if (pInfo->name != NULL) { - ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); - } - - if (pInfo->description != NULL) { - ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); - } - - pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels; - pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels; - pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate; - pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate; - pData->pDeviceInfo->formatCount = 1; - pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format); - - (void)pPulseContext; /* Unused. */ -} - -static void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData) -{ - ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; - - if (endOfList > 0) { - return; - } - - MA_ASSERT(pData != NULL); - pData->foundDevice = MA_TRUE; - - if (pInfo->name != NULL) { - ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); - } - - if (pInfo->description != NULL) { - ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); - } - - pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels; - pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels; - pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate; - pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate; - pData->pDeviceInfo->formatCount = 1; - pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format); - - (void)pPulseContext; /* Unused. */ -} - -static ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) -{ - ma_result result = MA_SUCCESS; - ma_context_get_device_info_callback_data__pulse callbackData; - ma_pa_operation* pOP = NULL; - ma_pa_mainloop* pMainLoop; - ma_pa_mainloop_api* pAPI; - ma_pa_context* pPulseContext; - int error; - - MA_ASSERT(pContext != NULL); - - /* No exclusive mode with the PulseAudio backend. */ - if (shareMode == ma_share_mode_exclusive) { - return MA_SHARE_MODE_NOT_SUPPORTED; - } - - callbackData.pDeviceInfo = pDeviceInfo; - callbackData.foundDevice = MA_FALSE; - - pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)(); - if (pMainLoop == NULL) { - return MA_FAILED_TO_INIT_BACKEND; - } - - pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop); - if (pAPI == NULL) { - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return MA_FAILED_TO_INIT_BACKEND; - } - - pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName); - if (pPulseContext == NULL) { - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return MA_FAILED_TO_INIT_BACKEND; - } - - error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, 0, NULL); - if (error != MA_PA_OK) { - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return ma_result_from_pulse(error); - } + ma_pa_context_state_t state; for (;;) { - ma_pa_context_state_t state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext); + ma_mainloop_lock__pulse(pContext, "ma_context_wait_for_pa_context_to_connect__pulse"); + state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)((ma_pa_context*)pContext->pulse.pPulseContext); + ma_mainloop_unlock__pulse(pContext, "ma_context_wait_for_pa_context_to_connect__pulse"); + if (state == MA_PA_CONTEXT_READY) { - break; /* Success. */ + break; /* Done. */ } - if (state == MA_PA_CONTEXT_CONNECTING || state == MA_PA_CONTEXT_AUTHORIZING || state == MA_PA_CONTEXT_SETTING_NAME) { - error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL); - if (error < 0) { - result = ma_result_from_pulse(error); - goto done; - } -#ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] pa_context_get_state() returned %d. Waiting.\n", state); -#endif - continue; /* Keep trying. */ - } - if (state == MA_PA_CONTEXT_UNCONNECTED || state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) { -#ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] pa_context_get_state() returned %d. Failed.\n", state); -#endif - goto done; /* Failed. */ + if (state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) { + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio context.", MA_ERROR); } + + ma_yield(); } - if (deviceType == ma_device_type_playback) { - pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)(pPulseContext, pDeviceID->pulse, ma_context_get_device_info_sink_callback__pulse, &callbackData); - } else { - pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)(pPulseContext, pDeviceID->pulse, ma_context_get_device_info_source_callback__pulse, &callbackData); - } - - if (pOP != NULL) { - ma_wait_for_operation__pulse(pContext, pMainLoop, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } else { - result = MA_ERROR; - goto done; - } - - if (!callbackData.foundDevice) { - result = MA_NO_DEVICE; - goto done; - } - - -done: - ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext); - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - return result; + /* Should never get here. */ + return MA_SUCCESS; } - -static void ma_pulse_device_state_callback(ma_pa_context* pPulseContext, void* pUserData) +static ma_result ma_context_wait_for_pa_stream_to_connect__pulse(ma_context* pContext, ma_pa_stream* pStream) { - ma_device* pDevice; - ma_context* pContext; + ma_pa_stream_state_t state; - pDevice = (ma_device*)pUserData; - MA_ASSERT(pDevice != NULL); + for (;;) { + ma_mainloop_lock__pulse(pContext, "ma_context_wait_for_pa_stream_to_connect__pulse"); + state = ((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)(pStream); + ma_mainloop_unlock__pulse(pContext, "ma_context_wait_for_pa_stream_to_connect__pulse"); - pContext = pDevice->pContext; - MA_ASSERT(pContext != NULL); + if (state == MA_PA_STREAM_READY) { + break; /* Done. */ + } - pDevice->pulse.pulseContextState = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext); + if (state == MA_PA_STREAM_FAILED || state == MA_PA_STREAM_TERMINATED) { + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio stream.", MA_ERROR); + } + + ma_yield(); + } + + return MA_SUCCESS; } -void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) + +static void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) { ma_pa_sink_info* pInfoOut; @@ -19578,6 +21689,329 @@ static void ma_device_source_name_callback(ma_pa_context* pPulseContext, const m (void)pPulseContext; /* Unused. */ } + +static ma_result ma_context_get_sink_info__pulse(ma_context* pContext, const char* pDeviceName, ma_pa_sink_info* pSinkInfo) +{ + ma_pa_operation* pOP; + + ma_mainloop_lock__pulse(pContext, "ma_context_get_sink_info__pulse"); + pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, pDeviceName, ma_device_sink_info_callback, pSinkInfo); + ma_mainloop_unlock__pulse(pContext, "ma_context_get_sink_info__pulse"); + + if (pOP == NULL) { + return MA_ERROR; + } + + ma_wait_for_operation_and_unref__pulse(pContext, pOP); + return MA_SUCCESS; +} + +static ma_result ma_context_get_source_info__pulse(ma_context* pContext, const char* pDeviceName, ma_pa_source_info* pSourceInfo) +{ + ma_pa_operation* pOP; + + ma_mainloop_lock__pulse(pContext, "ma_context_get_source_info__pulse"); + pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, pDeviceName, ma_device_source_info_callback, pSourceInfo); + ma_mainloop_unlock__pulse(pContext, "ma_context_get_source_info__pulse"); + + if (pOP == NULL) { + return MA_ERROR; + } + + ma_wait_for_operation_and_unref__pulse(pContext, pOP); + return MA_SUCCESS; +} + +static ma_result ma_context_get_default_device_index__pulse(ma_context* pContext, ma_device_type deviceType, ma_uint32* pIndex) +{ + ma_result result; + + MA_ASSERT(pContext != NULL); + MA_ASSERT(pIndex != NULL); + + if (pIndex != NULL) { + *pIndex = (ma_uint32)-1; + } + + if (deviceType == ma_device_type_playback) { + ma_pa_sink_info sinkInfo; + result = ma_context_get_sink_info__pulse(pContext, NULL, &sinkInfo); + if (result != MA_SUCCESS) { + return result; + } + + if (pIndex != NULL) { + *pIndex = sinkInfo.index; + } + } + + if (deviceType == ma_device_type_capture) { + ma_pa_source_info sourceInfo; + result = ma_context_get_source_info__pulse(pContext, NULL, &sourceInfo); + if (result != MA_SUCCESS) { + return result; + } + + if (pIndex != NULL) { + *pIndex = sourceInfo.index; + } + } + + return MA_SUCCESS; +} + + +typedef struct +{ + ma_context* pContext; + ma_enum_devices_callback_proc callback; + void* pUserData; + ma_bool32 isTerminated; + ma_uint32 defaultDeviceIndexPlayback; + ma_uint32 defaultDeviceIndexCapture; +} ma_context_enumerate_devices_callback_data__pulse; + +static void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData) +{ + ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; + ma_device_info deviceInfo; + + MA_ASSERT(pData != NULL); + + if (endOfList || pData->isTerminated) { + return; + } + + MA_ZERO_OBJECT(&deviceInfo); + + /* The name from PulseAudio is the ID for miniaudio. */ + if (pSinkInfo->name != NULL) { + ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1); + } + + /* The description from PulseAudio is the name for miniaudio. */ + if (pSinkInfo->description != NULL) { + ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1); + } + + if (pSinkInfo->index == pData->defaultDeviceIndexPlayback) { + deviceInfo.isDefault = MA_TRUE; + } + + pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_playback, &deviceInfo, pData->pUserData); + + (void)pPulseContext; /* Unused. */ +} + +static void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSourceInfo, int endOfList, void* pUserData) +{ + ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; + ma_device_info deviceInfo; + + MA_ASSERT(pData != NULL); + + if (endOfList || pData->isTerminated) { + return; + } + + MA_ZERO_OBJECT(&deviceInfo); + + /* The name from PulseAudio is the ID for miniaudio. */ + if (pSourceInfo->name != NULL) { + ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSourceInfo->name, (size_t)-1); + } + + /* The description from PulseAudio is the name for miniaudio. */ + if (pSourceInfo->description != NULL) { + ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSourceInfo->description, (size_t)-1); + } + + if (pSourceInfo->index == pData->defaultDeviceIndexCapture) { + deviceInfo.isDefault = MA_TRUE; + } + + pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_capture, &deviceInfo, pData->pUserData); + + (void)pPulseContext; /* Unused. */ +} + +static ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) +{ + ma_result result = MA_SUCCESS; + ma_context_enumerate_devices_callback_data__pulse callbackData; + ma_pa_operation* pOP = NULL; + + MA_ASSERT(pContext != NULL); + MA_ASSERT(callback != NULL); + + callbackData.pContext = pContext; + callbackData.callback = callback; + callbackData.pUserData = pUserData; + callbackData.isTerminated = MA_FALSE; + callbackData.defaultDeviceIndexPlayback = (ma_uint32)-1; + callbackData.defaultDeviceIndexCapture = (ma_uint32)-1; + + /* We need to get the index of the default devices. */ + ma_context_get_default_device_index__pulse(pContext, ma_device_type_playback, &callbackData.defaultDeviceIndexPlayback); + ma_context_get_default_device_index__pulse(pContext, ma_device_type_capture, &callbackData.defaultDeviceIndexCapture); + + /* Playback. */ + if (!callbackData.isTerminated) { + ma_mainloop_lock__pulse(pContext, "ma_context_enumerate_devices__pulse"); + pOP = ((ma_pa_context_get_sink_info_list_proc)pContext->pulse.pa_context_get_sink_info_list)((ma_pa_context*)(pContext->pulse.pPulseContext), ma_context_enumerate_devices_sink_callback__pulse, &callbackData); + ma_mainloop_unlock__pulse(pContext, "ma_context_enumerate_devices__pulse"); + + if (pOP == NULL) { + result = MA_ERROR; + goto done; + } + + result = ma_wait_for_operation__pulse(pContext, pOP); + ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); + if (result != MA_SUCCESS) { + goto done; + } + } + + + /* Capture. */ + if (!callbackData.isTerminated) { + ma_mainloop_lock__pulse(pContext, "ma_context_enumerate_devices__pulse"); + pOP = ((ma_pa_context_get_source_info_list_proc)pContext->pulse.pa_context_get_source_info_list)((ma_pa_context*)(pContext->pulse.pPulseContext), ma_context_enumerate_devices_source_callback__pulse, &callbackData); + ma_mainloop_unlock__pulse(pContext, "ma_context_enumerate_devices__pulse"); + + if (pOP == NULL) { + result = MA_ERROR; + goto done; + } + + result = ma_wait_for_operation__pulse(pContext, pOP); + ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); + if (result != MA_SUCCESS) { + goto done; + } + } + +done: + return result; +} + + +typedef struct +{ + ma_device_info* pDeviceInfo; + ma_uint32 defaultDeviceIndex; + ma_bool32 foundDevice; +} ma_context_get_device_info_callback_data__pulse; + +static void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) +{ + ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; + + if (endOfList > 0) { + return; + } + + MA_ASSERT(pData != NULL); + pData->foundDevice = MA_TRUE; + + if (pInfo->name != NULL) { + ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); + } + + if (pInfo->description != NULL) { + ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); + } + + pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels; + pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels; + pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate; + pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate; + pData->pDeviceInfo->formatCount = 1; + pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format); + + if (pData->defaultDeviceIndex == pInfo->index) { + pData->pDeviceInfo->isDefault = MA_TRUE; + } + + (void)pPulseContext; /* Unused. */ +} + +static void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData) +{ + ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; + + if (endOfList > 0) { + return; + } + + MA_ASSERT(pData != NULL); + pData->foundDevice = MA_TRUE; + + if (pInfo->name != NULL) { + ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); + } + + if (pInfo->description != NULL) { + ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); + } + + pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels; + pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels; + pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate; + pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate; + pData->pDeviceInfo->formatCount = 1; + pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format); + + if (pData->defaultDeviceIndex == pInfo->index) { + pData->pDeviceInfo->isDefault = MA_TRUE; + } + + (void)pPulseContext; /* Unused. */ +} + +static ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +{ + ma_result result = MA_SUCCESS; + ma_context_get_device_info_callback_data__pulse callbackData; + ma_pa_operation* pOP = NULL; + + MA_ASSERT(pContext != NULL); + + /* No exclusive mode with the PulseAudio backend. */ + if (shareMode == ma_share_mode_exclusive) { + return MA_SHARE_MODE_NOT_SUPPORTED; + } + + callbackData.pDeviceInfo = pDeviceInfo; + callbackData.foundDevice = MA_FALSE; + + result = ma_context_get_default_device_index__pulse(pContext, deviceType, &callbackData.defaultDeviceIndex); + + ma_mainloop_lock__pulse(pContext, "ma_context_get_device_info__pulse"); + if (deviceType == ma_device_type_playback) { + pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)(pContext->pulse.pPulseContext), pDeviceID->pulse, ma_context_get_device_info_sink_callback__pulse, &callbackData); + } else { + pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)(pContext->pulse.pPulseContext), pDeviceID->pulse, ma_context_get_device_info_source_callback__pulse, &callbackData); + } + ma_mainloop_unlock__pulse(pContext, "ma_context_get_device_info__pulse"); + + if (pOP != NULL) { + ma_wait_for_operation_and_unref__pulse(pContext, pOP); + } else { + result = MA_ERROR; + goto done; + } + + if (!callbackData.foundDevice) { + result = MA_NO_DEVICE; + goto done; + } + +done: + return result; +} + static void ma_device_uninit__pulse(ma_device* pDevice) { ma_context* pContext; @@ -19587,18 +22021,23 @@ static void ma_device_uninit__pulse(ma_device* pDevice) pContext = pDevice->pContext; MA_ASSERT(pContext != NULL); - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - } - if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { - ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - } + ma_mainloop_lock__pulse(pContext, "ma_device_uninit__pulse"); + { + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { + ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + } - ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pDevice->pulse.pPulseContext); - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pDevice->pulse.pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop); + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { + ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + } + } + ma_mainloop_unlock__pulse(pContext, "ma_device_uninit__pulse"); + + if (pDevice->type == ma_device_type_duplex) { + ma_pcm_rb_uninit(&pDevice->pulse.duplexRB); + } } static ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 periodSizeInFrames, ma_uint32 periods, const ma_pa_sample_spec* ss) @@ -19613,8 +22052,9 @@ static ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 periodSizeInFra return attr; } -static ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap) +static ma_pa_stream* ma_context__pa_stream_new__pulse(ma_context* pContext, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap) { + ma_pa_stream* pStream; static int g_StreamCounter = 0; char actualStreamName[256]; @@ -19626,7 +22066,164 @@ static ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const c } g_StreamCounter += 1; - return ((ma_pa_stream_new_proc)pDevice->pContext->pulse.pa_stream_new)((ma_pa_context*)pDevice->pulse.pPulseContext, actualStreamName, ss, cmap); + ma_mainloop_lock__pulse(pContext, "ma_context__pa_stream_new__pulse"); + pStream = ((ma_pa_stream_new_proc)pContext->pulse.pa_stream_new)((ma_pa_context*)pContext->pulse.pPulseContext, actualStreamName, ss, cmap); + ma_mainloop_unlock__pulse(pContext, "ma_context__pa_stream_new__pulse"); + + return pStream; +} + + +static void ma_device_on_read__pulse(ma_pa_stream* pStream, size_t byteCount, void* pUserData) +{ + ma_device* pDevice = (ma_device*)pUserData; + ma_uint32 bpf; + ma_uint64 frameCount; + ma_uint64 framesProcessed; + + MA_ASSERT(pDevice != NULL); + + bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); + MA_ASSERT(bpf > 0); + + frameCount = byteCount / bpf; + framesProcessed = 0; + + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && framesProcessed < frameCount) { + const void* pMappedPCMFrames; + size_t bytesMapped; + ma_uint64 framesMapped; + + int pulseResult = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)(pStream, &pMappedPCMFrames, &bytesMapped); + if (pulseResult < 0) { + break; /* Failed to map. Abort. */ + } + + framesMapped = bytesMapped / bpf; + if (framesMapped > 0) { + if (pMappedPCMFrames != NULL) { + if (pDevice->type == ma_device_type_duplex) { + ma_device__handle_duplex_callback_capture(pDevice, framesMapped, pMappedPCMFrames, &pDevice->pulse.duplexRB); + } else { + ma_device__send_frames_to_client(pDevice, framesMapped, pMappedPCMFrames); + } + } else { + /* It's a hole. */ + #if defined(MA_DEBUG_OUTPUT) + printf("[PulseAudio] ma_device_on_read__pulse: Hole.\n"); + #endif + } + + pulseResult = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)(pStream); + if (pulseResult < 0) { + break; /* Failed to drop the buffer. */ + } + + framesProcessed += framesMapped; + + } else { + /* Nothing was mapped. Just abort. */ + break; + } + } +} + +static ma_result ma_device_write_to_stream__pulse(ma_device* pDevice, ma_pa_stream* pStream, ma_uint64* pFramesProcessed) +{ + ma_result result = MA_SUCCESS; + ma_uint64 framesProcessed = 0; + size_t bytesMapped; + ma_uint32 bpf; + ma_uint32 deviceState; + + MA_ASSERT(pDevice != NULL); + MA_ASSERT(pStream != NULL); + + bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); + MA_ASSERT(bpf > 0); + + deviceState = ma_device_get_state(pDevice); + + bytesMapped = ((ma_pa_stream_writable_size_proc)pDevice->pContext->pulse.pa_stream_writable_size)(pStream); + if (bytesMapped != (size_t)-1) { + if (bytesMapped > 0) { + ma_uint64 framesMapped; + void* pMappedPCMFrames; + int pulseResult = ((ma_pa_stream_begin_write_proc)pDevice->pContext->pulse.pa_stream_begin_write)(pStream, &pMappedPCMFrames, &bytesMapped); + if (pulseResult < 0) { + result = ma_result_from_pulse(pulseResult); + goto done; + } + + framesMapped = bytesMapped / bpf; + + if (deviceState == MA_STATE_STARTED) { + if (pDevice->type == ma_device_type_duplex) { + ma_device__handle_duplex_callback_playback(pDevice, framesMapped, pMappedPCMFrames, &pDevice->pulse.duplexRB); + } else { + ma_device__read_frames_from_client(pDevice, framesMapped, pMappedPCMFrames); + } + } else { + /* Device is not started. Don't write anything to it. */ + } + + pulseResult = ((ma_pa_stream_write_proc)pDevice->pContext->pulse.pa_stream_write)(pStream, pMappedPCMFrames, bytesMapped, NULL, 0, MA_PA_SEEK_RELATIVE); + if (pulseResult < 0) { + result = ma_result_from_pulse(pulseResult); + goto done; /* Failed to write data to stream. */ + } + + framesProcessed += framesMapped; + } else { + result = MA_ERROR; /* No data available. Abort. */ + goto done; + } + } else { + result = MA_ERROR; /* Failed to retrieve the writable size. Abort. */ + goto done; + } + +done: + if (pFramesProcessed != NULL) { + *pFramesProcessed = framesProcessed; + } + + return result; +} + +static void ma_device_on_write__pulse(ma_pa_stream* pStream, size_t byteCount, void* pUserData) +{ + ma_device* pDevice = (ma_device*)pUserData; + ma_uint32 bpf; + ma_uint64 frameCount; + ma_uint64 framesProcessed; + ma_result result; + + MA_ASSERT(pDevice != NULL); + + bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); + MA_ASSERT(bpf > 0); + + frameCount = byteCount / bpf; + framesProcessed = 0; + + while (framesProcessed < frameCount) { + ma_uint64 framesProcessedThisIteration; + ma_uint32 deviceState; + + /* Don't keep trying to process frames if the device isn't started. */ + deviceState = ma_device_get_state(pDevice); + if (deviceState != MA_STATE_STARTING && deviceState != MA_STATE_STARTED) { + break; + } + + result = ma_device_write_to_stream__pulse(pDevice, pStream, &framesProcessedThisIteration); + if (result != MA_SUCCESS) { + break; + } + + framesProcessed += framesProcessedThisIteration; + } } static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) @@ -19638,7 +22235,6 @@ static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_con ma_uint32 periodSizeInMilliseconds; ma_pa_sink_info sinkInfo; ma_pa_source_info sourceInfo; - ma_pa_operation* pOP = NULL; ma_pa_sample_spec ss; ma_pa_channel_map cmap; ma_pa_buffer_attr attr; @@ -19673,64 +22269,14 @@ static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_con periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate); } - pDevice->pulse.pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)(); - if (pDevice->pulse.pMainLoop == NULL) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create main loop for device.", MA_FAILED_TO_INIT_BACKEND); - goto on_error0; - } - - pDevice->pulse.pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)((ma_pa_mainloop*)pDevice->pulse.pMainLoop); - if (pDevice->pulse.pAPI == NULL) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve PulseAudio main loop.", MA_FAILED_TO_INIT_BACKEND); - goto on_error1; - } - - pDevice->pulse.pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)((ma_pa_mainloop_api*)pDevice->pulse.pAPI, pContext->pulse.pApplicationName); - if (pDevice->pulse.pPulseContext == NULL) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio context for device.", MA_FAILED_TO_INIT_BACKEND); - goto on_error1; - } - - error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)((ma_pa_context*)pDevice->pulse.pPulseContext, pContext->pulse.pServerName, (pContext->pulse.tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL); - if (error != MA_PA_OK) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio context.", ma_result_from_pulse(error)); - goto on_error2; - } - - - pDevice->pulse.pulseContextState = MA_PA_CONTEXT_UNCONNECTED; - ((ma_pa_context_set_state_callback_proc)pContext->pulse.pa_context_set_state_callback)((ma_pa_context*)pDevice->pulse.pPulseContext, ma_pulse_device_state_callback, pDevice); - - /* Wait for PulseAudio to get itself ready before returning. */ - for (;;) { - if (pDevice->pulse.pulseContextState == MA_PA_CONTEXT_READY) { - break; - } - - /* An error may have occurred. */ - if (pDevice->pulse.pulseContextState == MA_PA_CONTEXT_FAILED || pDevice->pulse.pulseContextState == MA_PA_CONTEXT_TERMINATED) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio context.", MA_ERROR); - goto on_error3; - } - - error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL); - if (error < 0) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio context.", ma_result_from_pulse(error)); - goto on_error3; - } - } - if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devCapture, ma_device_source_info_callback, &sourceInfo); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } else { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve source info for capture device.", ma_result_from_pulse(error)); - goto on_error3; + result = ma_context_get_source_info__pulse(pContext, devCapture, &sourceInfo); + if (result != MA_SUCCESS) { + ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve source info for capture device.", result); + goto on_error0; } - ss = sourceInfo.sample_spec; + ss = sourceInfo.sample_spec; cmap = sourceInfo.channel_map; pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate); @@ -19741,94 +22287,96 @@ static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_con printf("[PulseAudio] Capture attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames); #endif - pDevice->pulse.pStreamCapture = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNameCapture, &ss, &cmap); + pDevice->pulse.pStreamCapture = ma_context__pa_stream_new__pulse(pContext, pConfig->pulse.pStreamNameCapture, &ss, &cmap); if (pDevice->pulse.pStreamCapture == NULL) { result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio capture stream.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); - goto on_error3; + goto on_error0; } + + /* The callback needs to be set before connecting the stream. */ + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_set_read_callback_proc)pContext->pulse.pa_stream_set_read_callback)((ma_pa_stream*)pDevice->pulse.pStreamCapture, ma_device_on_read__pulse, pDevice); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + + + /* Connect after we've got all of our internal state set up. */ streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_ADJUST_LATENCY | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS; if (devCapture != NULL) { streamFlags |= MA_PA_STREAM_DONT_MOVE; } + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); error = ((ma_pa_stream_connect_record_proc)pContext->pulse.pa_stream_connect_record)((ma_pa_stream*)pDevice->pulse.pStreamCapture, devCapture, &attr, streamFlags); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); if (error != MA_PA_OK) { result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio capture stream.", ma_result_from_pulse(error)); - goto on_error4; + goto on_error1; } - while (((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)((ma_pa_stream*)pDevice->pulse.pStreamCapture) != MA_PA_STREAM_READY) { - error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL); - if (error < 0) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio capture stream.", ma_result_from_pulse(error)); - goto on_error5; - } + result = ma_context_wait_for_pa_stream_to_connect__pulse(pDevice->pContext, (ma_pa_stream*)pDevice->pulse.pStreamCapture); + if (result != MA_SUCCESS) { + goto on_error2; } - /* Internal format. */ - pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - if (pActualSS != NULL) { - /* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */ - if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) { - attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalPeriodSizeInFrames, pConfig->periods, pActualSS); - pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &attr, NULL, NULL); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + { + /* Internal format. */ + pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + if (pActualSS != NULL) { + ss = *pActualSS; } - ss = *pActualSS; - } + pDevice->capture.internalFormat = ma_format_from_pulse(ss.format); + pDevice->capture.internalChannels = ss.channels; + pDevice->capture.internalSampleRate = ss.rate; - pDevice->capture.internalFormat = ma_format_from_pulse(ss.format); - pDevice->capture.internalChannels = ss.channels; - pDevice->capture.internalSampleRate = ss.rate; + /* Internal channel map. */ + pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + if (pActualCMap != NULL) { + cmap = *pActualCMap; + } + for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) { + pDevice->capture.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); + } - /* Internal channel map. */ - pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - if (pActualCMap != NULL) { - cmap = *pActualCMap; + /* Buffer. */ + pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + if (pActualAttr != NULL) { + attr = *pActualAttr; + } + pDevice->capture.internalPeriods = attr.maxlength / attr.fragsize; + pDevice->capture.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pDevice->capture.internalPeriods; + #ifdef MA_DEBUG_OUTPUT + printf("[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames); + #endif } - for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) { - pDevice->capture.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); - } - - /* Buffer. */ - pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - if (pActualAttr != NULL) { - attr = *pActualAttr; - } - pDevice->capture.internalPeriods = attr.maxlength / attr.fragsize; - pDevice->capture.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pDevice->capture.internalPeriods; - #ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames); - #endif + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); /* Name. */ + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); devCapture = ((ma_pa_stream_get_device_name_proc)pContext->pulse.pa_stream_get_device_name)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); if (devCapture != NULL) { - ma_pa_operation* pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devCapture, ma_device_source_name_callback, pDevice); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } + ma_pa_operation* pOP; + + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, devCapture, ma_device_source_name_callback, pDevice); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + + ma_wait_for_operation_and_unref__pulse(pContext, pOP); } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devPlayback, ma_device_sink_info_callback, &sinkInfo); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } else { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve sink info for playback device.", ma_result_from_pulse(error)); - goto on_error3; + result = ma_context_get_sink_info__pulse(pContext, devPlayback, &sinkInfo); + if (result != MA_SUCCESS) { + ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve sink info for playback device.", result); + goto on_error2; } - ss = sinkInfo.sample_spec; + ss = sinkInfo.sample_spec; cmap = sinkInfo.channel_map; pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate); @@ -19839,105 +22387,140 @@ static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_con printf("[PulseAudio] Playback attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames); #endif - pDevice->pulse.pStreamPlayback = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNamePlayback, &ss, &cmap); + pDevice->pulse.pStreamPlayback = ma_context__pa_stream_new__pulse(pContext, pConfig->pulse.pStreamNamePlayback, &ss, &cmap); if (pDevice->pulse.pStreamPlayback == NULL) { result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio playback stream.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); - goto on_error3; + goto on_error2; } + + /* + Note that this callback will be fired as soon as the stream is connected, even though it's started as corked. The callback needs to handle a + device state of MA_STATE_UNINITIALIZED. + */ + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_set_write_callback_proc)pContext->pulse.pa_stream_set_write_callback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_device_on_write__pulse, pDevice); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + + + /* Connect after we've got all of our internal state set up. */ streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_ADJUST_LATENCY | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS; if (devPlayback != NULL) { streamFlags |= MA_PA_STREAM_DONT_MOVE; } + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); error = ((ma_pa_stream_connect_playback_proc)pContext->pulse.pa_stream_connect_playback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, devPlayback, &attr, streamFlags, NULL, NULL); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); if (error != MA_PA_OK) { result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio playback stream.", ma_result_from_pulse(error)); - goto on_error6; + goto on_error3; } - while (((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)((ma_pa_stream*)pDevice->pulse.pStreamPlayback) != MA_PA_STREAM_READY) { - error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL); - if (error < 0) { - result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio playback stream.", ma_result_from_pulse(error)); - goto on_error7; - } + result = ma_context_wait_for_pa_stream_to_connect__pulse(pDevice->pContext, (ma_pa_stream*)pDevice->pulse.pStreamPlayback); + if (result != MA_SUCCESS) { + goto on_error3; } - /* Internal format. */ - pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - if (pActualSS != NULL) { - /* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */ - if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) { - attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalPeriodSizeInFrames, pConfig->periods, pActualSS); - pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, &attr, NULL, NULL); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - } + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + { + /* Internal format. */ + pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + if (pActualSS != NULL) { + ss = *pActualSS; } - ss = *pActualSS; - } + pDevice->playback.internalFormat = ma_format_from_pulse(ss.format); + pDevice->playback.internalChannels = ss.channels; + pDevice->playback.internalSampleRate = ss.rate; - pDevice->playback.internalFormat = ma_format_from_pulse(ss.format); - pDevice->playback.internalChannels = ss.channels; - pDevice->playback.internalSampleRate = ss.rate; + /* Internal channel map. */ + pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + if (pActualCMap != NULL) { + cmap = *pActualCMap; + } + for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { + pDevice->playback.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); + } - /* Internal channel map. */ - pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - if (pActualCMap != NULL) { - cmap = *pActualCMap; + /* Buffer. */ + pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + if (pActualAttr != NULL) { + attr = *pActualAttr; + } + pDevice->playback.internalPeriods = attr.maxlength / attr.tlength; + pDevice->playback.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) / pDevice->playback.internalPeriods; + #ifdef MA_DEBUG_OUTPUT + printf("[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames); + #endif } - for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { - pDevice->playback.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); - } - - /* Buffer. */ - pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - if (pActualAttr != NULL) { - attr = *pActualAttr; - } - pDevice->playback.internalPeriods = attr.maxlength / attr.tlength; - pDevice->playback.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) / pDevice->playback.internalPeriods; - #ifdef MA_DEBUG_OUTPUT - printf("[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames); - #endif + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); /* Name. */ + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); devPlayback = ((ma_pa_stream_get_device_name_proc)pContext->pulse.pa_stream_get_device_name)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); if (devPlayback != NULL) { - ma_pa_operation* pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devPlayback, ma_device_sink_name_callback, pDevice); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); + ma_pa_operation* pOP; + + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, devPlayback, ma_device_sink_name_callback, pDevice); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + + ma_wait_for_operation_and_unref__pulse(pContext, pOP); + } + } + + + /* We need a ring buffer for handling duplex mode. */ + if (pConfig->deviceType == ma_device_type_duplex) { + ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods); + result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->pulse.duplexRB); + if (result != MA_SUCCESS) { + result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to initialize ring buffer.", result); + goto on_error4; + } + + /* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */ + { + ma_uint32 marginSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods; + void* pMarginData; + ma_pcm_rb_acquire_write(&pDevice->pulse.duplexRB, &marginSizeInFrames, &pMarginData); + { + MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels)); } + ma_pcm_rb_commit_write(&pDevice->pulse.duplexRB, marginSizeInFrames, pMarginData); } } return MA_SUCCESS; -on_error7: - if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - } -on_error6: - if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - } -on_error5: - if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - } on_error4: - if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + } +on_error3: + if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + } +on_error2: + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); + } +on_error1: + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { + ma_mainloop_lock__pulse(pContext, "ma_device_init__pulse"); + ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); + ma_mainloop_unlock__pulse(pContext, "ma_device_init__pulse"); } -on_error3: ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pDevice->pulse.pPulseContext); -on_error2: ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pDevice->pulse.pPulseContext); -on_error1: ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop); on_error0: return result; } @@ -19971,14 +22554,15 @@ static ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_typ pStream = (ma_pa_stream*)((deviceType == ma_device_type_capture) ? pDevice->pulse.pStreamCapture : pDevice->pulse.pStreamPlayback); MA_ASSERT(pStream != NULL); + ma_mainloop_lock__pulse(pContext, "ma_device__cork_stream__pulse"); pOP = ((ma_pa_stream_cork_proc)pContext->pulse.pa_stream_cork)(pStream, cork, ma_pulse_operation_complete_callback, &wasSuccessful); + ma_mainloop_unlock__pulse(pContext, "ma_device__cork_stream__pulse"); + if (pOP == NULL) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to cork PulseAudio stream.", (cork == 0) ? MA_FAILED_TO_START_BACKEND_DEVICE : MA_FAILED_TO_STOP_BACKEND_DEVICE); } - result = ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); - + result = ma_wait_for_operation_and_unref__pulse(pDevice->pContext, pOP); if (result != MA_SUCCESS) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while waiting for the PulseAudio stream to cork.", result); } @@ -19994,11 +22578,42 @@ static ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_typ return MA_SUCCESS; } +static ma_result ma_device_start__pulse(ma_device* pDevice) +{ + ma_result result; + + MA_ASSERT(pDevice != NULL); + + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { + result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 0); + if (result != MA_SUCCESS) { + return result; + } + } + + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { + /* We need to fill some data before uncorking. Not doing this will result in the write callback never getting fired. */ + ma_mainloop_lock__pulse(pDevice->pContext, "ma_device_start__pulse"); + result = ma_device_write_to_stream__pulse(pDevice, (ma_pa_stream*)(pDevice->pulse.pStreamPlayback), NULL); + ma_mainloop_unlock__pulse(pDevice->pContext, "ma_device_start__pulse"); + + if (result != MA_SUCCESS) { + return result; /* Failed to write data. Not sure what to do here... Just aborting. */ + } + + result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 0); + if (result != MA_SUCCESS) { + return result; + } + } + + return MA_SUCCESS; +} + static ma_result ma_device_stop__pulse(ma_device* pDevice) { ma_result result; ma_bool32 wasSuccessful; - ma_pa_operation* pOP; MA_ASSERT(pDevice != NULL); @@ -20011,11 +22626,13 @@ static ma_result ma_device_stop__pulse(ma_device* pDevice) if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* The stream needs to be drained if it's a playback device. */ + ma_pa_operation* pOP; + + ma_mainloop_lock__pulse(pDevice->pContext, "ma_device_stop__pulse"); pOP = ((ma_pa_stream_drain_proc)pDevice->pContext->pulse.pa_stream_drain)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_pulse_operation_complete_callback, &wasSuccessful); - if (pOP != NULL) { - ma_device__wait_for_operation__pulse(pDevice, pOP); - ((ma_pa_operation_unref_proc)pDevice->pContext->pulse.pa_operation_unref)(pOP); - } + ma_mainloop_unlock__pulse(pDevice->pContext, "ma_device_stop__pulse"); + + ma_wait_for_operation_and_unref__pulse(pDevice->pContext, pOP); result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 1); if (result != MA_SUCCESS) { @@ -20023,446 +22640,28 @@ static ma_result ma_device_stop__pulse(ma_device* pDevice) } } - return MA_SUCCESS; -} - -static ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) -{ - ma_uint32 totalFramesWritten; - - MA_ASSERT(pDevice != NULL); - MA_ASSERT(pPCMFrames != NULL); - MA_ASSERT(frameCount > 0); - - if (pFramesWritten != NULL) { - *pFramesWritten = 0; - } - - totalFramesWritten = 0; - while (totalFramesWritten < frameCount) { - if (ma_device__get_state(pDevice) != MA_STATE_STARTED) { - return MA_DEVICE_NOT_STARTED; - } - - /* Place the data into the mapped buffer if we have one. */ - if (pDevice->pulse.pMappedBufferPlayback != NULL && pDevice->pulse.mappedBufferFramesRemainingPlayback > 0) { - ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 mappedBufferFramesConsumed = pDevice->pulse.mappedBufferFramesCapacityPlayback - pDevice->pulse.mappedBufferFramesRemainingPlayback; - - void* pDst = (ma_uint8*)pDevice->pulse.pMappedBufferPlayback + (mappedBufferFramesConsumed * bpf); - const void* pSrc = (const ma_uint8*)pPCMFrames + (totalFramesWritten * bpf); - ma_uint32 framesToCopy = ma_min(pDevice->pulse.mappedBufferFramesRemainingPlayback, (frameCount - totalFramesWritten)); - MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf); - - pDevice->pulse.mappedBufferFramesRemainingPlayback -= framesToCopy; - totalFramesWritten += framesToCopy; - } - - /* - Getting here means we've run out of data in the currently mapped chunk. We need to write this to the device and then try - mapping another chunk. If this fails we need to wait for space to become available. - */ - if (pDevice->pulse.mappedBufferFramesCapacityPlayback > 0 && pDevice->pulse.mappedBufferFramesRemainingPlayback == 0) { - size_t nbytes = pDevice->pulse.mappedBufferFramesCapacityPlayback * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - - int error = ((ma_pa_stream_write_proc)pDevice->pContext->pulse.pa_stream_write)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, pDevice->pulse.pMappedBufferPlayback, nbytes, NULL, 0, MA_PA_SEEK_RELATIVE); - if (error < 0) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to write data to the PulseAudio stream.", ma_result_from_pulse(error)); - } - - pDevice->pulse.pMappedBufferPlayback = NULL; - pDevice->pulse.mappedBufferFramesRemainingPlayback = 0; - pDevice->pulse.mappedBufferFramesCapacityPlayback = 0; - } - - MA_ASSERT(totalFramesWritten <= frameCount); - if (totalFramesWritten == frameCount) { - break; - } - - /* Getting here means we need to map a new buffer. If we don't have enough space we need to wait for more. */ - for (;;) { - size_t writableSizeInBytes; - - /* If the device has been corked, don't try to continue. */ - if (((ma_pa_stream_is_corked_proc)pDevice->pContext->pulse.pa_stream_is_corked)((ma_pa_stream*)pDevice->pulse.pStreamPlayback)) { - break; - } - - writableSizeInBytes = ((ma_pa_stream_writable_size_proc)pDevice->pContext->pulse.pa_stream_writable_size)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); - if (writableSizeInBytes != (size_t)-1) { - if (writableSizeInBytes > 0) { - /* Data is avaialable. */ - size_t bytesToMap = writableSizeInBytes; - int error = ((ma_pa_stream_begin_write_proc)pDevice->pContext->pulse.pa_stream_begin_write)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, &pDevice->pulse.pMappedBufferPlayback, &bytesToMap); - if (error < 0) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to map write buffer.", ma_result_from_pulse(error)); - } - - pDevice->pulse.mappedBufferFramesCapacityPlayback = bytesToMap / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - pDevice->pulse.mappedBufferFramesRemainingPlayback = pDevice->pulse.mappedBufferFramesCapacityPlayback; - - break; - } else { - /* No data available. Need to wait for more. */ - int error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL); - if (error < 0) { - return ma_result_from_pulse(error); - } - - continue; - } - } else { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to query the stream's writable size.", MA_ERROR); - } - } - } - - if (pFramesWritten != NULL) { - *pFramesWritten = totalFramesWritten; + if (pDevice->onStop != NULL) { + pDevice->onStop(pDevice); } return MA_SUCCESS; } -static ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) -{ - ma_uint32 totalFramesRead; - - MA_ASSERT(pDevice != NULL); - MA_ASSERT(pPCMFrames != NULL); - MA_ASSERT(frameCount > 0); - - if (pFramesRead != NULL) { - *pFramesRead = 0; - } - - totalFramesRead = 0; - while (totalFramesRead < frameCount) { - if (ma_device__get_state(pDevice) != MA_STATE_STARTED) { - return MA_DEVICE_NOT_STARTED; - } - - /* - If a buffer is mapped we need to read from that first. Once it's consumed we need to drop it. Note that pDevice->pulse.pMappedBufferCapture can be null in which - case it could be a hole. In this case we just write zeros into the output buffer. - */ - if (pDevice->pulse.mappedBufferFramesRemainingCapture > 0) { - ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 mappedBufferFramesConsumed = pDevice->pulse.mappedBufferFramesCapacityCapture - pDevice->pulse.mappedBufferFramesRemainingCapture; - - ma_uint32 framesToCopy = ma_min(pDevice->pulse.mappedBufferFramesRemainingCapture, (frameCount - totalFramesRead)); - void* pDst = (ma_uint8*)pPCMFrames + (totalFramesRead * bpf); - - /* - This little bit of logic here is specifically for PulseAudio and it's hole management. The buffer pointer will be set to NULL - when the current fragment is a hole. For a hole we just output silence. - */ - if (pDevice->pulse.pMappedBufferCapture != NULL) { - const void* pSrc = (const ma_uint8*)pDevice->pulse.pMappedBufferCapture + (mappedBufferFramesConsumed * bpf); - MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf); - } else { - MA_ZERO_MEMORY(pDst, framesToCopy * bpf); - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: Filling hole with silence.\n"); - #endif - } - - pDevice->pulse.mappedBufferFramesRemainingCapture -= framesToCopy; - totalFramesRead += framesToCopy; - } - - /* - Getting here means we've run out of data in the currently mapped chunk. We need to drop this from the device and then try - mapping another chunk. If this fails we need to wait for data to become available. - */ - if (pDevice->pulse.mappedBufferFramesCapacityCapture > 0 && pDevice->pulse.mappedBufferFramesRemainingCapture == 0) { - int error; - - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_drop()\n"); - #endif - - error = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)((ma_pa_stream*)pDevice->pulse.pStreamCapture); - if (error != 0) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to drop fragment.", ma_result_from_pulse(error)); - } - - pDevice->pulse.pMappedBufferCapture = NULL; - pDevice->pulse.mappedBufferFramesRemainingCapture = 0; - pDevice->pulse.mappedBufferFramesCapacityCapture = 0; - } - - MA_ASSERT(totalFramesRead <= frameCount); - if (totalFramesRead == frameCount) { - break; - } - - /* Getting here means we need to map a new buffer. If we don't have enough data we wait for more. */ - for (;;) { - int error; - size_t bytesMapped; - - if (ma_device__get_state(pDevice) != MA_STATE_STARTED) { - break; - } - - /* If the device has been corked, don't try to continue. */ - if (((ma_pa_stream_is_corked_proc)pDevice->pContext->pulse.pa_stream_is_corked)((ma_pa_stream*)pDevice->pulse.pStreamCapture)) { - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: Corked.\n"); - #endif - break; - } - - MA_ASSERT(pDevice->pulse.pMappedBufferCapture == NULL); /* <-- We're about to map a buffer which means we shouldn't have an existing mapping. */ - - error = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &pDevice->pulse.pMappedBufferCapture, &bytesMapped); - if (error < 0) { - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to peek capture buffer.", ma_result_from_pulse(error)); - } - - if (bytesMapped > 0) { - pDevice->pulse.mappedBufferFramesCapacityCapture = bytesMapped / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - pDevice->pulse.mappedBufferFramesRemainingCapture = pDevice->pulse.mappedBufferFramesCapacityCapture; - - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: Mapped. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture); - #endif - - if (pDevice->pulse.pMappedBufferCapture == NULL) { - /* It's a hole. */ - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_peek(). Hole.\n"); - #endif - } - - break; - } else { - if (pDevice->pulse.pMappedBufferCapture == NULL) { - /* Nothing available yet. Need to wait for more. */ - - /* - I have had reports of a deadlock in this part of the code. I have reproduced this when using the "Built-in Audio Analogue Stereo" device without - an actual microphone connected. I'm experimenting here by not blocking in pa_mainloop_iterate() and instead sleep for a bit when there are no - dispatches. - */ - error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 0, NULL); - if (error < 0) { - return ma_result_from_pulse(error); - } - - /* Sleep for a bit if nothing was dispatched. */ - if (error == 0) { - ma_sleep(1); - } - - #if defined(MA_DEBUG_OUTPUT) - printf("[PulseAudio] ma_device_read__pulse: No data available. Waiting. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture); - #endif - } else { - /* Getting here means we mapped 0 bytes, but have a non-NULL buffer. I don't think this should ever happen. */ - MA_ASSERT(MA_FALSE); - } - } - } - } - - if (pFramesRead != NULL) { - *pFramesRead = totalFramesRead; - } - - return MA_SUCCESS; -} - -static ma_result ma_device_main_loop__pulse(ma_device* pDevice) -{ - ma_result result = MA_SUCCESS; - ma_bool32 exitLoop = MA_FALSE; - - MA_ASSERT(pDevice != NULL); - - /* The stream needs to be uncorked first. We do this at the top for both capture and playback for PulseAudio. */ - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 0); - if (result != MA_SUCCESS) { - return result; - } - } - if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { - result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 0); - if (result != MA_SUCCESS) { - return result; - } - } - - - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { - switch (pDevice->type) - { - case ma_device_type_duplex: - { - /* The process is: device_read -> convert -> callback -> convert -> device_write */ - ma_uint32 totalCapturedDeviceFramesProcessed = 0; - ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - - while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { - ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 capturedDeviceFramesRemaining; - ma_uint32 capturedDeviceFramesProcessed; - ma_uint32 capturedDeviceFramesToProcess; - ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed; - if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) { - capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames; - } - - result = ma_device_read__pulse(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedDeviceFramesRemaining = capturedDeviceFramesToProcess; - capturedDeviceFramesProcessed = 0; - - for (;;) { - ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); - ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); - ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames); - ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining; - ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); - - /* Convert capture data from device format to client format. */ - result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration); - if (result != MA_SUCCESS) { - break; - } - - /* - If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small - which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE. - */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - - ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/ - - capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ - - /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */ - for (;;) { - ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration; - ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames; - result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount); - if (result != MA_SUCCESS) { - break; - } - - result = ma_device_write__pulse(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */ - if (capturedClientFramesToProcessThisIteration == 0) { - break; - } - } - - /* In case an error happened from ma_device_write__pulse()... */ - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - } - - totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed; - } - } break; - - case ma_device_type_capture: - { - ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; - ma_uint32 framesReadThisPeriod = 0; - while (framesReadThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToReadThisIteration = framesRemainingInPeriod; - if (framesToReadThisIteration > intermediaryBufferSizeInFrames) { - framesToReadThisIteration = intermediaryBufferSizeInFrames; - } - - result = ma_device_read__pulse(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer); - - framesReadThisPeriod += framesProcessed; - } - } break; - - case ma_device_type_playback: - { - ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; - ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); - ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; - ma_uint32 framesWrittenThisPeriod = 0; - while (framesWrittenThisPeriod < periodSizeInFrames) { - ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod; - ma_uint32 framesProcessed; - ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod; - if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) { - framesToWriteThisIteration = intermediaryBufferSizeInFrames; - } - - ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer); - - result = ma_device_write__pulse(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed); - if (result != MA_SUCCESS) { - exitLoop = MA_TRUE; - break; - } - - framesWrittenThisPeriod += framesProcessed; - } - } break; - - /* To silence a warning. Will never hit this. */ - case ma_device_type_loopback: - default: break; - } - } - - /* Here is where the device needs to be stopped. */ - ma_device_stop__pulse(pDevice); - - return result; -} - - static ma_result ma_context_uninit__pulse(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_pulseaudio); - ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); - pContext->pulse.pServerName = NULL; + ma_mainloop_lock__pulse(pContext, "ma_context_uninit__pulse"); + { + ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pContext->pulse.pPulseContext); + ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pContext->pulse.pPulseContext); + } + ma_mainloop_unlock__pulse(pContext, "ma_context_uninit__pulse"); - ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); - pContext->pulse.pApplicationName = NULL; + /* The mainloop needs to be stopped before freeing. */ + ((ma_pa_threaded_mainloop_stop_proc)pContext->pulse.pa_threaded_mainloop_stop)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop); + ((ma_pa_threaded_mainloop_free_proc)pContext->pulse.pa_threaded_mainloop_free)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop); #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->pulse.pulseSO); @@ -20473,6 +22672,7 @@ static ma_result ma_context_uninit__pulse(ma_context* pContext) static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* pContext) { + ma_result result; #ifndef MA_NO_RUNTIME_LINKING const char* libpulseNames[] = { "libpulse.so", @@ -20493,9 +22693,23 @@ static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_con pContext->pulse.pa_mainloop_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_new"); pContext->pulse.pa_mainloop_free = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_free"); + pContext->pulse.pa_mainloop_quit = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_quit"); pContext->pulse.pa_mainloop_get_api = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_get_api"); pContext->pulse.pa_mainloop_iterate = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_iterate"); pContext->pulse.pa_mainloop_wakeup = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_wakeup"); + pContext->pulse.pa_threaded_mainloop_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_new"); + pContext->pulse.pa_threaded_mainloop_free = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_free"); + pContext->pulse.pa_threaded_mainloop_start = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_start"); + pContext->pulse.pa_threaded_mainloop_stop = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_stop"); + pContext->pulse.pa_threaded_mainloop_lock = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_lock"); + pContext->pulse.pa_threaded_mainloop_unlock = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_unlock"); + pContext->pulse.pa_threaded_mainloop_wait = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_wait"); + pContext->pulse.pa_threaded_mainloop_signal = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_signal"); + pContext->pulse.pa_threaded_mainloop_accept = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_accept"); + pContext->pulse.pa_threaded_mainloop_get_retval = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_get_retval"); + pContext->pulse.pa_threaded_mainloop_get_api = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_get_api"); + pContext->pulse.pa_threaded_mainloop_in_thread = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_in_thread"); + pContext->pulse.pa_threaded_mainloop_set_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_set_name"); pContext->pulse.pa_context_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_new"); pContext->pulse.pa_context_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_unref"); pContext->pulse.pa_context_connect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_connect"); @@ -20539,9 +22753,23 @@ static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_con /* This strange assignment system is just for type safety. */ ma_pa_mainloop_new_proc _pa_mainloop_new = pa_mainloop_new; ma_pa_mainloop_free_proc _pa_mainloop_free = pa_mainloop_free; + ma_pa_mainloop_quit_proc _pa_mainloop_quit = pa_mainloop_quit; ma_pa_mainloop_get_api_proc _pa_mainloop_get_api = pa_mainloop_get_api; ma_pa_mainloop_iterate_proc _pa_mainloop_iterate = pa_mainloop_iterate; ma_pa_mainloop_wakeup_proc _pa_mainloop_wakeup = pa_mainloop_wakeup; + ma_pa_threaded_mainloop_new_proc _pa_threaded_mainloop_new = pa_threaded_mainloop_new; + ma_pa_threaded_mainloop_free_proc _pa_threaded_mainloop_free = pa_threaded_mainloop_free; + ma_pa_threaded_mainloop_start_proc _pa_threaded_mainloop_start = pa_threaded_mainloop_start; + ma_pa_threaded_mainloop_stop_proc _pa_threaded_mainloop_stop = pa_threaded_mainloop_stop; + ma_pa_threaded_mainloop_lock_proc _pa_threaded_mainloop_lock = pa_threaded_mainloop_lock; + ma_pa_threaded_mainloop_unlock_proc _pa_threaded_mainloop_unlock = pa_threaded_mainloop_unlock; + ma_pa_threaded_mainloop_wait_proc _pa_threaded_mainloop_wait = pa_threaded_mainloop_wait; + ma_pa_threaded_mainloop_signal_proc _pa_threaded_mainloop_signal = pa_threaded_mainloop_signal; + ma_pa_threaded_mainloop_accept_proc _pa_threaded_mainloop_accept = pa_threaded_mainloop_accept; + ma_pa_threaded_mainloop_get_retval_proc _pa_threaded_mainloop_get_retval = pa_threaded_mainloop_get_retval; + ma_pa_threaded_mainloop_get_api_proc _pa_threaded_mainloop_get_api = pa_threaded_mainloop_get_api; + ma_pa_threaded_mainloop_in_thread_proc _pa_threaded_mainloop_in_thread = pa_threaded_mainloop_in_thread; + ma_pa_threaded_mainloop_set_name_proc _pa_threaded_mainloop_set_name = pa_threaded_mainloop_set_name; ma_pa_context_new_proc _pa_context_new = pa_context_new; ma_pa_context_unref_proc _pa_context_unref = pa_context_unref; ma_pa_context_connect_proc _pa_context_connect = pa_context_connect; @@ -20584,9 +22812,23 @@ static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_con pContext->pulse.pa_mainloop_new = (ma_proc)_pa_mainloop_new; pContext->pulse.pa_mainloop_free = (ma_proc)_pa_mainloop_free; + pContext->pulse.pa_mainloop_quit = (ma_proc)_pa_mainloop_quit; pContext->pulse.pa_mainloop_get_api = (ma_proc)_pa_mainloop_get_api; pContext->pulse.pa_mainloop_iterate = (ma_proc)_pa_mainloop_iterate; pContext->pulse.pa_mainloop_wakeup = (ma_proc)_pa_mainloop_wakeup; + pContext->pulse.pa_threaded_mainloop_new = (ma_proc)_pa_threaded_mainloop_new; + pContext->pulse.pa_threaded_mainloop_free = (ma_proc)_pa_threaded_mainloop_free; + pContext->pulse.pa_threaded_mainloop_start = (ma_proc)_pa_threaded_mainloop_start; + pContext->pulse.pa_threaded_mainloop_stop = (ma_proc)_pa_threaded_mainloop_stop; + pContext->pulse.pa_threaded_mainloop_lock = (ma_proc)_pa_threaded_mainloop_lock; + pContext->pulse.pa_threaded_mainloop_unlock = (ma_proc)_pa_threaded_mainloop_unlock; + pContext->pulse.pa_threaded_mainloop_wait = (ma_proc)_pa_threaded_mainloop_wait; + pContext->pulse.pa_threaded_mainloop_signal = (ma_proc)_pa_threaded_mainloop_signal; + pContext->pulse.pa_threaded_mainloop_accept = (ma_proc)_pa_threaded_mainloop_accept; + pContext->pulse.pa_threaded_mainloop_get_retval = (ma_proc)_pa_threaded_mainloop_get_retval; + pContext->pulse.pa_threaded_mainloop_get_api = (ma_proc)_pa_threaded_mainloop_get_api; + pContext->pulse.pa_threaded_mainloop_in_thread = (ma_proc)_pa_threaded_mainloop_in_thread; + pContext->pulse.pa_threaded_mainloop_set_name = (ma_proc)_pa_threaded_mainloop_set_name; pContext->pulse.pa_context_new = (ma_proc)_pa_context_new; pContext->pulse.pa_context_unref = (ma_proc)_pa_context_unref; pContext->pulse.pa_context_connect = (ma_proc)_pa_context_connect; @@ -20628,82 +22870,81 @@ static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_con pContext->pulse.pa_stream_readable_size = (ma_proc)_pa_stream_readable_size; #endif + /* The PulseAudio context maps well to miniaudio's notion of a context. The pa_context object will be initialized as part of the ma_context. */ + pContext->pulse.pMainLoop = ((ma_pa_threaded_mainloop_new_proc)pContext->pulse.pa_threaded_mainloop_new)(); + if (pContext->pulse.pMainLoop == NULL) { + result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create mainloop.", MA_FAILED_TO_INIT_BACKEND); + #ifndef MA_NO_RUNTIME_LINKING + ma_dlclose(pContext, pContext->pulse.pulseSO); + #endif + return result; + } + + /* We should start the mainloop locked and unlock once ready to wait . */ + ma_mainloop_lock__pulse(pContext, "ma_context_init__pulse"); + + /* With the mainloop created we can now start it. */ + result = ma_result_from_pulse(((ma_pa_threaded_mainloop_start_proc)pContext->pulse.pa_threaded_mainloop_start)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop)); + if (result != MA_SUCCESS) { + ma_mainloop_unlock__pulse(pContext, "ma_context_init__pulse"); + ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to start mainloop.", result); + ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pContext->pulse.pPulseContext); + ((ma_pa_threaded_mainloop_free_proc)pContext->pulse.pa_threaded_mainloop_free)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + #ifndef MA_NO_RUNTIME_LINKING + ma_dlclose(pContext, pContext->pulse.pulseSO); + #endif + return result; + } + + pContext->pulse.pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(((ma_pa_threaded_mainloop_get_api_proc)pContext->pulse.pa_threaded_mainloop_get_api)((ma_pa_threaded_mainloop*)pContext->pulse.pMainLoop), pConfig->pulse.pApplicationName); + if (pContext->pulse.pPulseContext == NULL) { + ma_mainloop_unlock__pulse(pContext, "ma_context_init__pulse"); + result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio context.", MA_FAILED_TO_INIT_BACKEND); + ((ma_pa_threaded_mainloop_stop_proc)pContext->pulse.pa_threaded_mainloop_stop)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + ((ma_pa_threaded_mainloop_free_proc)pContext->pulse.pa_threaded_mainloop_free)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + #ifndef MA_NO_RUNTIME_LINKING + ma_dlclose(pContext, pContext->pulse.pulseSO); + #endif + return result; + } + + /* Now we need to connect to the context. Everything is asynchronous so we need to wait for it to connect before returning. */ + result = ma_result_from_pulse(((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)((ma_pa_context*)pContext->pulse.pPulseContext, pConfig->pulse.pServerName, (pConfig->pulse.tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL)); + if (result != MA_SUCCESS) { + ma_mainloop_unlock__pulse(pContext, "ma_context_init__pulse"); + ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio context.", result); + ((ma_pa_threaded_mainloop_stop_proc)pContext->pulse.pa_threaded_mainloop_stop)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + ((ma_pa_threaded_mainloop_free_proc)pContext->pulse.pa_threaded_mainloop_free)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + #ifndef MA_NO_RUNTIME_LINKING + ma_dlclose(pContext, pContext->pulse.pulseSO); + #endif + return result; + } + + /* Can now unlock. */ + ma_mainloop_unlock__pulse(pContext, "ma_context_init__pulse"); + + /* Since ma_context_init() runs synchronously we need to wait for the PulseAudio context to connect before we return. */ + result = ma_context_wait_for_pa_context_to_connect__pulse(pContext); + if (result != MA_SUCCESS) { + ((ma_pa_threaded_mainloop_stop_proc)pContext->pulse.pa_threaded_mainloop_stop)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + ((ma_pa_threaded_mainloop_free_proc)pContext->pulse.pa_threaded_mainloop_free)((ma_pa_threaded_mainloop*)(pContext->pulse.pMainLoop)); + #ifndef MA_NO_RUNTIME_LINKING + ma_dlclose(pContext, pContext->pulse.pulseSO); + #endif + return result; + } + + pContext->isBackendAsynchronous = MA_TRUE; /* We are using PulseAudio in asynchronous mode. */ + pContext->onUninit = ma_context_uninit__pulse; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__pulse; pContext->onEnumDevices = ma_context_enumerate_devices__pulse; pContext->onGetDeviceInfo = ma_context_get_device_info__pulse; pContext->onDeviceInit = ma_device_init__pulse; pContext->onDeviceUninit = ma_device_uninit__pulse; - pContext->onDeviceStart = NULL; - pContext->onDeviceStop = NULL; - pContext->onDeviceMainLoop = ma_device_main_loop__pulse; - - if (pConfig->pulse.pApplicationName) { - pContext->pulse.pApplicationName = ma_copy_string(pConfig->pulse.pApplicationName, &pContext->allocationCallbacks); - } - if (pConfig->pulse.pServerName) { - pContext->pulse.pServerName = ma_copy_string(pConfig->pulse.pServerName, &pContext->allocationCallbacks); - } - pContext->pulse.tryAutoSpawn = pConfig->pulse.tryAutoSpawn; - - /* - Although we have found the libpulse library, it doesn't necessarily mean PulseAudio is useable. We need to initialize - and connect a dummy PulseAudio context to test PulseAudio's usability. - */ - { - ma_pa_mainloop* pMainLoop; - ma_pa_mainloop_api* pAPI; - ma_pa_context* pPulseContext; - int error; - - pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)(); - if (pMainLoop == NULL) { - ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); - ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); - #ifndef MA_NO_RUNTIME_LINKING - ma_dlclose(pContext, pContext->pulse.pulseSO); - #endif - return MA_NO_BACKEND; - } - - pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop); - if (pAPI == NULL) { - ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); - ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - #ifndef MA_NO_RUNTIME_LINKING - ma_dlclose(pContext, pContext->pulse.pulseSO); - #endif - return MA_NO_BACKEND; - } - - pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName); - if (pPulseContext == NULL) { - ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); - ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - #ifndef MA_NO_RUNTIME_LINKING - ma_dlclose(pContext, pContext->pulse.pulseSO); - #endif - return MA_NO_BACKEND; - } - - error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, 0, NULL); - if (error != MA_PA_OK) { - ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); - ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - #ifndef MA_NO_RUNTIME_LINKING - ma_dlclose(pContext, pContext->pulse.pulseSO); - #endif - return MA_NO_BACKEND; - } - - ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext); - ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext); - ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop); - } + pContext->onDeviceStart = ma_device_start__pulse; + pContext->onDeviceStop = ma_device_stop__pulse; + pContext->onDeviceMainLoop = NULL; /* Set to null since this backend is asynchronous. */ return MA_SUCCESS; } @@ -20752,7 +22993,7 @@ typedef void (* ma_JackShutdownCallback) (void* arg); typedef ma_jack_client_t* (* ma_jack_client_open_proc) (const char* client_name, ma_jack_options_t options, ma_jack_status_t* status, ...); typedef int (* ma_jack_client_close_proc) (ma_jack_client_t* client); -typedef int (* ma_jack_client_name_size_proc) (); +typedef int (* ma_jack_client_name_size_proc) (void); typedef int (* ma_jack_set_process_callback_proc) (ma_jack_client_t* client, ma_JackProcessCallback process_callback, void* arg); typedef int (* ma_jack_set_buffer_size_callback_proc)(ma_jack_client_t* client, ma_JackBufferSizeCallback bufsize_callback, void* arg); typedef void (* ma_jack_on_shutdown_proc) (ma_jack_client_t* client, ma_JackShutdownCallback function, void* arg); @@ -20796,15 +23037,6 @@ static ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_clie return MA_SUCCESS; } -static ma_bool32 ma_context_is_device_id_equal__jack(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return pID0->jack == pID1->jack; -} static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { @@ -20818,6 +23050,7 @@ static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enu ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); + deviceInfo.isDefault = MA_TRUE; /* JACK only uses default devices. */ cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } @@ -20826,13 +23059,16 @@ static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enu ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); + deviceInfo.isDefault = MA_TRUE; /* JACK only uses default devices. */ cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } + (void)cbResult; /* For silencing a static analysis warning. */ + return MA_SUCCESS; } -static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_jack_client_t* pClient; ma_result result; @@ -20840,11 +23076,6 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic MA_ASSERT(pContext != NULL); - /* No exclusive mode with the JACK backend. */ - if (shareMode == ma_share_mode_exclusive) { - return MA_SHARE_MODE_NOT_SUPPORTED; - } - if (pDeviceID != NULL && pDeviceID->jack != 0) { return MA_NO_DEVICE; /* Don't know the device. */ } @@ -20856,9 +23087,11 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } + /* Jack only uses default devices. */ + pDeviceInfo->isDefault = MA_TRUE; + /* Jack only supports f32 and has a specific channel count and sample rate. */ - pDeviceInfo->formatCount = 1; - pDeviceInfo->formats[0] = ma_format_f32; + pDeviceInfo->nativeDataFormats[0].format = ma_format_f32; /* The channel count and sample rate can only be determined by opening the device. */ result = ma_context_open_client__jack(pContext, &pClient); @@ -20866,11 +23099,8 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result); } - pDeviceInfo->minSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pClient); - pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate; - - pDeviceInfo->minChannels = 0; - pDeviceInfo->maxChannels = 0; + pDeviceInfo->nativeDataFormats[0].sampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pClient); + pDeviceInfo->nativeDataFormats[0].channels = 0; ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ((deviceType == ma_device_type_playback) ? ma_JackPortIsInput : ma_JackPortIsOutput)); if (ppPorts == NULL) { @@ -20878,11 +23108,13 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - while (ppPorts[pDeviceInfo->minChannels] != NULL) { - pDeviceInfo->minChannels += 1; - pDeviceInfo->maxChannels += 1; + while (ppPorts[pDeviceInfo->nativeDataFormats[0].channels] != NULL) { + pDeviceInfo->nativeDataFormats[0].channels += 1; } + pDeviceInfo->nativeDataFormats[0].flags = 0; + pDeviceInfo->nativeDataFormatCount = 1; + ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient); @@ -20891,7 +23123,7 @@ static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_devic } -static void ma_device_uninit__jack(ma_device* pDevice) +static ma_result ma_device_uninit__jack(ma_device* pDevice) { ma_context* pContext; @@ -20912,9 +23144,7 @@ static void ma_device_uninit__jack(ma_device* pDevice) ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks); } - if (pDevice->type == ma_device_type_duplex) { - ma_pcm_rb_uninit(&pDevice->jack.duplexRB); - } + return MA_SUCCESS; } static void ma_device__jack_shutdown_callback(void* pUserData) @@ -20988,19 +23218,11 @@ static int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* } } - if (pDevice->type == ma_device_type_duplex) { - ma_device__handle_duplex_callback_capture(pDevice, frameCount, pDevice->jack.pIntermediaryBufferCapture, &pDevice->jack.duplexRB); - } else { - ma_device__send_frames_to_client(pDevice, frameCount, pDevice->jack.pIntermediaryBufferCapture); - } + ma_device_handle_backend_data_callback(pDevice, NULL, pDevice->jack.pIntermediaryBufferCapture, frameCount); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { - if (pDevice->type == ma_device_type_duplex) { - ma_device__handle_duplex_callback_playback(pDevice, frameCount, pDevice->jack.pIntermediaryBufferPlayback, &pDevice->jack.duplexRB); - } else { - ma_device__read_frames_from_client(pDevice, frameCount, pDevice->jack.pIntermediaryBufferPlayback); - } + ma_device_handle_backend_data_callback(pDevice, pDevice->jack.pIntermediaryBufferPlayback, NULL, frameCount); /* Channels need to be deinterleaved. */ for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { @@ -21021,13 +23243,11 @@ static int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* return 0; } -static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_result ma_device_init__jack(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; - ma_uint32 periods; ma_uint32 periodSizeInFrames; - MA_ASSERT(pContext != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(pDevice != NULL); @@ -21036,72 +23256,71 @@ static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_conf } /* Only supporting default devices with JACK. */ - if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID != NULL && pConfig->playback.pDeviceID->jack != 0) || - ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID != NULL && pConfig->capture.pDeviceID->jack != 0)) { + if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->pDeviceID != NULL && pDescriptorPlayback->pDeviceID->jack != 0) || + ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->pDeviceID != NULL && pDescriptorCapture->pDeviceID->jack != 0)) { return MA_NO_DEVICE; } /* No exclusive mode with the JACK backend. */ - if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) || - ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) { + if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || + ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } /* Open the client. */ - result = ma_context_open_client__jack(pContext, (ma_jack_client_t**)&pDevice->jack.pClient); + result = ma_context_open_client__jack(pDevice->pContext, (ma_jack_client_t**)&pDevice->jack.pClient); if (result != MA_SUCCESS) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result); } /* Callbacks. */ - if (((ma_jack_set_process_callback_proc)pContext->jack.jack_set_process_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_process_callback, pDevice) != 0) { + if (((ma_jack_set_process_callback_proc)pDevice->pContext->jack.jack_set_process_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_process_callback, pDevice) != 0) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to set process callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - if (((ma_jack_set_buffer_size_callback_proc)pContext->jack.jack_set_buffer_size_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_buffer_size_callback, pDevice) != 0) { + if (((ma_jack_set_buffer_size_callback_proc)pDevice->pContext->jack.jack_set_buffer_size_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_buffer_size_callback, pDevice) != 0) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to set buffer size callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - ((ma_jack_on_shutdown_proc)pContext->jack.jack_on_shutdown)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_shutdown_callback, pDevice); + ((ma_jack_on_shutdown_proc)pDevice->pContext->jack.jack_on_shutdown)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_shutdown_callback, pDevice); /* The buffer size in frames can change. */ - periods = pConfig->periods; - periodSizeInFrames = ((ma_jack_get_buffer_size_proc)pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient); - + periodSizeInFrames = ((ma_jack_get_buffer_size_proc)pDevice->pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient); + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { const char** ppPorts; - pDevice->capture.internalFormat = ma_format_f32; - pDevice->capture.internalChannels = 0; - pDevice->capture.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); - ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); + pDescriptorCapture->format = ma_format_f32; + pDescriptorCapture->channels = 0; + pDescriptorCapture->sampleRate = ((ma_jack_get_sample_rate_proc)pDevice->pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); + ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDescriptorCapture->channels, pDescriptorCapture->channelMap); - ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput); + ppPorts = ((ma_jack_get_ports_proc)pDevice->pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput); if (ppPorts == NULL) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - while (ppPorts[pDevice->capture.internalChannels] != NULL) { + while (ppPorts[pDescriptorCapture->channels] != NULL) { char name[64]; ma_strcpy_s(name, sizeof(name), "capture"); - ma_itoa_s((int)pDevice->capture.internalChannels, name+7, sizeof(name)-7, 10); /* 7 = length of "capture" */ + ma_itoa_s((int)pDescriptorCapture->channels, name+7, sizeof(name)-7, 10); /* 7 = length of "capture" */ - pDevice->jack.pPortsCapture[pDevice->capture.internalChannels] = ((ma_jack_port_register_proc)pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsInput, 0); - if (pDevice->jack.pPortsCapture[pDevice->capture.internalChannels] == NULL) { - ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); + pDevice->jack.pPortsCapture[pDescriptorCapture->channels] = ((ma_jack_port_register_proc)pDevice->pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsInput, 0); + if (pDevice->jack.pPortsCapture[pDescriptorCapture->channels] == NULL) { + ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); ma_device_uninit__jack(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - pDevice->capture.internalChannels += 1; + pDescriptorCapture->channels += 1; } - ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); + ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); - pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->capture.internalPeriods = periods; + pDescriptorCapture->periodSizeInFrames = periodSizeInFrames; + pDescriptorCapture->periodCount = 1; /* There's no notion of a period in JACK. Just set to 1. */ - pDevice->jack.pIntermediaryBufferCapture = (float*)ma__calloc_from_callbacks(pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels), &pContext->allocationCallbacks); + pDevice->jack.pIntermediaryBufferCapture = (float*)ma__calloc_from_callbacks(pDescriptorCapture->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels), &pDevice->pContext->allocationCallbacks); if (pDevice->jack.pIntermediaryBufferCapture == NULL) { ma_device_uninit__jack(pDevice); return MA_OUT_OF_MEMORY; @@ -21111,63 +23330,43 @@ static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_conf if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { const char** ppPorts; - pDevice->playback.internalFormat = ma_format_f32; - pDevice->playback.internalChannels = 0; - pDevice->playback.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); - ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); + pDescriptorPlayback->format = ma_format_f32; + pDescriptorPlayback->channels = 0; + pDescriptorPlayback->sampleRate = ((ma_jack_get_sample_rate_proc)pDevice->pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); + ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); - ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput); + ppPorts = ((ma_jack_get_ports_proc)pDevice->pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput); if (ppPorts == NULL) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - while (ppPorts[pDevice->playback.internalChannels] != NULL) { + while (ppPorts[pDescriptorPlayback->channels] != NULL) { char name[64]; ma_strcpy_s(name, sizeof(name), "playback"); - ma_itoa_s((int)pDevice->playback.internalChannels, name+8, sizeof(name)-8, 10); /* 8 = length of "playback" */ + ma_itoa_s((int)pDescriptorPlayback->channels, name+8, sizeof(name)-8, 10); /* 8 = length of "playback" */ - pDevice->jack.pPortsPlayback[pDevice->playback.internalChannels] = ((ma_jack_port_register_proc)pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsOutput, 0); - if (pDevice->jack.pPortsPlayback[pDevice->playback.internalChannels] == NULL) { - ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); + pDevice->jack.pPortsPlayback[pDescriptorPlayback->channels] = ((ma_jack_port_register_proc)pDevice->pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsOutput, 0); + if (pDevice->jack.pPortsPlayback[pDescriptorPlayback->channels] == NULL) { + ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); ma_device_uninit__jack(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE); } - pDevice->playback.internalChannels += 1; + pDescriptorPlayback->channels += 1; } - ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); + ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); - pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames; - pDevice->playback.internalPeriods = periods; + pDescriptorPlayback->periodSizeInFrames = periodSizeInFrames; + pDescriptorPlayback->periodCount = 1; /* There's no notion of a period in JACK. Just set to 1. */ - pDevice->jack.pIntermediaryBufferPlayback = (float*)ma__calloc_from_callbacks(pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels), &pContext->allocationCallbacks); + pDevice->jack.pIntermediaryBufferPlayback = (float*)ma__calloc_from_callbacks(pDescriptorPlayback->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels), &pDevice->pContext->allocationCallbacks); if (pDevice->jack.pIntermediaryBufferPlayback == NULL) { ma_device_uninit__jack(pDevice); return MA_OUT_OF_MEMORY; } } - if (pDevice->type == ma_device_type_duplex) { - ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods); - result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->jack.duplexRB); - if (result != MA_SUCCESS) { - ma_device_uninit__jack(pDevice); - return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to initialize ring buffer.", result); - } - - /* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */ - { - ma_uint32 marginSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods; - void* pMarginData; - ma_pcm_rb_acquire_write(&pDevice->jack.duplexRB, &marginSizeInFrames, &pMarginData); - { - MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels)); - } - ma_pcm_rb_commit_write(&pDevice->jack.duplexRB, marginSizeInFrames, pMarginData); - } - } - return MA_SUCCESS; } @@ -21204,7 +23403,7 @@ static ma_result ma_device_start__jack(ma_device* pDevice) ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts); } - + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput); if (ppServerPorts == NULL) { @@ -21238,7 +23437,7 @@ static ma_result ma_device_stop__jack(ma_device* pDevice) if (((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient) != 0) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] An error occurred when deactivating the JACK client.", MA_ERROR); } - + onStop = pDevice->onStop; if (onStop) { onStop(pDevice); @@ -21263,7 +23462,7 @@ static ma_result ma_context_uninit__jack(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__jack(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { #ifndef MA_NO_RUNTIME_LINKING const char* libjackNames[] = { @@ -21343,17 +23542,6 @@ static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_cont pContext->jack.jack_free = (ma_proc)_jack_free; #endif - pContext->isBackendAsynchronous = MA_TRUE; - - pContext->onUninit = ma_context_uninit__jack; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__jack; - pContext->onEnumDevices = ma_context_enumerate_devices__jack; - pContext->onGetDeviceInfo = ma_context_get_device_info__jack; - pContext->onDeviceInit = ma_device_init__jack; - pContext->onDeviceUninit = ma_device_uninit__jack; - pContext->onDeviceStart = ma_device_start__jack; - pContext->onDeviceStop = ma_device_stop__jack; - if (pConfig->jack.pClientName != NULL) { pContext->jack.pClientName = ma_copy_string(pConfig->jack.pClientName, &pContext->allocationCallbacks); } @@ -21377,6 +23565,19 @@ static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_cont ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDummyClient); } + + pCallbacks->onContextInit = ma_context_init__jack; + pCallbacks->onContextUninit = ma_context_uninit__jack; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__jack; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__jack; + pCallbacks->onDeviceInit = ma_device_init__jack; + pCallbacks->onDeviceUninit = ma_device_uninit__jack; + pCallbacks->onDeviceStart = ma_device_start__jack; + pCallbacks->onDeviceStop = ma_device_stop__jack; + pCallbacks->onDeviceRead = NULL; /* Not used because JACK is asynchronous. */ + pCallbacks->onDeviceWrite = NULL; /* Not used because JACK is asynchronous. */ + pCallbacks->onDeviceAudioThread = NULL; /* Not used because JACK is asynchronous. */ + return MA_SUCCESS; } #endif /* JACK */ @@ -21387,6 +23588,11 @@ static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_cont Core Audio Backend +References +========== +- Technical Note TN2091: Device input using the HAL Output Audio Unit + https://developer.apple.com/library/archive/technotes/tn2091/_index.html + ******************************************************************************/ #ifdef MA_HAS_COREAUDIO #include @@ -21532,14 +23738,14 @@ static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBas { MA_ASSERT(pDescription != NULL); MA_ASSERT(pFormatOut != NULL); - + *pFormatOut = ma_format_unknown; /* Safety. */ - + /* There's a few things miniaudio doesn't support. */ if (pDescription->mFormatID != kAudioFormatLinearPCM) { return MA_FORMAT_NOT_SUPPORTED; } - + /* We don't support any non-packed formats that are aligned high. */ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) != 0) { return MA_FORMAT_NOT_SUPPORTED; @@ -21549,7 +23755,7 @@ static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBas if ((ma_is_little_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) || (ma_is_big_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) == 0)) { return MA_FORMAT_NOT_SUPPORTED; } - + /* We are not currently supporting non-interleaved formats (this will be added in a future version of miniaudio). */ /*if ((pDescription->mFormatFlags & kAudioFormatFlagIsNonInterleaved) != 0) { return MA_FORMAT_NOT_SUPPORTED; @@ -21588,7 +23794,7 @@ static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBas } } } - + /* Getting here means the format is not supported. */ return MA_FORMAT_NOT_SUPPORTED; } @@ -21662,7 +23868,7 @@ static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label) case kAudioChannelLabel_Discrete_14: return MA_CHANNEL_AUX_14; case kAudioChannelLabel_Discrete_15: return MA_CHANNEL_AUX_15; case kAudioChannelLabel_Discrete_65535: return MA_CHANNEL_NONE; - + #if 0 /* Introduced in a later version of macOS. */ case kAudioChannelLabel_HOA_ACN: return MA_CHANNEL_NONE; case kAudioChannelLabel_HOA_ACN_0: return MA_CHANNEL_AUX_0; @@ -21683,19 +23889,19 @@ static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label) case kAudioChannelLabel_HOA_ACN_15: return MA_CHANNEL_AUX_15; case kAudioChannelLabel_HOA_ACN_65024: return MA_CHANNEL_NONE; #endif - + default: return MA_CHANNEL_NONE; } } -static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel channelMap[MA_MAX_CHANNELS]) +static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel* pChannelMap, size_t channelMapCap) { MA_ASSERT(pChannelLayout != NULL); - + if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) { UInt32 iChannel; - for (iChannel = 0; iChannel < pChannelLayout->mNumberChannelDescriptions; ++iChannel) { - channelMap[iChannel] = ma_channel_from_AudioChannelLabel(pChannelLayout->mChannelDescriptions[iChannel].mChannelLabel); + for (iChannel = 0; iChannel < pChannelLayout->mNumberChannelDescriptions && iChannel < channelMapCap; ++iChannel) { + pChannelMap[iChannel] = ma_channel_from_AudioChannelLabel(pChannelLayout->mChannelDescriptions[iChannel].mChannelLabel); } } else #if 0 @@ -21704,10 +23910,10 @@ static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* UInt32 iChannel = 0; UInt32 iBit; AudioChannelBitmap bitmap = pChannelLayout->mChannelBitmap; - for (iBit = 0; iBit < 32; ++iBit) { + for (iBit = 0; iBit < 32 && iChannel < channelMapCap; ++iBit) { AudioChannelBitmap bit = bitmap & (1 << iBit); if (bit != 0) { - channelMap[iChannel++] = ma_channel_from_AudioChannelBit(bit); + pChannelMap[iChannel++] = ma_channel_from_AudioChannelBit(bit); } } } else @@ -21717,7 +23923,15 @@ static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* Need to use the tag to determine the channel map. For now I'm just assuming a default channel map, but later on this should be updated to determine the mapping based on the tag. */ - UInt32 channelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag); + UInt32 channelCount; + + /* Our channel map retrieval APIs below take 32-bit integers, so we'll want to clamp the channel map capacity. */ + if (channelMapCap > 0xFFFFFFFF) { + channelMapCap = 0xFFFFFFFF; + } + + channelCount = ma_min(AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag), (UInt32)channelMapCap); + switch (pChannelLayout->mChannelLayoutTag) { case kAudioChannelLayoutTag_Mono: @@ -21729,39 +23943,39 @@ static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* case kAudioChannelLayoutTag_Binaural: case kAudioChannelLayoutTag_Ambisonic_B_Format: { - ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, channelMap); + ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, pChannelMap); } break; - + case kAudioChannelLayoutTag_Octagonal: { - channelMap[7] = MA_CHANNEL_SIDE_RIGHT; - channelMap[6] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; } /* Intentional fallthrough. */ case kAudioChannelLayoutTag_Hexagonal: { - channelMap[5] = MA_CHANNEL_BACK_CENTER; + pChannelMap[5] = MA_CHANNEL_BACK_CENTER; } /* Intentional fallthrough. */ case kAudioChannelLayoutTag_Pentagonal: { - channelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; } /* Intentional fallghrough. */ case kAudioChannelLayoutTag_Quadraphonic: { - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; - channelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; } break; - + /* TODO: Add support for more tags here. */ - + default: { - ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, channelMap); + ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, pChannelMap); } break; } } - + return MA_SUCCESS; } @@ -21779,7 +23993,7 @@ static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt3 /* Safety. */ *pDeviceCount = 0; *ppDeviceObjectIDs = NULL; - + propAddressDevices.mSelector = kAudioHardwarePropertyDevices; propAddressDevices.mScope = kAudioObjectPropertyScopeGlobal; propAddressDevices.mElement = kAudioObjectPropertyElementMaster; @@ -21788,18 +24002,18 @@ static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt3 if (status != noErr) { return ma_result_from_OSStatus(status); } - + pDeviceObjectIDs = (AudioObjectID*)ma_malloc(deviceObjectsDataSize, &pContext->allocationCallbacks); if (pDeviceObjectIDs == NULL) { return MA_OUT_OF_MEMORY; } - + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize, pDeviceObjectIDs); if (status != noErr) { ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } - + *pDeviceCount = deviceObjectsDataSize / sizeof(AudioObjectID); *ppDeviceObjectIDs = pDeviceObjectIDs; @@ -21823,7 +24037,7 @@ static ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, Aud if (status != noErr) { return ma_result_from_OSStatus(status); } - + return MA_SUCCESS; } @@ -21838,11 +24052,11 @@ static ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID obje if (result != MA_SUCCESS) { return result; } - + if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(uid, bufferOut, bufferSize, kCFStringEncodingUTF8)) { return MA_ERROR; } - + ((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(uid); return MA_SUCCESS; } @@ -21865,11 +24079,11 @@ static ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID obj if (status != noErr) { return ma_result_from_OSStatus(status); } - + if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(deviceName, bufferOut, bufferSize, kCFStringEncodingUTF8)) { return MA_ERROR; } - + ((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(deviceName); return MA_SUCCESS; } @@ -21888,17 +24102,17 @@ static ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioOb propAddress.mSelector = kAudioDevicePropertyStreamConfiguration; propAddress.mScope = scope; propAddress.mElement = kAudioObjectPropertyElementMaster; - + status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return MA_FALSE; } - + pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(dataSize, &pContext->allocationCallbacks); if (pBufferList == NULL) { return MA_FALSE; /* Out of memory. */ } - + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pBufferList); if (status != noErr) { ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks); @@ -21909,7 +24123,7 @@ static ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioOb if (pBufferList->mNumberBuffers > 0) { isSupported = MA_TRUE; } - + ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks); return isSupported; } @@ -21935,7 +24149,7 @@ static ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, Au MA_ASSERT(pContext != NULL); MA_ASSERT(pDescriptionCount != NULL); MA_ASSERT(ppDescriptions != NULL); - + /* TODO: Experiment with kAudioStreamPropertyAvailablePhysicalFormats instead of (or in addition to) kAudioStreamPropertyAvailableVirtualFormats. My MacBook Pro uses s24/32 format, however, which miniaudio does not currently support. @@ -21943,23 +24157,23 @@ static ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, Au propAddress.mSelector = kAudioStreamPropertyAvailableVirtualFormats; /*kAudioStreamPropertyAvailablePhysicalFormats;*/ propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = kAudioObjectPropertyElementMaster; - + status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } - + pDescriptions = (AudioStreamRangedDescription*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pDescriptions == NULL) { return MA_OUT_OF_MEMORY; } - + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pDescriptions); if (status != noErr) { ma_free(pDescriptions, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } - + *pDescriptionCount = dataSize / sizeof(*pDescriptions); *ppDescriptions = pDescriptions; return MA_SUCCESS; @@ -21975,29 +24189,29 @@ static ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioOb MA_ASSERT(pContext != NULL); MA_ASSERT(ppChannelLayout != NULL); - + *ppChannelLayout = NULL; /* Safety. */ - + propAddress.mSelector = kAudioDevicePropertyPreferredChannelLayout; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = kAudioObjectPropertyElementMaster; - + status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } - + pChannelLayout = (AudioChannelLayout*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pChannelLayout == NULL) { return MA_OUT_OF_MEMORY; } - + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pChannelLayout); if (status != noErr) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } - + *ppChannelLayout = pChannelLayout; return MA_SUCCESS; } @@ -22009,14 +24223,14 @@ static ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObj MA_ASSERT(pContext != NULL); MA_ASSERT(pChannelCount != NULL); - + *pChannelCount = 0; /* Safety. */ result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout); if (result != MA_SUCCESS) { return result; } - + if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) { *pChannelCount = pChannelLayout->mNumberChannelDescriptions; } else if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelBitmap) { @@ -22024,30 +24238,30 @@ static ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObj } else { *pChannelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag); } - + ma_free(pChannelLayout, &pContext->allocationCallbacks); return MA_SUCCESS; } #if 0 -static ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS]) +static ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel* pChannelMap, size_t channelMapCap) { AudioChannelLayout* pChannelLayout; ma_result result; MA_ASSERT(pContext != NULL); - + result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout); if (result != MA_SUCCESS) { return result; /* Rather than always failing here, would it be more robust to simply assume a default? */ } - - result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap); + + result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, pChannelMap, channelMapCap); if (result != MA_SUCCESS) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return result; } - + ma_free(pChannelLayout, &pContext->allocationCallbacks); return result; } @@ -22063,31 +24277,31 @@ static ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObje MA_ASSERT(pContext != NULL); MA_ASSERT(pSampleRateRangesCount != NULL); MA_ASSERT(ppSampleRateRanges != NULL); - + /* Safety. */ *pSampleRateRangesCount = 0; *ppSampleRateRanges = NULL; - + propAddress.mSelector = kAudioDevicePropertyAvailableNominalSampleRates; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = kAudioObjectPropertyElementMaster; - + status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } - + pSampleRateRanges = (AudioValueRange*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pSampleRateRanges == NULL) { return MA_OUT_OF_MEMORY; } - + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pSampleRateRanges); if (status != noErr) { ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } - + *pSampleRateRangesCount = dataSize / sizeof(*pSampleRateRanges); *ppSampleRateRanges = pSampleRateRanges; return MA_SUCCESS; @@ -22102,19 +24316,19 @@ static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext MA_ASSERT(pContext != NULL); MA_ASSERT(pSampleRateOut != NULL); - + *pSampleRateOut = 0; /* Safety. */ - + result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges); if (result != MA_SUCCESS) { return result; } - + if (sampleRateRangeCount == 0) { ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_ERROR; /* Should never hit this case should we? */ } - + if (sampleRateIn == 0) { /* Search in order of miniaudio's preferred priority. */ UInt32 iMALSampleRate; @@ -22130,13 +24344,13 @@ static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext } } } - + /* If we get here it means none of miniaudio's standard sample rates matched any of the supported sample rates from the device. In this case we just fall back to the first one reported by Core Audio. */ MA_ASSERT(sampleRateRangeCount > 0); - + *pSampleRateOut = pSampleRateRanges[0].mMinimum; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; @@ -22157,21 +24371,21 @@ static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext } else { absoluteDifference = sampleRateIn - pSampleRateRanges[iRange].mMaximum; } - + if (currentAbsoluteDifference > absoluteDifference) { currentAbsoluteDifference = absoluteDifference; iCurrentClosestRange = iRange; } } } - + MA_ASSERT(iCurrentClosestRange != (UInt32)-1); - + *pSampleRateOut = pSampleRateRanges[iCurrentClosestRange].mMinimum; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; } - + /* Should never get here, but it would mean we weren't able to find any suitable sample rates. */ /*ma_free(pSampleRateRanges, &pContext->allocationCallbacks);*/ /*return MA_ERROR;*/ @@ -22187,9 +24401,9 @@ static ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pC MA_ASSERT(pContext != NULL); MA_ASSERT(pBufferSizeInFramesOut != NULL); - + *pBufferSizeInFramesOut = 0; /* Safety. */ - + propAddress.mSelector = kAudioDevicePropertyBufferFrameSizeRange; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = kAudioObjectPropertyElementMaster; @@ -22199,7 +24413,7 @@ static ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pC if (status != noErr) { return ma_result_from_OSStatus(status); } - + /* This is just a clamp. */ if (bufferSizeInFramesIn < bufferSizeRange.mMinimum) { *pBufferSizeInFramesOut = (ma_uint32)bufferSizeRange.mMinimum; @@ -22231,20 +24445,51 @@ static ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, propAddress.mSelector = kAudioDevicePropertyBufferFrameSize; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = kAudioObjectPropertyElementMaster; - + ((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(chosenBufferSizeInFrames), &chosenBufferSizeInFrames); - + /* Get the actual size of the buffer. */ dataSize = sizeof(*pPeriodSizeInOut); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &chosenBufferSizeInFrames); if (status != noErr) { return ma_result_from_OSStatus(status); } - + *pPeriodSizeInOut = chosenBufferSizeInFrames; return MA_SUCCESS; } +static ma_result ma_find_default_AudioObjectID(ma_context* pContext, ma_device_type deviceType, AudioObjectID* pDeviceObjectID) +{ + AudioObjectPropertyAddress propAddressDefaultDevice; + UInt32 defaultDeviceObjectIDSize = sizeof(AudioObjectID); + AudioObjectID defaultDeviceObjectID; + OSStatus status; + + MA_ASSERT(pContext != NULL); + MA_ASSERT(pDeviceObjectID != NULL); + + /* Safety. */ + *pDeviceObjectID = 0; + + propAddressDefaultDevice.mScope = kAudioObjectPropertyScopeGlobal; + propAddressDefaultDevice.mElement = kAudioObjectPropertyElementMaster; + if (deviceType == ma_device_type_playback) { + propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultOutputDevice; + } else { + propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultInputDevice; + } + + defaultDeviceObjectIDSize = sizeof(AudioObjectID); + status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDefaultDevice, 0, NULL, &defaultDeviceObjectIDSize, &defaultDeviceObjectID); + if (status == noErr) { + *pDeviceObjectID = defaultDeviceObjectID; + return MA_SUCCESS; + } + + /* If we get here it means we couldn't find the device. */ + return MA_NO_DEVICE; +} static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, AudioObjectID* pDeviceObjectID) { @@ -22253,28 +24498,10 @@ static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type devi /* Safety. */ *pDeviceObjectID = 0; - + if (pDeviceID == NULL) { /* Default device. */ - AudioObjectPropertyAddress propAddressDefaultDevice; - UInt32 defaultDeviceObjectIDSize = sizeof(AudioObjectID); - AudioObjectID defaultDeviceObjectID; - OSStatus status; - - propAddressDefaultDevice.mScope = kAudioObjectPropertyScopeGlobal; - propAddressDefaultDevice.mElement = kAudioObjectPropertyElementMaster; - if (deviceType == ma_device_type_playback) { - propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultOutputDevice; - } else { - propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultInputDevice; - } - - defaultDeviceObjectIDSize = sizeof(AudioObjectID); - status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDefaultDevice, 0, NULL, &defaultDeviceObjectIDSize, &defaultDeviceObjectID); - if (status == noErr) { - *pDeviceObjectID = defaultDeviceObjectID; - return MA_SUCCESS; - } + return ma_find_default_AudioObjectID(pContext, deviceType, pDeviceObjectID); } else { /* Explicit device. */ UInt32 deviceCount; @@ -22286,15 +24513,15 @@ static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type devi if (result != MA_SUCCESS) { return result; } - + for (iDevice = 0; iDevice < deviceCount; ++iDevice) { AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice]; - + char uid[256]; if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(uid), uid) != MA_SUCCESS) { continue; } - + if (deviceType == ma_device_type_playback) { if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) { if (strcmp(uid, pDeviceID->coreaudio) == 0) { @@ -22316,13 +24543,13 @@ static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type devi ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); } - + /* If we get here it means we couldn't find the device. */ return MA_NO_DEVICE; } -static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_bool32 usingDefaultFormat, ma_bool32 usingDefaultChannels, ma_bool32 usingDefaultSampleRate, AudioStreamBasicDescription* pFormat) +static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_bool32 usingDefaultFormat, ma_bool32 usingDefaultChannels, ma_bool32 usingDefaultSampleRate, const AudioStreamBasicDescription* pOrigFormat, AudioStreamBasicDescription* pFormat) { UInt32 deviceFormatDescriptionCount; AudioStreamRangedDescription* pDeviceFormatDescriptions; @@ -22338,51 +24565,31 @@ static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjec if (result != MA_SUCCESS) { return result; } - + desiredSampleRate = sampleRate; if (usingDefaultSampleRate) { - /* - When using the device's default sample rate, we get the highest priority standard rate supported by the device. Otherwise - we just use the pre-set rate. - */ - ma_uint32 iStandardRate; - for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) { - ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate]; - ma_bool32 foundRate = MA_FALSE; - UInt32 iDeviceRate; - - for (iDeviceRate = 0; iDeviceRate < deviceFormatDescriptionCount; ++iDeviceRate) { - ma_uint32 deviceRate = (ma_uint32)pDeviceFormatDescriptions[iDeviceRate].mFormat.mSampleRate; - - if (deviceRate == standardRate) { - desiredSampleRate = standardRate; - foundRate = MA_TRUE; - break; - } - } - - if (foundRate) { - break; - } - } + desiredSampleRate = pOrigFormat->mSampleRate; } - + desiredChannelCount = channels; if (usingDefaultChannels) { - ma_get_AudioObject_channel_count(pContext, deviceObjectID, deviceType, &desiredChannelCount); /* <-- Not critical if this fails. */ + desiredChannelCount = pOrigFormat->mChannelsPerFrame; } - + desiredFormat = format; if (usingDefaultFormat) { - desiredFormat = g_maFormatPriorities[0]; + result = ma_format_from_AudioStreamBasicDescription(pOrigFormat, &desiredFormat); + if (result != MA_SUCCESS || desiredFormat == ma_format_unknown) { + desiredFormat = g_maFormatPriorities[0]; + } } - + /* If we get here it means we don't have an exact match to what the client is asking for. We'll need to find the closest one. The next loop will check for formats that have the same sample rate to what we're asking for. If there is, we prefer that one in all cases. */ MA_ZERO_OBJECT(&bestDeviceFormatSoFar); - + hasSupportedFormat = MA_FALSE; for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) { ma_format format; @@ -22393,13 +24600,13 @@ static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjec break; } } - + if (!hasSupportedFormat) { ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks); return MA_FORMAT_NOT_SUPPORTED; } - - + + for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) { AudioStreamBasicDescription thisDeviceFormat = pDeviceFormatDescriptions[iFormat].mFormat; ma_format thisSampleFormat; @@ -22411,9 +24618,9 @@ static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjec if (formatResult != MA_SUCCESS || thisSampleFormat == ma_format_unknown) { continue; /* The format is not supported by miniaudio. Skip. */ } - + ma_format_from_AudioStreamBasicDescription(&bestDeviceFormatSoFar, &bestSampleFormatSoFar); - + /* Getting here means the format is supported by miniaudio which makes this format a candidate. */ if (thisDeviceFormat.mSampleRate != desiredSampleRate) { /* @@ -22515,14 +24722,14 @@ static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjec } } } - + *pFormat = bestDeviceFormatSoFar; ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks); return MA_SUCCESS; } -static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS]) +static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel* pChannelMap, size_t channelMapCap) { AudioUnitScope deviceScope; AudioUnitElement deviceBus; @@ -22532,32 +24739,32 @@ static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit au ma_result result; MA_ASSERT(pContext != NULL); - + if (deviceType == ma_device_type_playback) { - deviceScope = kAudioUnitScope_Output; + deviceScope = kAudioUnitScope_Input; deviceBus = MA_COREAUDIO_OUTPUT_BUS; } else { - deviceScope = kAudioUnitScope_Input; + deviceScope = kAudioUnitScope_Output; deviceBus = MA_COREAUDIO_INPUT_BUS; } - + status = ((ma_AudioUnitGetPropertyInfo_proc)pContext->coreaudio.AudioUnitGetPropertyInfo)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, &channelLayoutSize, NULL); if (status != noErr) { return ma_result_from_OSStatus(status); } - + pChannelLayout = (AudioChannelLayout*)ma__malloc_from_callbacks(channelLayoutSize, &pContext->allocationCallbacks); if (pChannelLayout == NULL) { return MA_OUT_OF_MEMORY; } - + status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, pChannelLayout, &channelLayoutSize); if (status != noErr) { ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } - - result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap); + + result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, pChannelMap, channelMapCap); if (result != MA_SUCCESS) { ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks); return result; @@ -22568,29 +24775,34 @@ static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit au } #endif /* MA_APPLE_DESKTOP */ -static ma_bool32 ma_context_is_device_id_equal__coreaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - return strcmp(pID0->coreaudio, pID1->coreaudio) == 0; +#if !defined(MA_APPLE_DESKTOP) +static void ma_AVAudioSessionPortDescription_to_device_info(AVAudioSessionPortDescription* pPortDesc, ma_device_info* pInfo) +{ + MA_ZERO_OBJECT(pInfo); + ma_strncpy_s(pInfo->name, sizeof(pInfo->name), [pPortDesc.portName UTF8String], (size_t)-1); + ma_strncpy_s(pInfo->id.coreaudio, sizeof(pInfo->id.coreaudio), [pPortDesc.UID UTF8String], (size_t)-1); } +#endif static ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { #if defined(MA_APPLE_DESKTOP) UInt32 deviceCount; AudioObjectID* pDeviceObjectIDs; + AudioObjectID defaultDeviceObjectIDPlayback; + AudioObjectID defaultDeviceObjectIDCapture; ma_result result; UInt32 iDevice; + ma_find_default_AudioObjectID(pContext, ma_device_type_playback, &defaultDeviceObjectIDPlayback); /* OK if this fails. */ + ma_find_default_AudioObjectID(pContext, ma_device_type_capture, &defaultDeviceObjectIDCapture); /* OK if this fails. */ + result = ma_get_device_object_ids__coreaudio(pContext, &deviceCount, &pDeviceObjectIDs); if (result != MA_SUCCESS) { return result; } - + for (iDevice = 0; iDevice < deviceCount; ++iDevice) { AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice]; ma_device_info info; @@ -22604,35 +24816,46 @@ static ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, m } if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) { + if (deviceObjectID == defaultDeviceObjectIDPlayback) { + info.isDefault = MA_TRUE; + } + if (!callback(pContext, ma_device_type_playback, &info, pUserData)) { break; } } if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) { + if (deviceObjectID == defaultDeviceObjectIDCapture) { + info.isDefault = MA_TRUE; + } + if (!callback(pContext, ma_device_type_capture, &info, pUserData)) { break; } } } - + ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); #else - /* Only supporting default devices on non-Desktop platforms. */ ma_device_info info; - - MA_ZERO_OBJECT(&info); - ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); - if (!callback(pContext, ma_device_type_playback, &info, pUserData)) { - return MA_SUCCESS; + NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; + NSArray *pOutputs = [[[AVAudioSession sharedInstance] currentRoute] outputs]; + + for (AVAudioSessionPortDescription* pPortDesc in pOutputs) { + ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, &info); + if (!callback(pContext, ma_device_type_playback, &info, pUserData)) { + return MA_SUCCESS; + } } - - MA_ZERO_OBJECT(&info); - ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); - if (!callback(pContext, ma_device_type_capture, &info, pUserData)) { - return MA_SUCCESS; + + for (AVAudioSessionPortDescription* pPortDesc in pInputs) { + ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, &info); + if (!callback(pContext, ma_device_type_capture, &info, pUserData)) { + return MA_SUCCESS; + } } #endif - + return MA_SUCCESS; } @@ -22646,38 +24869,45 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ if (shareMode == ma_share_mode_exclusive) { return MA_SHARE_MODE_NOT_SUPPORTED; } - + #if defined(MA_APPLE_DESKTOP) /* Desktop */ { AudioObjectID deviceObjectID; + AudioObjectID defaultDeviceObjectID; UInt32 streamDescriptionCount; AudioStreamRangedDescription* pStreamDescriptions; UInt32 iStreamDescription; UInt32 sampleRateRangeCount; AudioValueRange* pSampleRateRanges; + ma_find_default_AudioObjectID(pContext, deviceType, &defaultDeviceObjectID); /* OK if this fails. */ + result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID); if (result != MA_SUCCESS) { return result; } - + result = ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(pDeviceInfo->id.coreaudio), pDeviceInfo->id.coreaudio); if (result != MA_SUCCESS) { return result; } - + result = ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pDeviceInfo->name), pDeviceInfo->name); if (result != MA_SUCCESS) { return result; } - + + if (deviceObjectID == defaultDeviceObjectID) { + pDeviceInfo->isDefault = MA_TRUE; + } + /* Formats. */ result = ma_get_AudioObject_stream_descriptions(pContext, deviceObjectID, deviceType, &streamDescriptionCount, &pStreamDescriptions); if (result != MA_SUCCESS) { return result; } - + for (iStreamDescription = 0; iStreamDescription < streamDescriptionCount; ++iStreamDescription) { ma_format format; ma_bool32 formatExists = MA_FALSE; @@ -22687,9 +24917,9 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ if (result != MA_SUCCESS) { continue; } - + MA_ASSERT(format != ma_format_unknown); - + /* Make sure the format isn't already in the output list. */ for (iOutputFormat = 0; iOutputFormat < pDeviceInfo->formatCount; ++iOutputFormat) { if (pDeviceInfo->formats[iOutputFormat] == format) { @@ -22697,29 +24927,29 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ break; } } - + if (!formatExists) { pDeviceInfo->formats[pDeviceInfo->formatCount++] = format; } } - + ma_free(pStreamDescriptions, &pContext->allocationCallbacks); - - + + /* Channels. */ result = ma_get_AudioObject_channel_count(pContext, deviceObjectID, deviceType, &pDeviceInfo->minChannels); if (result != MA_SUCCESS) { return result; } pDeviceInfo->maxChannels = pDeviceInfo->minChannels; - - + + /* Sample rates. */ result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges); if (result != MA_SUCCESS) { return result; } - + if (sampleRateRangeCount > 0) { UInt32 iSampleRate; pDeviceInfo->minSampleRate = UINT32_MAX; @@ -22746,12 +24976,41 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ AudioStreamBasicDescription bestFormat; UInt32 propSize; - if (deviceType == ma_device_type_playback) { - ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); + /* We want to ensure we use a consistent device name to device enumeration. */ + if (pDeviceID != NULL) { + ma_bool32 found = MA_FALSE; + if (deviceType == ma_device_type_playback) { + NSArray *pOutputs = [[[AVAudioSession sharedInstance] currentRoute] outputs]; + for (AVAudioSessionPortDescription* pPortDesc in pOutputs) { + if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { + ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, pDeviceInfo); + found = MA_TRUE; + break; + } + } + } else { + NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; + for (AVAudioSessionPortDescription* pPortDesc in pInputs) { + if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { + ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, pDeviceInfo); + found = MA_TRUE; + break; + } + } + } + + if (!found) { + return MA_DOES_NOT_EXIST; + } } else { - ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); + if (deviceType == ma_device_type_playback) { + ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); + } else { + ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); + } } - + + /* Retrieving device information is more annoying on mobile than desktop. For simplicity I'm locking this down to whatever format is reported on a temporary I/O unit. The problem, however, is that this doesn't return a value for the sample rate which we need to @@ -22762,40 +25021,40 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; - + component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc); if (component == NULL) { return MA_FAILED_TO_INIT_BACKEND; } - + status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)(component, &audioUnit); if (status != noErr) { return ma_result_from_OSStatus(status); } - + formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output; formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS; - + propSize = sizeof(bestFormat); status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, &propSize); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit); return ma_result_from_OSStatus(status); } - + ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit); audioUnit = NULL; - - + + pDeviceInfo->minChannels = bestFormat.mChannelsPerFrame; pDeviceInfo->maxChannels = bestFormat.mChannelsPerFrame; - + pDeviceInfo->formatCount = 1; result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pDeviceInfo->formats[0]); if (result != MA_SUCCESS) { return result; } - + /* It looks like Apple are wanting to push the whole AVAudioSession thing. Thus, we need to use that to determine device settings. To do this we just get the shared instance and inspect. @@ -22809,11 +25068,82 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_ } } #endif - + (void)pDeviceInfo; /* Unused. */ return MA_SUCCESS; } +static AudioBufferList* ma_allocate_AudioBufferList__coreaudio(ma_uint32 sizeInFrames, ma_format format, ma_uint32 channels, ma_stream_layout layout, const ma_allocation_callbacks* pAllocationCallbacks) +{ + AudioBufferList* pBufferList; + UInt32 audioBufferSizeInBytes; + size_t allocationSize; + + MA_ASSERT(sizeInFrames > 0); + MA_ASSERT(format != ma_format_unknown); + MA_ASSERT(channels > 0); + + allocationSize = sizeof(AudioBufferList) - sizeof(AudioBuffer); /* Subtract sizeof(AudioBuffer) because that part is dynamically sized. */ + if (layout == ma_stream_layout_interleaved) { + /* Interleaved case. This is the simple case because we just have one buffer. */ + allocationSize += sizeof(AudioBuffer) * 1; + } else { + /* Non-interleaved case. This is the more complex case because there's more than one buffer. */ + allocationSize += sizeof(AudioBuffer) * channels; + } + + allocationSize += sizeInFrames * ma_get_bytes_per_frame(format, channels); + + pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(allocationSize, pAllocationCallbacks); + if (pBufferList == NULL) { + return NULL; + } + + audioBufferSizeInBytes = (UInt32)(sizeInFrames * ma_get_bytes_per_sample(format)); + + if (layout == ma_stream_layout_interleaved) { + pBufferList->mNumberBuffers = 1; + pBufferList->mBuffers[0].mNumberChannels = channels; + pBufferList->mBuffers[0].mDataByteSize = audioBufferSizeInBytes * channels; + pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList); + } else { + ma_uint32 iBuffer; + pBufferList->mNumberBuffers = channels; + for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) { + pBufferList->mBuffers[iBuffer].mNumberChannels = 1; + pBufferList->mBuffers[iBuffer].mDataByteSize = audioBufferSizeInBytes; + pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * channels)) + (audioBufferSizeInBytes * iBuffer); + } + } + + return pBufferList; +} + +static ma_result ma_device_realloc_AudioBufferList__coreaudio(ma_device* pDevice, ma_uint32 sizeInFrames, ma_format format, ma_uint32 channels, ma_stream_layout layout) +{ + MA_ASSERT(pDevice != NULL); + MA_ASSERT(format != ma_format_unknown); + MA_ASSERT(channels > 0); + + /* Only resize the buffer if necessary. */ + if (pDevice->coreaudio.audioBufferCapInFrames < sizeInFrames) { + AudioBufferList* pNewAudioBufferList; + + pNewAudioBufferList = ma_allocate_AudioBufferList__coreaudio(sizeInFrames, format, channels, layout, &pDevice->pContext->allocationCallbacks); + if (pNewAudioBufferList != NULL) { + return MA_OUT_OF_MEMORY; + } + + /* At this point we'll have a new AudioBufferList and we can free the old one. */ + ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); + pDevice->coreaudio.pAudioBufferList = pNewAudioBufferList; + pDevice->coreaudio.audioBufferCapInFrames = sizeInFrames; + } + + /* Getting here means the capacity of the audio is fine. */ + return MA_SUCCESS; +} + static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pBufferList) { @@ -22831,7 +25161,7 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl if (pBufferList->mBuffers[0].mNumberChannels != pDevice->playback.internalChannels) { layout = ma_stream_layout_deinterleaved; } - + if (layout == ma_stream_layout_interleaved) { /* For now we can assume everything is interleaved. */ UInt32 iBuffer; @@ -22845,7 +25175,7 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl ma_device__read_frames_from_client(pDevice, frameCountForThisBuffer, pBufferList->mBuffers[iBuffer].mData); } } - + #if defined(MA_DEBUG_OUTPUT) printf(" frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pBufferList->mBuffers[iBuffer].mNumberChannels, pBufferList->mBuffers[iBuffer].mDataByteSize); #endif @@ -22864,7 +25194,8 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl } } else { /* This is the deinterleaved case. We need to update each buffer in groups of internalChannels. This assumes each buffer is the same size. */ - + MA_ASSERT(pDevice->playback.internalChannels <= MA_MAX_CHANNELS); /* This should heve been validated at initialization time. */ + /* For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something very strange has happened and we're not going to support it. @@ -22872,7 +25203,7 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl if ((pBufferList->mNumberBuffers % pDevice->playback.internalChannels) == 0) { ma_uint8 tempBuffer[4096]; UInt32 iBuffer; - + for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; iBuffer += pDevice->playback.internalChannels) { ma_uint32 frameCountPerBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_sample(pDevice->playback.internalFormat); ma_uint32 framesRemaining = frameCountPerBuffer; @@ -22884,25 +25215,25 @@ static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFl if (framesToRead > framesRemaining) { framesToRead = framesRemaining; } - + if (pDevice->type == ma_device_type_duplex) { ma_device__handle_duplex_callback_playback(pDevice, framesToRead, tempBuffer, &pDevice->coreaudio.duplexRB); } else { ma_device__read_frames_from_client(pDevice, framesToRead, tempBuffer); } - + for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pBufferList->mBuffers[iBuffer+iChannel].mData, (frameCountPerBuffer - framesRemaining) * ma_get_bytes_per_sample(pDevice->playback.internalFormat)); } - + ma_deinterleave_pcm_frames(pDevice->playback.internalFormat, pDevice->playback.internalChannels, framesToRead, tempBuffer, ppDeinterleavedBuffers); - + framesRemaining -= framesToRead; } } } } - + (void)pActionFlags; (void)pTimeStamp; (void)busNumber; @@ -22915,24 +25246,52 @@ static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFla { ma_device* pDevice = (ma_device*)pUserData; AudioBufferList* pRenderedBufferList; + ma_result result; ma_stream_layout layout; + ma_uint32 iBuffer; OSStatus status; MA_ASSERT(pDevice != NULL); - + pRenderedBufferList = (AudioBufferList*)pDevice->coreaudio.pAudioBufferList; MA_ASSERT(pRenderedBufferList); - + /* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */ layout = ma_stream_layout_interleaved; if (pRenderedBufferList->mBuffers[0].mNumberChannels != pDevice->capture.internalChannels) { layout = ma_stream_layout_deinterleaved; } - + #if defined(MA_DEBUG_OUTPUT) printf("INFO: Input Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", busNumber, frameCount, pRenderedBufferList->mNumberBuffers); #endif - + + /* + There has been a situation reported where frame count passed into this function is greater than the capacity of + our capture buffer. There doesn't seem to be a reliable way to determine what the maximum frame count will be, + so we need to instead resort to dynamically reallocating our buffer to ensure it's large enough to capture the + number of frames requested by this callback. + */ + result = ma_device_realloc_AudioBufferList__coreaudio(pDevice, frameCount, pDevice->capture.internalFormat, pDevice->capture.internalChannels, layout); + if (result != MA_SUCCESS) { + #if defined(MA_DEBUG_OUTPUT) + printf("Failed to allocate AudioBufferList for capture."); + #endif + return noErr; + } + + /* + When you call AudioUnitRender(), Core Audio tries to be helpful by setting the mDataByteSize to the number of bytes + that were actually rendered. The problem with this is that the next call can fail with -50 due to the size no longer + being set to the capacity of the buffer, but instead the size in bytes of the previous render. This will cause a + problem when a future call to this callback specifies a larger number of frames. + + To work around this we need to explicitly set the size of each buffer to their respective size in bytes. + */ + for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; ++iBuffer) { + pRenderedBufferList->mBuffers[iBuffer].mDataByteSize = pDevice->coreaudio.audioBufferCapInFrames * ma_get_bytes_per_sample(pDevice->capture.internalFormat) * pRenderedBufferList->mBuffers[iBuffer].mNumberChannels; + } + status = ((ma_AudioUnitRender_proc)pDevice->pContext->coreaudio.AudioUnitRender)((AudioUnit)pDevice->coreaudio.audioUnitCapture, pActionFlags, pTimeStamp, busNumber, frameCount, pRenderedBufferList); if (status != noErr) { #if defined(MA_DEBUG_OUTPUT) @@ -22940,9 +25299,8 @@ static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFla #endif return status; } - + if (layout == ma_stream_layout_interleaved) { - UInt32 iBuffer; for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; ++iBuffer) { if (pRenderedBufferList->mBuffers[iBuffer].mNumberChannels == pDevice->capture.internalChannels) { if (pDevice->type == ma_device_type_duplex) { @@ -22960,25 +25318,25 @@ static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFla */ ma_uint8 silentBuffer[4096]; ma_uint32 framesRemaining; - + MA_ZERO_MEMORY(silentBuffer, sizeof(silentBuffer)); - + framesRemaining = frameCount; while (framesRemaining > 0) { ma_uint32 framesToSend = sizeof(silentBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); if (framesToSend > framesRemaining) { framesToSend = framesRemaining; } - + if (pDevice->type == ma_device_type_duplex) { ma_device__handle_duplex_callback_capture(pDevice, framesToSend, silentBuffer, &pDevice->coreaudio.duplexRB); } else { ma_device__send_frames_to_client(pDevice, framesToSend, silentBuffer); } - + framesRemaining -= framesToSend; } - + #if defined(MA_DEBUG_OUTPUT) printf(" WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pRenderedBufferList->mBuffers[iBuffer].mNumberChannels, pRenderedBufferList->mBuffers[iBuffer].mDataByteSize); #endif @@ -22986,14 +25344,14 @@ static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFla } } else { /* This is the deinterleaved case. We need to interleave the audio data before sending it to the client. This assumes each buffer is the same size. */ - + MA_ASSERT(pDevice->capture.internalChannels <= MA_MAX_CHANNELS); /* This should have been validated at initialization time. */ + /* For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something very strange has happened and we're not going to support it. */ if ((pRenderedBufferList->mNumberBuffers % pDevice->capture.internalChannels) == 0) { ma_uint8 tempBuffer[4096]; - UInt32 iBuffer; for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; iBuffer += pDevice->capture.internalChannels) { ma_uint32 framesRemaining = frameCount; while (framesRemaining > 0) { @@ -23003,11 +25361,11 @@ static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFla if (framesToSend > framesRemaining) { framesToSend = framesRemaining; } - + for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) { ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pRenderedBufferList->mBuffers[iBuffer+iChannel].mData, (frameCount - framesRemaining) * ma_get_bytes_per_sample(pDevice->capture.internalFormat)); } - + ma_interleave_pcm_frames(pDevice->capture.internalFormat, pDevice->capture.internalChannels, framesToSend, (const void**)ppDeinterleavedBuffers, tempBuffer); if (pDevice->type == ma_device_type_duplex) { @@ -23035,19 +25393,19 @@ static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, Audio { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); - + /* There's been a report of a deadlock here when triggered by ma_device_uninit(). It looks like AudioUnitGetProprty (called below) and AudioComponentInstanceDispose (called in ma_device_uninit) can try waiting on the same lock. I'm going to try working around this by not calling any Core Audio APIs in the callback when the device has been stopped or uninitialized. */ - if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED || ma_device__get_state(pDevice) == MA_STATE_STOPPING || ma_device__get_state(pDevice) == MA_STATE_STOPPED) { + if (ma_device_get_state(pDevice) == MA_STATE_UNINITIALIZED || ma_device_get_state(pDevice) == MA_STATE_STOPPING || ma_device_get_state(pDevice) == MA_STATE_STOPPED) { ma_stop_proc onStop = pDevice->onStop; if (onStop) { onStop(pDevice); } - + ma_event_signal(&pDevice->coreaudio.stopEvent); } else { UInt32 isRunning; @@ -23056,16 +25414,16 @@ static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, Audio if (status != noErr) { return; /* Don't really know what to do in this case... just ignore it, I suppose... */ } - + if (!isRunning) { ma_stop_proc onStop; /* The stop event is a bit annoying in Core Audio because it will be called when we automatically switch the default device. Some scenarios to consider: - + 1) When the device is unplugged, this will be called _before_ the default device change notification. 2) When the device is changed via the default device change notification, this will be called _after_ the switch. - + For case #1, we just check if there's a new default device available. If so, we just ignore the stop event. For case #2 we check a flag. */ if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isDefaultPlaybackDevice) || @@ -23080,17 +25438,17 @@ static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, Audio ((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isSwitchingCaptureDevice)) { return; } - + /* Getting here means the device is not reinitializing which means it may have been unplugged. From what I can see, it looks like Core Audio will try switching to the new default device seamlessly. We need to somehow find a way to determine whether or not Core Audio will most likely be successful in switching to the new device. - + TODO: Try to predict if Core Audio will switch devices. If not, the onStop callback needs to be posted. */ return; } - + /* Getting here means we need to stop the device. */ onStop = pDevice->onStop; if (onStop) { @@ -23103,6 +25461,7 @@ static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, Audio } #if defined(MA_APPLE_DESKTOP) +static ma_spinlock g_DeviceTrackingInitLock_CoreAudio = 0; /* A spinlock for mutal exclusion of the init/uninit of the global tracking data. Initialization to 0 is what we need. */ static ma_uint32 g_DeviceTrackingInitCounter_CoreAudio = 0; static ma_mutex g_DeviceTrackingMutex_CoreAudio; static ma_device** g_ppTrackedDevices_CoreAudio = NULL; @@ -23112,12 +25471,12 @@ static ma_uint32 g_TrackedDeviceCount_CoreAudio = 0; static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 addressCount, const AudioObjectPropertyAddress* pAddresses, void* pUserData) { ma_device_type deviceType; - + /* Not sure if I really need to check this, but it makes me feel better. */ if (addressCount == 0) { return noErr; } - + if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultOutputDevice) { deviceType = ma_device_type_playback; } else if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultInputDevice) { @@ -23125,14 +25484,14 @@ static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UIn } else { return noErr; /* Should never hit this. */ } - + ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { ma_uint32 iDevice; for (iDevice = 0; iDevice < g_TrackedDeviceCount_CoreAudio; iDevice += 1) { ma_result reinitResult; ma_device* pDevice; - + pDevice = g_ppTrackedDevices_CoreAudio[iDevice]; if (pDevice->type == deviceType || pDevice->type == ma_device_type_duplex) { if (deviceType == ma_device_type_playback) { @@ -23144,12 +25503,12 @@ static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UIn reinitResult = ma_device_reinit_internal__coreaudio(pDevice, deviceType, MA_TRUE); pDevice->coreaudio.isSwitchingCaptureDevice = MA_FALSE; } - + if (reinitResult == MA_SUCCESS) { ma_device__post_init_setup(pDevice, deviceType); - + /* Restart the device if required. If this fails we need to stop the device entirely. */ - if (ma_device__get_state(pDevice) == MA_STATE_STARTED) { + if (ma_device_get_state(pDevice) == MA_STATE_STARTED) { OSStatus status; if (deviceType == ma_device_type_playback) { status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); @@ -23174,7 +25533,7 @@ static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UIn } } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); - + /* Unused parameters. */ (void)objectID; (void)pUserData; @@ -23185,60 +25544,67 @@ static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UIn static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); - - if (ma_atomic_increment_32(&g_DeviceTrackingInitCounter_CoreAudio) == 1) { - AudioObjectPropertyAddress propAddress; - propAddress.mScope = kAudioObjectPropertyScopeGlobal; - propAddress.mElement = kAudioObjectPropertyElementMaster; - - ma_mutex_init(pContext, &g_DeviceTrackingMutex_CoreAudio); - - propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; - ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); - - propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; - ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); + + ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio); + { + /* Don't do anything if we've already initializd device tracking. */ + if (g_DeviceTrackingInitCounter_CoreAudio == 0) { + AudioObjectPropertyAddress propAddress; + propAddress.mScope = kAudioObjectPropertyScopeGlobal; + propAddress.mElement = kAudioObjectPropertyElementMaster; + + ma_mutex_init(&g_DeviceTrackingMutex_CoreAudio); + + propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; + ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); + + propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; + ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); + + g_DeviceTrackingInitCounter_CoreAudio += 1; + } } - + ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio); + return MA_SUCCESS; } static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); - - if (ma_atomic_decrement_32(&g_DeviceTrackingInitCounter_CoreAudio) == 0) { - AudioObjectPropertyAddress propAddress; - propAddress.mScope = kAudioObjectPropertyScopeGlobal; - propAddress.mElement = kAudioObjectPropertyElementMaster; - - propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; - ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); - - propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; - ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); - - /* At this point there should be no tracked devices. If so there's an error somewhere. */ - MA_ASSERT(g_ppTrackedDevices_CoreAudio == NULL); - MA_ASSERT(g_TrackedDeviceCount_CoreAudio == 0); - - ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio); + + ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio); + { + g_DeviceTrackingInitCounter_CoreAudio -= 1; + + if (g_DeviceTrackingInitCounter_CoreAudio == 0) { + AudioObjectPropertyAddress propAddress; + propAddress.mScope = kAudioObjectPropertyScopeGlobal; + propAddress.mElement = kAudioObjectPropertyElementMaster; + + propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; + ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); + + propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; + ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); + + /* At this point there should be no tracked devices. If not there's an error somewhere. */ + if (g_ppTrackedDevices_CoreAudio != NULL) { + ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "You have uninitialized all contexts while an associated device is still active.", MA_INVALID_OPERATION); + } + + ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio); + } } - + ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio); + return MA_SUCCESS; } static ma_result ma_device__track__coreaudio(ma_device* pDevice) { - ma_result result; - MA_ASSERT(pDevice != NULL); - - result = ma_context__init_device_tracking__coreaudio(pDevice->pContext); - if (result != MA_SUCCESS) { - return result; - } - + ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { /* Allocate memory if required. */ @@ -23246,37 +25612,35 @@ static ma_result ma_device__track__coreaudio(ma_device* pDevice) ma_uint32 oldCap; ma_uint32 newCap; ma_device** ppNewDevices; - + oldCap = g_TrackedDeviceCap_CoreAudio; newCap = g_TrackedDeviceCap_CoreAudio * 2; if (newCap == 0) { newCap = 1; } - + ppNewDevices = (ma_device**)ma__realloc_from_callbacks(g_ppTrackedDevices_CoreAudio, sizeof(*g_ppTrackedDevices_CoreAudio)*newCap, sizeof(*g_ppTrackedDevices_CoreAudio)*oldCap, &pDevice->pContext->allocationCallbacks); if (ppNewDevices == NULL) { ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); return MA_OUT_OF_MEMORY; } - + g_ppTrackedDevices_CoreAudio = ppNewDevices; g_TrackedDeviceCap_CoreAudio = newCap; } - + g_ppTrackedDevices_CoreAudio[g_TrackedDeviceCount_CoreAudio] = pDevice; g_TrackedDeviceCount_CoreAudio += 1; } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); - + return MA_SUCCESS; } static ma_result ma_device__untrack__coreaudio(ma_device* pDevice) { - ma_result result; - MA_ASSERT(pDevice != NULL); - + ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { ma_uint32 iDevice; @@ -23287,27 +25651,22 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice) for (jDevice = iDevice; jDevice < g_TrackedDeviceCount_CoreAudio-1; jDevice += 1) { g_ppTrackedDevices_CoreAudio[jDevice] = g_ppTrackedDevices_CoreAudio[jDevice+1]; } - + g_TrackedDeviceCount_CoreAudio -= 1; - + /* If there's nothing else in the list we need to free memory. */ if (g_TrackedDeviceCount_CoreAudio == 0) { ma__free_from_callbacks(g_ppTrackedDevices_CoreAudio, &pDevice->pContext->allocationCallbacks); g_ppTrackedDevices_CoreAudio = NULL; g_TrackedDeviceCap_CoreAudio = 0; } - + break; } } } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); - result = ma_context__uninit_device_tracking__coreaudio(pDevice->pContext); - if (result != MA_SUCCESS) { - return result; - } - return MA_SUCCESS; } #endif @@ -23414,8 +25773,8 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice) static void ma_device_uninit__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); - MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED); - + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_UNINITIALIZED); + #if defined(MA_APPLE_DESKTOP) /* Make sure we're no longer tracking the device. It doesn't matter if we call this for a non-default device because it'll @@ -23429,14 +25788,14 @@ static void ma_device_uninit__coreaudio(ma_device* pDevice) [pRouteChangeHandler remove_handler]; } #endif - + if (pDevice->coreaudio.audioUnitCapture != NULL) { ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture); } if (pDevice->coreaudio.audioUnitPlayback != NULL) { ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); } - + if (pDevice->coreaudio.pAudioBufferList) { ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); } @@ -23448,6 +25807,8 @@ static void ma_device_uninit__coreaudio(ma_device* pDevice) typedef struct { + ma_bool32 allowNominalSampleRateChange; + /* Input. */ ma_format formatIn; ma_uint32 channelsIn; @@ -23489,6 +25850,8 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev AURenderCallbackStruct callbackInfo; #if defined(MA_APPLE_DESKTOP) AudioObjectID deviceObjectID; +#else + ma_uint32 actualPeriodSizeInFramesSize = sizeof(actualPeriodSizeInFrames); #endif /* This API should only be used for a single device type: playback or capture. No full-duplex mode. */ @@ -23505,16 +25868,16 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev pData->component = NULL; pData->audioUnit = NULL; pData->pAudioBufferList = NULL; - + #if defined(MA_APPLE_DESKTOP) result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID); if (result != MA_SUCCESS) { return result; } - + pData->deviceObjectID = deviceObjectID; #endif - + /* Core audio doesn't really use the notion of a period so we can leave this unmodified, but not too over the top. */ pData->periodsOut = pData->periodsIn; if (pData->periodsOut == 0) { @@ -23523,98 +25886,155 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev if (pData->periodsOut > 16) { pData->periodsOut = 16; } - - + + /* Audio unit. */ status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)((AudioComponent)pContext->coreaudio.component, (AudioUnit*)&pData->audioUnit); if (status != noErr) { return ma_result_from_OSStatus(status); } - - + + /* The input/output buses need to be explicitly enabled and disabled. We set the flag based on the output unit first, then we just swap it for input. */ enableIOFlag = 1; if (deviceType == ma_device_type_capture) { enableIOFlag = 0; } - + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &enableIOFlag, sizeof(enableIOFlag)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } - + enableIOFlag = (enableIOFlag == 0) ? 1 : 0; status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &enableIOFlag, sizeof(enableIOFlag)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } - - + + /* Set the device to use with this audio unit. This is only used on desktop since we are using defaults on mobile. */ #if defined(MA_APPLE_DESKTOP) - status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS, &deviceObjectID, sizeof(AudioDeviceID)); + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &deviceObjectID, sizeof(deviceObjectID)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(result); } +#else + /* + For some reason it looks like Apple is only allowing selection of the input device. There does not appear to be any way to change + the default output route. I have no idea why this is like this, but for now we'll only be able to configure capture devices. + */ + if (pDeviceID != NULL) { + if (deviceType == ma_device_type_capture) { + ma_bool32 found = MA_FALSE; + NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; + for (AVAudioSessionPortDescription* pPortDesc in pInputs) { + if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { + [[AVAudioSession sharedInstance] setPreferredInput:pPortDesc error:nil]; + found = MA_TRUE; + break; + } + } + + if (found == MA_FALSE) { + return MA_DOES_NOT_EXIST; + } + } + } #endif - + /* Format. This is the hardest part of initialization because there's a few variables to take into account. 1) The format must be supported by the device. 2) The format must be supported miniaudio. 3) There's a priority that miniaudio prefers. - + Ideally we would like to use a format that's as close to the hardware as possible so we can get as close to a passthrough as possible. The most important property is the sample rate. miniaudio can do format conversion for any sample rate and channel count, but cannot do the same for the sample data format. If the sample data format is not supported by miniaudio it must be ignored completely. - + On mobile platforms this is a bit different. We just force the use of whatever the audio unit's current format is set to. */ { + AudioStreamBasicDescription origFormat; + UInt32 origFormatSize = sizeof(origFormat); AudioUnitScope formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output; AudioUnitElement formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS; - #if defined(MA_APPLE_DESKTOP) - AudioStreamBasicDescription origFormat; - UInt32 origFormatSize; - - result = ma_find_best_format__coreaudio(pContext, deviceObjectID, deviceType, pData->formatIn, pData->channelsIn, pData->sampleRateIn, pData->usingDefaultFormat, pData->usingDefaultChannels, pData->usingDefaultSampleRate, &bestFormat); - if (result != MA_SUCCESS) { - ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); - return result; - } - - /* From what I can see, Apple's documentation implies that we should keep the sample rate consistent. */ - origFormatSize = sizeof(origFormat); if (deviceType == ma_device_type_playback) { status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &origFormat, &origFormatSize); } else { status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &origFormat, &origFormatSize); } - if (status != noErr) { + ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); + return ma_result_from_OSStatus(status); + } + + #if defined(MA_APPLE_DESKTOP) + result = ma_find_best_format__coreaudio(pContext, deviceObjectID, deviceType, pData->formatIn, pData->channelsIn, pData->sampleRateIn, pData->usingDefaultFormat, pData->usingDefaultChannels, pData->usingDefaultSampleRate, &origFormat, &bestFormat); + if (result != MA_SUCCESS) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return result; } - - bestFormat.mSampleRate = origFormat.mSampleRate; - + + /* + Technical Note TN2091: Device input using the HAL Output Audio Unit + https://developer.apple.com/library/archive/technotes/tn2091/_index.html + + This documentation says the following: + + The internal AudioConverter can handle any *simple* conversion. Typically, this means that a client can specify ANY + variant of the PCM formats. Consequently, the device's sample rate should match the desired sample rate. If sample rate + conversion is needed, it can be accomplished by buffering the input and converting the data on a separate thread with + another AudioConverter. + + The important part here is the mention that it can handle *simple* conversions, which does *not* include sample rate. We + therefore want to ensure the sample rate stays consistent. This document is specifically for input, but I'm going to play it + safe and apply the same rule to output as well. + + I have tried going against the documentation by setting the sample rate anyway, but this just results in AudioUnitRender() + returning a result code of -10863. I have also tried changing the format directly on the input scope on the input bus, but + this just results in `ca_require: IsStreamFormatWritable(inScope, inElement) NotWritable` when trying to set the format. + + Something that does seem to work, however, has been setting the nominal sample rate on the deivce object. The problem with + this, however, is that it actually changes the sample rate at the operating system level and not just the application. This + could be intrusive to the user, however, so I don't think it's wise to make this the default. Instead I'm making this a + configuration option. When the `coreaudio.allowNominalSampleRateChange` config option is set to true, changing the sample + rate will be allowed. Otherwise it'll be fixed to the current sample rate. To check the system-defined sample rate, run + the Audio MIDI Setup program that comes installed on macOS and observe how the sample rate changes as the sample rate is + changed by miniaudio. + */ + if (pData->allowNominalSampleRateChange) { + AudioValueRange sampleRateRange; + AudioObjectPropertyAddress propAddress; + + sampleRateRange.mMinimum = bestFormat.mSampleRate; + sampleRateRange.mMaximum = bestFormat.mSampleRate; + + propAddress.mSelector = kAudioDevicePropertyNominalSampleRate; + propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; + propAddress.mElement = kAudioObjectPropertyElementMaster; + + status = ((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(sampleRateRange), &sampleRateRange); + if (status != noErr) { + bestFormat.mSampleRate = origFormat.mSampleRate; + } + } else { + bestFormat.mSampleRate = origFormat.mSampleRate; + } + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat)); if (status != noErr) { /* We failed to set the format, so fall back to the current format of the audio unit. */ bestFormat = origFormat; } #else - UInt32 propSize = sizeof(bestFormat); - status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, &propSize); - if (status != noErr) { - ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); - return ma_result_from_OSStatus(status); - } - + bestFormat = origFormat; + /* Sample rate is a little different here because for some reason kAudioUnitProperty_StreamFormat returns 0... Oh well. We need to instead try setting the sample rate to what the user has requested and then just see the results of it. Need to use some Objective-C here for this since @@ -23624,7 +26044,7 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev @autoreleasepool { AVAudioSession* pAudioSession = [AVAudioSession sharedInstance]; MA_ASSERT(pAudioSession != NULL); - + [pAudioSession setPreferredSampleRate:(double)pData->sampleRateIn error:nil]; bestFormat.mSampleRate = pAudioSession.sampleRate; @@ -23639,29 +26059,34 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.inputNumberOfChannels; } } - + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } #endif - + result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pData->formatOut); if (result != MA_SUCCESS) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return result; } - + if (pData->formatOut == ma_format_unknown) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return MA_FORMAT_NOT_SUPPORTED; } - - pData->channelsOut = bestFormat.mChannelsPerFrame; + + pData->channelsOut = bestFormat.mChannelsPerFrame; pData->sampleRateOut = bestFormat.mSampleRate; } - + + /* Clamp the channel count for safety. */ + if (pData->channelsOut > MA_MAX_CHANNELS) { + pData->channelsOut = MA_MAX_CHANNELS; + } + /* Internal channel map. This is weird in my testing. If I use the AudioObject to get the channel map, the channel descriptions are set to "Unknown" for some reason. To work around @@ -23670,11 +26095,11 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev I'm going to fall back to a default assumption in these cases. */ #if defined(MA_APPLE_DESKTOP) - result = ma_get_AudioUnit_channel_map(pContext, pData->audioUnit, deviceType, pData->channelMapOut); + result = ma_get_AudioUnit_channel_map(pContext, pData->audioUnit, deviceType, pData->channelMapOut, pData->channelsOut); if (result != MA_SUCCESS) { #if 0 /* Try falling back to the channel map from the AudioObject. */ - result = ma_get_AudioObject_channel_map(pContext, deviceObjectID, deviceType, pData->channelMapOut); + result = ma_get_AudioObject_channel_map(pContext, deviceObjectID, deviceType, pData->channelMapOut, pData->channelsOut); if (result != MA_SUCCESS) { return result; } @@ -23687,112 +26112,81 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev /* TODO: Figure out how to get the channel map using AVAudioSession. */ ma_get_standard_channel_map(ma_standard_channel_map_default, pData->channelsOut, pData->channelMapOut); #endif - + /* Buffer size. Not allowing this to be configurable on iOS. */ actualPeriodSizeInFrames = pData->periodSizeInFramesIn; - + #if defined(MA_APPLE_DESKTOP) if (actualPeriodSizeInFrames == 0) { actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, pData->sampleRateOut); } - + result = ma_set_AudioObject_buffer_size_in_frames(pContext, deviceObjectID, deviceType, &actualPeriodSizeInFrames); if (result != MA_SUCCESS) { return result; } - - pData->periodSizeInFramesOut = actualPeriodSizeInFrames; #else - actualPeriodSizeInFrames = 2048; - pData->periodSizeInFramesOut = actualPeriodSizeInFrames; + /* + I don't know how to configure buffer sizes on iOS so for now we're not allowing it to be configured. Instead we're + just going to set it to the value of kAudioUnitProperty_MaximumFramesPerSlice. + */ + status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, &actualPeriodSizeInFramesSize); + if (status != noErr) { + ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); + return ma_result_from_OSStatus(status); + } #endif /* During testing I discovered that the buffer size can be too big. You'll get an error like this: - + kAudioUnitErr_TooManyFramesToProcess : inFramesToProcess=4096, mMaxFramesPerSlice=512 - + Note how inFramesToProcess is smaller than mMaxFramesPerSlice. To fix, we need to set kAudioUnitProperty_MaximumFramesPerSlice to that of the size of our buffer, or do it the other way around and set our buffer size to the kAudioUnitProperty_MaximumFramesPerSlice. */ - { - /*AudioUnitScope propScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output; - AudioUnitElement propBus = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS; - - status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, propScope, propBus, &actualBufferSizeInFrames, sizeof(actualBufferSizeInFrames)); - if (status != noErr) { - ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); - return ma_result_from_OSStatus(status); - }*/ - - status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, sizeof(actualPeriodSizeInFrames)); - if (status != noErr) { - ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); - return ma_result_from_OSStatus(status); - } + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, sizeof(actualPeriodSizeInFrames)); + if (status != noErr) { + ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); + return ma_result_from_OSStatus(status); } - + + pData->periodSizeInFramesOut = actualPeriodSizeInFrames; + /* We need a buffer list if this is an input device. We render into this in the input callback. */ if (deviceType == ma_device_type_capture) { ma_bool32 isInterleaved = (bestFormat.mFormatFlags & kAudioFormatFlagIsNonInterleaved) == 0; - size_t allocationSize; AudioBufferList* pBufferList; - allocationSize = sizeof(AudioBufferList) - sizeof(AudioBuffer); /* Subtract sizeof(AudioBuffer) because that part is dynamically sized. */ - if (isInterleaved) { - /* Interleaved case. This is the simple case because we just have one buffer. */ - allocationSize += sizeof(AudioBuffer) * 1; - allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut); - } else { - /* Non-interleaved case. This is the more complex case because there's more than one buffer. */ - allocationSize += sizeof(AudioBuffer) * pData->channelsOut; - allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * pData->channelsOut; - } - - pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(allocationSize, &pContext->allocationCallbacks); + pBufferList = ma_allocate_AudioBufferList__coreaudio(pData->periodSizeInFramesOut, pData->formatOut, pData->channelsOut, (isInterleaved) ? ma_stream_layout_interleaved : ma_stream_layout_deinterleaved, &pContext->allocationCallbacks); if (pBufferList == NULL) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return MA_OUT_OF_MEMORY; } - - if (isInterleaved) { - pBufferList->mNumberBuffers = 1; - pBufferList->mBuffers[0].mNumberChannels = pData->channelsOut; - pBufferList->mBuffers[0].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut); - pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList); - } else { - ma_uint32 iBuffer; - pBufferList->mNumberBuffers = pData->channelsOut; - for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) { - pBufferList->mBuffers[iBuffer].mNumberChannels = 1; - pBufferList->mBuffers[iBuffer].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut); - pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * pData->channelsOut)) + (actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * iBuffer); - } - } - + pData->pAudioBufferList = pBufferList; } - + /* Callbacks. */ callbackInfo.inputProcRefCon = pDevice_DoNotReference; if (deviceType == ma_device_type_playback) { callbackInfo.inputProc = ma_on_output__coreaudio; - status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Global, MA_COREAUDIO_OUTPUT_BUS, &callbackInfo, sizeof(callbackInfo)); + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Global, 0, &callbackInfo, sizeof(callbackInfo)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } } else { callbackInfo.inputProc = ma_on_input__coreaudio; - status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, MA_COREAUDIO_INPUT_BUS, &callbackInfo, sizeof(callbackInfo)); + status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &callbackInfo, sizeof(callbackInfo)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } } - + /* We need to listen for stop events. */ if (pData->registerStopEvent) { status = ((ma_AudioUnitAddPropertyListener_proc)pContext->coreaudio.AudioUnitAddPropertyListener)(pData->audioUnit, kAudioOutputUnitProperty_IsRunning, on_start_stop__coreaudio, pDevice_DoNotReference); @@ -23801,7 +26195,7 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev return ma_result_from_OSStatus(status); } } - + /* Initialize the audio unit. */ status = ((ma_AudioUnitInitialize_proc)pContext->coreaudio.AudioUnitInitialize)(pData->audioUnit); if (status != noErr) { @@ -23810,7 +26204,7 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } - + /* Grab the name. */ #if defined(MA_APPLE_DESKTOP) ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pData->deviceName), pData->deviceName); @@ -23821,7 +26215,7 @@ static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_dev ma_strcpy_s(pData->deviceName, sizeof(pData->deviceName), MA_DEFAULT_CAPTURE_DEVICE_NAME); } #endif - + return result; } @@ -23836,6 +26230,8 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev return MA_INVALID_ARGS; } + data.allowNominalSampleRateChange = MA_FALSE; /* Don't change the nominal sample rate when switching devices. */ + if (deviceType == ma_device_type_capture) { data.formatIn = pDevice->capture.format; data.channelsIn = pDevice->capture.channels; @@ -23847,7 +26243,7 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap; data.shareMode = pDevice->capture.shareMode; data.registerStopEvent = MA_TRUE; - + if (disposePreviousAudioUnit) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture); ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture); @@ -23866,7 +26262,7 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap; data.shareMode = pDevice->playback.shareMode; data.registerStopEvent = (pDevice->type != ma_device_type_duplex); - + if (disposePreviousAudioUnit) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); @@ -23885,14 +26281,15 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev if (result != MA_SUCCESS) { return result; } - + if (deviceType == ma_device_type_capture) { #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit; pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList; - + pDevice->coreaudio.audioBufferCapInFrames = data.periodSizeInFramesOut; + pDevice->capture.internalFormat = data.formatOut; pDevice->capture.internalChannels = data.channelsOut; pDevice->capture.internalSampleRate = data.sampleRateOut; @@ -23904,7 +26301,7 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit; - + pDevice->playback.internalFormat = data.formatOut; pDevice->playback.internalChannels = data.channelsOut; pDevice->playback.internalSampleRate = data.sampleRateOut; @@ -23912,7 +26309,7 @@ static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_dev pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->playback.internalPeriods = data.periodsOut; } - + return MA_SUCCESS; } #endif /* MA_APPLE_DESKTOP */ @@ -23934,48 +26331,50 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } - + /* Capture needs to be initialized first. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__coreaudio data; - data.formatIn = pConfig->capture.format; - data.channelsIn = pConfig->capture.channels; - data.sampleRateIn = pConfig->sampleRate; + data.allowNominalSampleRateChange = pConfig->coreaudio.allowNominalSampleRateChange; + data.formatIn = pConfig->capture.format; + data.channelsIn = pConfig->capture.channels; + data.sampleRateIn = pConfig->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap)); - data.usingDefaultFormat = pDevice->capture.usingDefaultFormat; - data.usingDefaultChannels = pDevice->capture.usingDefaultChannels; - data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; - data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap; - data.shareMode = pConfig->capture.shareMode; - data.periodSizeInFramesIn = pConfig->periodSizeInFrames; - data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds; - data.periodsIn = pConfig->periods; - data.registerStopEvent = MA_TRUE; + data.usingDefaultFormat = pDevice->capture.usingDefaultFormat; + data.usingDefaultChannels = pDevice->capture.usingDefaultChannels; + data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; + data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap; + data.shareMode = pConfig->capture.shareMode; + data.periodSizeInFramesIn = pConfig->periodSizeInFrames; + data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds; + data.periodsIn = pConfig->periods; + data.registerStopEvent = MA_TRUE; /* Need at least 3 periods for duplex. */ if (data.periodsIn < 3 && pConfig->deviceType == ma_device_type_duplex) { data.periodsIn = 3; } - + result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_capture, pConfig->capture.pDeviceID, &data, (void*)pDevice); if (result != MA_SUCCESS) { return result; } - + pDevice->coreaudio.isDefaultCaptureDevice = (pConfig->capture.pDeviceID == NULL); #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit; pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList; - + pDevice->coreaudio.audioBufferCapInFrames = data.periodSizeInFramesOut; + pDevice->capture.internalFormat = data.formatOut; pDevice->capture.internalChannels = data.channelsOut; pDevice->capture.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->capture.internalPeriods = data.periodsOut; - + #if defined(MA_APPLE_DESKTOP) /* If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly @@ -23986,20 +26385,21 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device } #endif } - + /* Playback. */ if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__coreaudio data; - data.formatIn = pConfig->playback.format; - data.channelsIn = pConfig->playback.channels; - data.sampleRateIn = pConfig->sampleRate; + data.allowNominalSampleRateChange = pConfig->coreaudio.allowNominalSampleRateChange; + data.formatIn = pConfig->playback.format; + data.channelsIn = pConfig->playback.channels; + data.sampleRateIn = pConfig->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap)); - data.usingDefaultFormat = pDevice->playback.usingDefaultFormat; - data.usingDefaultChannels = pDevice->playback.usingDefaultChannels; - data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; - data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap; - data.shareMode = pConfig->playback.shareMode; - + data.usingDefaultFormat = pDevice->playback.usingDefaultFormat; + data.usingDefaultChannels = pDevice->playback.usingDefaultChannels; + data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate; + data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap; + data.shareMode = pConfig->playback.shareMode; + /* In full-duplex mode we want the playback buffer to be the same size as the capture buffer. */ if (pConfig->deviceType == ma_device_type_duplex) { data.periodSizeInFramesIn = pDevice->capture.internalPeriodSizeInFrames; @@ -24011,7 +26411,7 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device data.periodsIn = pConfig->periods; data.registerStopEvent = MA_TRUE; } - + result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_playback, pConfig->playback.pDeviceID, &data, (void*)pDevice); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { @@ -24022,20 +26422,20 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device } return result; } - + pDevice->coreaudio.isDefaultPlaybackDevice = (pConfig->playback.pDeviceID == NULL); #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit; - + pDevice->playback.internalFormat = data.formatOut; pDevice->playback.internalChannels = data.channelsOut; pDevice->playback.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->playback.internalPeriods = data.periodsOut; - + #if defined(MA_APPLE_DESKTOP) /* If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly @@ -24046,16 +26446,16 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device } #endif } - + pDevice->coreaudio.originalPeriodSizeInFrames = pConfig->periodSizeInFrames; pDevice->coreaudio.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; pDevice->coreaudio.originalPeriods = pConfig->periods; - + /* When stopping the device, a callback is called on another thread. We need to wait for this callback before returning from ma_device_stop(). This event is used for this. */ - ma_event_init(pContext, &pDevice->coreaudio.stopEvent); + ma_event_init(&pDevice->coreaudio.stopEvent); /* Need a ring buffer for duplex mode. */ if (pConfig->deviceType == ma_device_type_duplex) { @@ -24092,14 +26492,14 @@ static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device static ma_result ma_device_start__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); - + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture); if (status != noErr) { return ma_result_from_OSStatus(status); } } - + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); if (status != noErr) { @@ -24109,7 +26509,7 @@ static ma_result ma_device_start__coreaudio(ma_device* pDevice) return ma_result_from_OSStatus(status); } } - + return MA_SUCCESS; } @@ -24125,14 +26525,14 @@ static ma_result ma_device_stop__coreaudio(ma_device* pDevice) return ma_result_from_OSStatus(status); } } - + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); if (status != noErr) { return ma_result_from_OSStatus(status); } } - + /* We need to wait for the callback to finish before returning. */ ma_event_wait(&pDevice->coreaudio.stopEvent); return MA_SUCCESS; @@ -24143,13 +26543,25 @@ static ma_result ma_context_uninit__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_coreaudio); - + +#if defined(MA_APPLE_MOBILE) + if (!pContext->coreaudio.noAudioSessionDeactivate) { + if (![[AVAudioSession sharedInstance] setActive:false error:nil]) { + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to deactivate audio session.", MA_FAILED_TO_INIT_BACKEND); + } + } +#endif + #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); #endif +#if !defined(MA_APPLE_MOBILE) + ma_context__uninit_device_tracking__coreaudio(pContext); +#endif + (void)pContext; return MA_SUCCESS; } @@ -24177,6 +26589,10 @@ static AVAudioSessionCategory ma_to_AVAudioSessionCategory(ma_ios_session_catego static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_context* pContext) { +#if !defined(MA_APPLE_MOBILE) + ma_result result; +#endif + MA_ASSERT(pConfig != NULL); MA_ASSERT(pContext != NULL); @@ -24212,25 +26628,31 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma } } } + + if (!pConfig->coreaudio.noAudioSessionActivate) { + if (![pAudioSession setActive:true error:nil]) { + return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to activate audio session.", MA_FAILED_TO_INIT_BACKEND); + } + } } #endif - + #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) pContext->coreaudio.hCoreFoundation = ma_dlopen(pContext, "CoreFoundation.framework/CoreFoundation"); if (pContext->coreaudio.hCoreFoundation == NULL) { return MA_API_NOT_FOUND; } - + pContext->coreaudio.CFStringGetCString = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFStringGetCString"); pContext->coreaudio.CFRelease = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFRelease"); - - + + pContext->coreaudio.hCoreAudio = ma_dlopen(pContext, "CoreAudio.framework/CoreAudio"); if (pContext->coreaudio.hCoreAudio == NULL) { ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); return MA_API_NOT_FOUND; } - + pContext->coreaudio.AudioObjectGetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyData"); pContext->coreaudio.AudioObjectGetPropertyDataSize = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyDataSize"); pContext->coreaudio.AudioObjectSetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectSetPropertyData"); @@ -24249,7 +26671,7 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); return MA_API_NOT_FOUND; } - + if (ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext") == NULL) { /* Couldn't find the required symbols in AudioUnit, so fall back to AudioToolbox. */ ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); @@ -24260,7 +26682,7 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma return MA_API_NOT_FOUND; } } - + pContext->coreaudio.AudioComponentFindNext = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext"); pContext->coreaudio.AudioComponentInstanceDispose = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceDispose"); pContext->coreaudio.AudioComponentInstanceNew = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceNew"); @@ -24275,7 +26697,7 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma #else pContext->coreaudio.CFStringGetCString = (ma_proc)CFStringGetCString; pContext->coreaudio.CFRelease = (ma_proc)CFRelease; - + #if defined(MA_APPLE_DESKTOP) pContext->coreaudio.AudioObjectGetPropertyData = (ma_proc)AudioObjectGetPropertyData; pContext->coreaudio.AudioObjectGetPropertyDataSize = (ma_proc)AudioObjectGetPropertyDataSize; @@ -24283,7 +26705,7 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma pContext->coreaudio.AudioObjectAddPropertyListener = (ma_proc)AudioObjectAddPropertyListener; pContext->coreaudio.AudioObjectRemovePropertyListener = (ma_proc)AudioObjectRemovePropertyListener; #endif - + pContext->coreaudio.AudioComponentFindNext = (ma_proc)AudioComponentFindNext; pContext->coreaudio.AudioComponentInstanceDispose = (ma_proc)AudioComponentInstanceDispose; pContext->coreaudio.AudioComponentInstanceNew = (ma_proc)AudioComponentInstanceNew; @@ -24297,17 +26719,6 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma pContext->coreaudio.AudioUnitRender = (ma_proc)AudioUnitRender; #endif - pContext->isBackendAsynchronous = MA_TRUE; - - pContext->onUninit = ma_context_uninit__coreaudio; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__coreaudio; - pContext->onEnumDevices = ma_context_enumerate_devices__coreaudio; - pContext->onGetDeviceInfo = ma_context_get_device_info__coreaudio; - pContext->onDeviceInit = ma_device_init__coreaudio; - pContext->onDeviceUninit = ma_device_uninit__coreaudio; - pContext->onDeviceStart = ma_device_start__coreaudio; - pContext->onDeviceStop = ma_device_stop__coreaudio; - /* Audio component. */ { AudioComponentDescription desc; @@ -24320,18 +26731,42 @@ static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; - + pContext->coreaudio.component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc); if (pContext->coreaudio.component == NULL) { - #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) + #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); - #endif + #endif return MA_FAILED_TO_INIT_BACKEND; } } +#if !defined(MA_APPLE_MOBILE) + result = ma_context__init_device_tracking__coreaudio(pContext); + if (result != MA_SUCCESS) { + #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) + ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); + ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); + ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); + #endif + return result; + } +#endif + + pContext->coreaudio.noAudioSessionDeactivate = pConfig->coreaudio.noAudioSessionDeactivate; + + pContext->isBackendAsynchronous = MA_TRUE; + + pContext->onUninit = ma_context_uninit__coreaudio; + pContext->onEnumDevices = ma_context_enumerate_devices__coreaudio; + pContext->onGetDeviceInfo = ma_context_get_device_info__coreaudio; + pContext->onDeviceInit = ma_device_init__coreaudio; + pContext->onDeviceUninit = ma_device_uninit__coreaudio; + pContext->onDeviceStart = ma_device_start__coreaudio; + pContext->onDeviceStop = ma_device_stop__coreaudio; + return MA_SUCCESS; } #endif /* Core Audio */ @@ -24345,7 +26780,6 @@ sndio Backend ******************************************************************************/ #ifdef MA_HAS_SNDIO #include -#include /* Only supporting OpenBSD. This did not work very well at all on FreeBSD when I tried it. Not sure if this is due @@ -24447,7 +26881,7 @@ static ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int b if ((ma_is_little_endian() && le == 0) || (ma_is_big_endian() && le == 1)) { return ma_format_unknown; } - + if (bits == 8 && bps == 1 && sig == 0) { return ma_format_u8; } @@ -24463,7 +26897,7 @@ static ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int b if (bits == 32 && bps == 4 && sig == 1) { return ma_format_s32; } - + return ma_format_unknown; } @@ -24473,7 +26907,7 @@ static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps unsigned int iConfig; MA_ASSERT(caps != NULL); - + bestFormat = ma_format_unknown; for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) { unsigned int iEncoding; @@ -24488,7 +26922,7 @@ static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } - + bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; @@ -24498,7 +26932,7 @@ static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps if (format == ma_format_unknown) { continue; /* Format not supported. */ } - + if (bestFormat == ma_format_unknown) { bestFormat = format; } else { @@ -24508,7 +26942,7 @@ static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps } } } - + return bestFormat; } @@ -24519,7 +26953,7 @@ static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* ca MA_ASSERT(caps != NULL); MA_ASSERT(requiredFormat != ma_format_unknown); - + /* Just pick whatever configuration has the most channels. */ maxChannels = 0; for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) { @@ -24537,7 +26971,7 @@ static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* ca if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } - + bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; @@ -24547,7 +26981,7 @@ static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* ca if (format != requiredFormat) { continue; } - + /* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; @@ -24558,24 +26992,24 @@ static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* ca } else { chan = caps->confs[iConfig].rchan; } - + if ((chan & (1UL << iChannel)) == 0) { continue; } - + if (deviceType == ma_device_type_playback) { channels = caps->pchan[iChannel]; } else { channels = caps->rchan[iChannel]; } - + if (maxChannels < channels) { maxChannels = channels; } } } } - + return maxChannels; } @@ -24589,7 +27023,7 @@ static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* MA_ASSERT(requiredFormat != ma_format_unknown); MA_ASSERT(requiredChannels > 0); MA_ASSERT(requiredChannels <= MA_MAX_CHANNELS); - + firstSampleRate = 0; /* <-- If the device does not support a standard rate we'll fall back to the first one that's found. */ bestSampleRate = 0; @@ -24608,7 +27042,7 @@ static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } - + bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; @@ -24618,7 +27052,7 @@ static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* if (format != requiredFormat) { continue; } - + /* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; @@ -24630,36 +27064,36 @@ static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* } else { chan = caps->confs[iConfig].rchan; } - + if ((chan & (1UL << iChannel)) == 0) { continue; } - + if (deviceType == ma_device_type_playback) { channels = caps->pchan[iChannel]; } else { channels = caps->rchan[iChannel]; } - + if (channels != requiredChannels) { continue; } - + /* Getting here means we have found a compatible encoding/channel pair. */ for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) { ma_uint32 rate = (ma_uint32)caps->rate[iRate]; ma_uint32 ratePriority; - + if (firstSampleRate == 0) { firstSampleRate = rate; } - + /* Disregard this rate if it's not a standard one. */ ratePriority = ma_get_standard_sample_rate_priority_index__sndio(rate); if (ratePriority == (ma_uint32)-1) { continue; } - + if (ma_get_standard_sample_rate_priority_index__sndio(bestSampleRate) > ratePriority) { /* Lower = better. */ bestSampleRate = rate; } @@ -24667,26 +27101,16 @@ static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* } } } - + /* If a standard sample rate was not found just fall back to the first one that was iterated. */ if (bestSampleRate == 0) { bestSampleRate = firstSampleRate; } - + return bestSampleRate; } -static ma_bool32 ma_context_is_device_id_equal__sndio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->sndio, pID1->sndio) == 0; -} - static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 isTerminating = MA_FALSE; @@ -24694,9 +27118,9 @@ static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_en MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); - + /* sndio doesn't seem to have a good device enumeration API, so I'm therefore only enumerating over default devices for now. */ - + /* Playback. */ if (!isTerminating) { handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_PLAY, 0); @@ -24706,13 +27130,13 @@ static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_en MA_ZERO_OBJECT(&deviceInfo); ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), MA_SIO_DEVANY); ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME); - + isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); - + ((ma_sio_close_proc)pContext->sndio.sio_close)(handle); } } - + /* Capture. */ if (!isTerminating) { handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_REC, 0); @@ -24724,11 +27148,11 @@ static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_en ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME); isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); - + ((ma_sio_close_proc)pContext->sndio.sio_close)(handle); } } - + return MA_SUCCESS; } @@ -24741,7 +27165,7 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi MA_ASSERT(pContext != NULL); (void)shareMode; - + /* We need to open the device before we can get information about it. */ if (pDeviceID == NULL) { ma_strcpy_s(devid, sizeof(devid), MA_SIO_DEVANY); @@ -24750,16 +27174,16 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi ma_strcpy_s(devid, sizeof(devid), pDeviceID->sndio); ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), devid); } - + handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(devid, (deviceType == ma_device_type_playback) ? MA_SIO_PLAY : MA_SIO_REC, 0); if (handle == NULL) { return MA_NO_DEVICE; } - + if (((ma_sio_getcap_proc)pContext->sndio.sio_getcap)(handle, &caps) == 0) { return MA_ERROR; } - + for (iConfig = 0; iConfig < caps.nconf; iConfig += 1) { /* The main thing we care about is that the encoding is supported by miniaudio. If it is, we want to give @@ -24782,7 +27206,7 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi if ((caps.confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } - + bits = caps.enc[iEncoding].bits; bps = caps.enc[iEncoding].bps; sig = caps.enc[iEncoding].sig; @@ -24792,7 +27216,7 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi if (format == ma_format_unknown) { continue; /* Format not supported. */ } - + /* Add this format if it doesn't already exist. */ for (iExistingFormat = 0; iExistingFormat < pDeviceInfo->formatCount; iExistingFormat += 1) { if (pDeviceInfo->formats[iExistingFormat] == format) { @@ -24800,12 +27224,12 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi break; } } - + if (!formatExists) { pDeviceInfo->formats[pDeviceInfo->formatCount++] = format; } } - + /* Channels. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; @@ -24816,17 +27240,17 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi } else { chan = caps.confs[iConfig].rchan; } - + if ((chan & (1UL << iChannel)) == 0) { continue; } - + if (deviceType == ma_device_type_playback) { channels = caps.pchan[iChannel]; } else { channels = caps.rchan[iChannel]; } - + if (pDeviceInfo->minChannels > channels) { pDeviceInfo->minChannels = channels; } @@ -24834,7 +27258,7 @@ static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_devi pDeviceInfo->maxChannels = channels; } } - + /* Sample rates. */ for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) { if ((caps.confs[iConfig].rate & (1UL << iRate)) != 0) { @@ -24873,7 +27297,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev int openFlags = 0; struct ma_sio_cap caps; struct ma_sio_par par; - ma_device_id* pDeviceID; + const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; @@ -24922,7 +27346,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev Note: sndio reports a huge range of available channels. This is inconvenient for us because there's no real way, as far as I can tell, to get the _actual_ channel count of the device. I'm therefore restricting this to the requested channels, regardless of whether or not the default channel count is requested. - + For hardware devices, I'm suspecting only a single channel count will be reported and we can safely use the value returned by ma_find_best_channels_from_sio_cap__sndio(). */ @@ -24945,7 +27369,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev } } } - + if (pDevice->usingDefaultSampleRate) { sampleRate = ma_find_best_sample_rate_from_sio_cap__sndio(&caps, pConfig->deviceType, format, channels); } @@ -24954,7 +27378,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev ((ma_sio_initpar_proc)pDevice->pContext->sndio.sio_initpar)(&par); par.msb = 0; par.le = ma_is_little_endian(); - + switch (format) { case ma_format_u8: { @@ -24962,21 +27386,21 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev par.bps = 1; par.sig = 0; } break; - + case ma_format_s24: { par.bits = 24; par.bps = 3; par.sig = 1; } break; - + case ma_format_s32: { par.bits = 32; par.bps = 4; par.sig = 1; } break; - + case ma_format_s16: case ma_format_f32: default: @@ -24986,7 +27410,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev par.sig = 1; } break; } - + if (deviceType == ma_device_type_capture) { par.rchan = channels; } else { @@ -25002,7 +27426,7 @@ static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_dev par.round = internalPeriodSizeInFrames; par.appbufsz = par.round * pConfig->periods; - + if (((ma_sio_setpar_proc)pContext->sndio.sio_setpar)((struct ma_sio_hdl*)handle, &par) == 0) { ((ma_sio_close_proc)pContext->sndio.sio_close)((struct ma_sio_hdl*)handle); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to set buffer size.", MA_FORMAT_NOT_SUPPORTED); @@ -25118,7 +27542,7 @@ static ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFram if (pFramesWritten != NULL) { *pFramesWritten = frameCount; } - + return MA_SUCCESS; } @@ -25138,7 +27562,7 @@ static ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_ if (pFramesRead != NULL) { *pFramesRead = frameCount; } - + return MA_SUCCESS; } @@ -25155,7 +27579,7 @@ static ma_result ma_device_main_loop__sndio(ma_device* pDevice) ((ma_sio_start_proc)pDevice->pContext->sndio.sio_start)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback); /* <-- Doesn't actually playback until data is written. */ } - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { switch (pDevice->type) { case ma_device_type_duplex: @@ -25163,7 +27587,7 @@ static ma_result ma_device_main_loop__sndio(ma_device* pDevice) /* The process is: device_read -> convert -> callback -> convert -> device_write */ ma_uint32 totalCapturedDeviceFramesProcessed = 0; ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - + while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; @@ -25340,7 +27764,7 @@ static ma_result ma_context_init__sndio(const ma_context_config* pConfig, ma_con if (pContext->sndio.sndioSO == NULL) { return MA_NO_BACKEND; } - + pContext->sndio.sio_open = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_open"); pContext->sndio.sio_close = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_close"); pContext->sndio.sio_setpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_setpar"); @@ -25365,7 +27789,6 @@ static ma_result ma_context_init__sndio(const ma_context_config* pConfig, ma_con #endif pContext->onUninit = ma_context_uninit__sndio; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__sndio; pContext->onEnumDevices = ma_context_enumerate_devices__sndio; pContext->onGetDeviceInfo = ma_context_get_device_info__sndio; pContext->onDeviceInit = ma_device_init__sndio; @@ -25409,10 +27832,10 @@ static void ma_construct_device_id__audio4(char* id, size_t idSize, const char* MA_ASSERT(id != NULL); MA_ASSERT(idSize > 0); MA_ASSERT(deviceIndex >= 0); - + baseLen = strlen(base); MA_ASSERT(idSize > baseLen); - + ma_strcpy_s(id, idSize, base); ma_itoa_s(deviceIndex, id+baseLen, idSize-baseLen, 10); } @@ -25426,38 +27849,29 @@ static ma_result ma_extract_device_index_from_id__audio4(const char* id, const c MA_ASSERT(id != NULL); MA_ASSERT(base != NULL); MA_ASSERT(pIndexOut != NULL); - + idLen = strlen(id); baseLen = strlen(base); if (idLen <= baseLen) { return MA_ERROR; /* Doesn't look like the id starts with the base. */ } - + if (strncmp(id, base, baseLen) != 0) { return MA_ERROR; /* ID does not begin with base. */ } - + deviceIndexStr = id + baseLen; if (deviceIndexStr[0] == '\0') { return MA_ERROR; /* No index specified in the ID. */ } - + if (pIndexOut) { *pIndexOut = atoi(deviceIndexStr); } - + return MA_SUCCESS; } -static ma_bool32 ma_context_is_device_id_equal__audio4(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->audio4, pID1->audio4) == 0; -} #if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */ static ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int precision) @@ -25562,7 +27976,7 @@ static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext MA_ASSERT(pContext != NULL); MA_ASSERT(fd >= 0); MA_ASSERT(pInfoOut != NULL); - + (void)pContext; (void)deviceType; @@ -25598,7 +28012,7 @@ static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext } if (deviceType == ma_device_type_playback) { - pInfoOut->minChannels = fdInfo.play.channels; + pInfoOut->minChannels = fdInfo.play.channels; pInfoOut->maxChannels = fdInfo.play.channels; pInfoOut->minSampleRate = fdInfo.play.sample_rate; pInfoOut->maxSampleRate = fdInfo.play.sample_rate; @@ -25612,13 +28026,13 @@ static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) { return MA_ERROR; } - + format = ma_format_from_swpar__audio4(&fdPar); if (format == ma_format_unknown) { return MA_FORMAT_NOT_SUPPORTED; } pInfoOut->formats[pInfoOut->formatCount++] = format; - + if (deviceType == ma_device_type_playback) { pInfoOut->minChannels = fdPar.pchan; pInfoOut->maxChannels = fdPar.pchan; @@ -25626,11 +28040,11 @@ static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext pInfoOut->minChannels = fdPar.rchan; pInfoOut->maxChannels = fdPar.rchan; } - + pInfoOut->minSampleRate = fdPar.rate; pInfoOut->maxSampleRate = fdPar.rate; #endif - + return MA_SUCCESS; } @@ -25642,7 +28056,7 @@ static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_e MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); - + /* Every device will be named "/dev/audioN", with a "/dev/audioctlN" equivalent. We use the "/dev/audioctlN" version here since we can open it even when another process has control of the "/dev/audioN" device. @@ -25654,13 +28068,13 @@ static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_e ma_strcpy_s(devpath, sizeof(devpath), "/dev/audioctl"); ma_itoa_s(iDevice, devpath+strlen(devpath), sizeof(devpath)-strlen(devpath), 10); - + if (stat(devpath, &st) < 0) { break; } /* The device exists, but we need to check if it's usable as playback and/or capture. */ - + /* Playback. */ if (!isTerminating) { fd = open(devpath, O_RDONLY, 0); @@ -25672,11 +28086,11 @@ static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_e if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_playback, fd, &deviceInfo) == MA_SUCCESS) { isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } - + close(fd); } } - + /* Capture. */ if (!isTerminating) { fd = open(devpath, O_WRONLY, 0); @@ -25688,16 +28102,16 @@ static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_e if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_capture, fd, &deviceInfo) == MA_SUCCESS) { isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } - + close(fd); } } - + if (isTerminating) { break; } } - + return MA_SUCCESS; } @@ -25710,7 +28124,7 @@ static ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_dev MA_ASSERT(pContext != NULL); (void)shareMode; - + /* We need to open the "/dev/audioctlN" device to get the info. To do this we need to extract the number from the device ID which will be in "/dev/audioN" format. @@ -25724,23 +28138,23 @@ static ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_dev if (result != MA_SUCCESS) { return result; } - + ma_construct_device_id__audio4(ctlid, sizeof(ctlid), "/dev/audioctl", deviceIndex); } - + fd = open(ctlid, (deviceType == ma_device_type_playback) ? O_WRONLY : O_RDONLY, 0); if (fd == -1) { return MA_NO_DEVICE; } - + if (deviceIndex == -1) { ma_strcpy_s(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio"); } else { ma_construct_device_id__audio4(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio", deviceIndex); } - + result = ma_context_get_device_info_from_fd__audio4(pContext, deviceType, fd, pDeviceInfo); - + close(fd); return result; } @@ -25830,7 +28244,7 @@ static ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device close(fd); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device format. AUDIO_SETINFO failed.", MA_FORMAT_NOT_SUPPORTED); } - + if (ioctl(fd, AUDIO_GETINFO, &fdInfo) < 0) { close(fd); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] AUDIO_GETINFO failed.", MA_FORMAT_NOT_SUPPORTED); @@ -25913,10 +28327,10 @@ static ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device if (internalPeriodSizeInBytes < 16) { internalPeriodSizeInBytes = 16; } - + fdPar.nblks = pConfig->periods; fdPar.round = internalPeriodSizeInBytes; - + if (ioctl(fd, AUDIO_SETPAR, &fdPar) < 0) { close(fd); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device parameters.", MA_FORMAT_NOT_SUPPORTED); @@ -25970,7 +28384,7 @@ static ma_result ma_device_init__audio4(ma_context* pContext, const ma_device_co if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } - + pDevice->audio4.fdCapture = -1; pDevice->audio4.fdPlayback = -1; @@ -26127,7 +28541,7 @@ static ma_result ma_device_main_loop__audio4(ma_device* pDevice) /* No need to explicitly start the device like the other backends. */ - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { switch (pDevice->type) { case ma_device_type_duplex: @@ -26135,7 +28549,7 @@ static ma_result ma_device_main_loop__audio4(ma_device* pDevice) /* The process is: device_read -> convert -> callback -> convert -> device_write */ ma_uint32 totalCapturedDeviceFramesProcessed = 0; ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - + while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; @@ -26301,7 +28715,6 @@ static ma_result ma_context_init__audio4(const ma_context_config* pConfig, ma_co (void)pConfig; pContext->onUninit = ma_context_uninit__audio4; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__audio4; pContext->onEnumDevices = ma_context_enumerate_devices__audio4; pContext->onGetDeviceInfo = ma_context_get_device_info__audio4; pContext->onDeviceInit = ma_device_init__audio4; @@ -26330,6 +28743,8 @@ OSS Backend #define SNDCTL_DSP_HALT SNDCTL_DSP_RESET #endif +#define MA_OSS_DEFAULT_DEVICE_NAME "/dev/dsp" + static int ma_open_temp_device__oss() { /* The OSS sample code uses "/dev/mixer" as the device for getting system properties so I'm going to do the same. */ @@ -26357,7 +28772,7 @@ static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_typ return MA_INVALID_ARGS; } - deviceName = "/dev/dsp"; + deviceName = MA_OSS_DEFAULT_DEVICE_NAME; if (pDeviceID != NULL) { deviceName = pDeviceID->oss; } @@ -26375,16 +28790,6 @@ static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_typ return MA_SUCCESS; } -static ma_bool32 ma_context_is_device_id_equal__oss(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->oss, pID1->oss) == 0; -} - static ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { int fd; @@ -26558,7 +28963,7 @@ static void ma_device_uninit__oss(ma_device* pDevice) if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { close(pDevice->oss.fdCapture); } - + if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { close(pDevice->oss.fdPlayback); } @@ -26673,7 +29078,7 @@ static ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_co The documentation says that the fragment settings should be set as soon as possible, but I'm not sure if it should be done before or after format/channels/rate. - + OSS wants the fragment size in bytes and a power of 2. When setting, we specify the power, not the actual value. */ @@ -26681,7 +29086,7 @@ static ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_co ma_uint32 periodSizeInFrames; ma_uint32 periodSizeInBytes; ma_uint32 ossFragmentSizePower; - + periodSizeInFrames = pConfig->periodSizeInFrames; if (periodSizeInFrames == 0) { periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, (ma_uint32)ossSampleRate); @@ -26771,13 +29176,13 @@ static ma_result ma_device_stop__oss(ma_device* pDevice) /* We want to use SNDCTL_DSP_HALT. From the documentation: - + In multithreaded applications SNDCTL_DSP_HALT (SNDCTL_DSP_RESET) must only be called by the thread that actually reads/writes the audio device. It must not be called by some master thread to kill the audio thread. The audio thread will not stop or get any kind of notification that the device was stopped by the master thread. The device gets stopped but the next read or write call will silently restart the device. - + This is actually safe in our case, because this function is only ever called from within our worker thread anyway. Just keep this in mind, though... */ @@ -26815,7 +29220,7 @@ static ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames if (pFramesWritten != NULL) { *pFramesWritten = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); } - + return MA_SUCCESS; } @@ -26831,7 +29236,7 @@ static ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_ui if (resultOSS < 0) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to read data from the device to be sent to the client.", ma_result_from_errno(errno)); } - + if (pFramesRead != NULL) { *pFramesRead = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); } @@ -26846,7 +29251,7 @@ static ma_result ma_device_main_loop__oss(ma_device* pDevice) /* No need to explicitly start the device like the other backends. */ - while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { + while (ma_device_get_state(pDevice) == MA_STATE_STARTED && !exitLoop) { switch (pDevice->type) { case ma_device_type_duplex: @@ -26854,7 +29259,7 @@ static ma_result ma_device_main_loop__oss(ma_device* pDevice) /* The process is: device_read -> convert -> callback -> convert -> device_write */ ma_uint32 totalCapturedDeviceFramesProcessed = 0; ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); - + while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; @@ -27037,11 +29442,13 @@ static ma_result ma_context_init__oss(const ma_context_config* pConfig, ma_conte return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve OSS version.", MA_NO_BACKEND); } + /* The file handle to temp device is no longer needed. Close ASAP. */ + close(fd); + pContext->oss.versionMajor = ((ossVersion & 0xFF0000) >> 16); pContext->oss.versionMinor = ((ossVersion & 0x00FF00) >> 8); pContext->onUninit = ma_context_uninit__oss; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__oss; pContext->onEnumDevices = ma_context_enumerate_devices__oss; pContext->onGetDeviceInfo = ma_context_get_device_info__oss; pContext->onDeviceInit = ma_device_init__oss; @@ -27050,7 +29457,6 @@ static ma_result ma_context_init__oss(const ma_context_config* pConfig, ma_conte pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */ pContext->onDeviceMainLoop = ma_device_main_loop__oss; - close(fd); return MA_SUCCESS; } #endif /* OSS */ @@ -27072,47 +29478,82 @@ typedef int32_t ma_aaudio_sharing_mode_t; typedef int32_t ma_aaudio_format_t; typedef int32_t ma_aaudio_stream_state_t; typedef int32_t ma_aaudio_performance_mode_t; +typedef int32_t ma_aaudio_usage_t; +typedef int32_t ma_aaudio_content_type_t; +typedef int32_t ma_aaudio_input_preset_t; typedef int32_t ma_aaudio_data_callback_result_t; /* Result codes. miniaudio only cares about the success code. */ -#define MA_AAUDIO_OK 0 +#define MA_AAUDIO_OK 0 /* Directions. */ -#define MA_AAUDIO_DIRECTION_OUTPUT 0 -#define MA_AAUDIO_DIRECTION_INPUT 1 +#define MA_AAUDIO_DIRECTION_OUTPUT 0 +#define MA_AAUDIO_DIRECTION_INPUT 1 /* Sharing modes. */ -#define MA_AAUDIO_SHARING_MODE_EXCLUSIVE 0 -#define MA_AAUDIO_SHARING_MODE_SHARED 1 +#define MA_AAUDIO_SHARING_MODE_EXCLUSIVE 0 +#define MA_AAUDIO_SHARING_MODE_SHARED 1 /* Formats. */ -#define MA_AAUDIO_FORMAT_PCM_I16 1 -#define MA_AAUDIO_FORMAT_PCM_FLOAT 2 +#define MA_AAUDIO_FORMAT_PCM_I16 1 +#define MA_AAUDIO_FORMAT_PCM_FLOAT 2 /* Stream states. */ -#define MA_AAUDIO_STREAM_STATE_UNINITIALIZED 0 -#define MA_AAUDIO_STREAM_STATE_UNKNOWN 1 -#define MA_AAUDIO_STREAM_STATE_OPEN 2 -#define MA_AAUDIO_STREAM_STATE_STARTING 3 -#define MA_AAUDIO_STREAM_STATE_STARTED 4 -#define MA_AAUDIO_STREAM_STATE_PAUSING 5 -#define MA_AAUDIO_STREAM_STATE_PAUSED 6 -#define MA_AAUDIO_STREAM_STATE_FLUSHING 7 -#define MA_AAUDIO_STREAM_STATE_FLUSHED 8 -#define MA_AAUDIO_STREAM_STATE_STOPPING 9 -#define MA_AAUDIO_STREAM_STATE_STOPPED 10 -#define MA_AAUDIO_STREAM_STATE_CLOSING 11 -#define MA_AAUDIO_STREAM_STATE_CLOSED 12 -#define MA_AAUDIO_STREAM_STATE_DISCONNECTED 13 +#define MA_AAUDIO_STREAM_STATE_UNINITIALIZED 0 +#define MA_AAUDIO_STREAM_STATE_UNKNOWN 1 +#define MA_AAUDIO_STREAM_STATE_OPEN 2 +#define MA_AAUDIO_STREAM_STATE_STARTING 3 +#define MA_AAUDIO_STREAM_STATE_STARTED 4 +#define MA_AAUDIO_STREAM_STATE_PAUSING 5 +#define MA_AAUDIO_STREAM_STATE_PAUSED 6 +#define MA_AAUDIO_STREAM_STATE_FLUSHING 7 +#define MA_AAUDIO_STREAM_STATE_FLUSHED 8 +#define MA_AAUDIO_STREAM_STATE_STOPPING 9 +#define MA_AAUDIO_STREAM_STATE_STOPPED 10 +#define MA_AAUDIO_STREAM_STATE_CLOSING 11 +#define MA_AAUDIO_STREAM_STATE_CLOSED 12 +#define MA_AAUDIO_STREAM_STATE_DISCONNECTED 13 /* Performance modes. */ -#define MA_AAUDIO_PERFORMANCE_MODE_NONE 10 -#define MA_AAUDIO_PERFORMANCE_MODE_POWER_SAVING 11 -#define MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY 12 +#define MA_AAUDIO_PERFORMANCE_MODE_NONE 10 +#define MA_AAUDIO_PERFORMANCE_MODE_POWER_SAVING 11 +#define MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY 12 + +/* Usage types. */ +#define MA_AAUDIO_USAGE_MEDIA 1 +#define MA_AAUDIO_USAGE_VOICE_COMMUNICATION 2 +#define MA_AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING 3 +#define MA_AAUDIO_USAGE_ALARM 4 +#define MA_AAUDIO_USAGE_NOTIFICATION 5 +#define MA_AAUDIO_USAGE_NOTIFICATION_RINGTONE 6 +#define MA_AAUDIO_USAGE_NOTIFICATION_EVENT 10 +#define MA_AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY 11 +#define MA_AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE 12 +#define MA_AAUDIO_USAGE_ASSISTANCE_SONIFICATION 13 +#define MA_AAUDIO_USAGE_GAME 14 +#define MA_AAUDIO_USAGE_ASSISTANT 16 +#define MA_AAUDIO_SYSTEM_USAGE_EMERGENCY 1000 +#define MA_AAUDIO_SYSTEM_USAGE_SAFETY 1001 +#define MA_AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS 1002 +#define MA_AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT 1003 + +/* Content types. */ +#define MA_AAUDIO_CONTENT_TYPE_SPEECH 1 +#define MA_AAUDIO_CONTENT_TYPE_MUSIC 2 +#define MA_AAUDIO_CONTENT_TYPE_MOVIE 3 +#define MA_AAUDIO_CONTENT_TYPE_SONIFICATION 4 + +/* Input presets. */ +#define MA_AAUDIO_INPUT_PRESET_GENERIC 1 +#define MA_AAUDIO_INPUT_PRESET_CAMCORDER 5 +#define MA_AAUDIO_INPUT_PRESET_VOICE_RECOGNITION 6 +#define MA_AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION 7 +#define MA_AAUDIO_INPUT_PRESET_UNPROCESSED 9 +#define MA_AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE 10 /* Callback results. */ -#define MA_AAUDIO_CALLBACK_RESULT_CONTINUE 0 -#define MA_AAUDIO_CALLBACK_RESULT_STOP 1 +#define MA_AAUDIO_CALLBACK_RESULT_CONTINUE 0 +#define MA_AAUDIO_CALLBACK_RESULT_STOP 1 /* Objects. */ typedef struct ma_AAudioStreamBuilder_t* ma_AAudioStreamBuilder; @@ -27134,6 +29575,9 @@ typedef void (* MA_PFN_AAudioStreamBuilder_setFramesPerDataC typedef void (* MA_PFN_AAudioStreamBuilder_setDataCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_dataCallback callback, void* pUserData); typedef void (* MA_PFN_AAudioStreamBuilder_setErrorCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_errorCallback callback, void* pUserData); typedef void (* MA_PFN_AAudioStreamBuilder_setPerformanceMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_performance_mode_t mode); +typedef void (* MA_PFN_AAudioStreamBuilder_setUsage) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_usage_t contentType); +typedef void (* MA_PFN_AAudioStreamBuilder_setContentType) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_content_type_t contentType); +typedef void (* MA_PFN_AAudioStreamBuilder_setInputPreset) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_input_preset_t inputPreset); typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_openStream) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream** ppStream); typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_close) (ma_AAudioStream* pStream); typedef ma_aaudio_stream_state_t (* MA_PFN_AAudioStream_getState) (ma_AAudioStream* pStream); @@ -27158,6 +29602,59 @@ static ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA) return MA_ERROR; } +static ma_aaudio_usage_t ma_to_usage__aaudio(ma_aaudio_usage usage) +{ + switch (usage) { + case ma_aaudio_usage_announcement: return MA_AAUDIO_USAGE_MEDIA; + case ma_aaudio_usage_emergency: return MA_AAUDIO_USAGE_VOICE_COMMUNICATION; + case ma_aaudio_usage_safety: return MA_AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING; + case ma_aaudio_usage_vehicle_status: return MA_AAUDIO_USAGE_ALARM; + case ma_aaudio_usage_alarm: return MA_AAUDIO_USAGE_NOTIFICATION; + case ma_aaudio_usage_assistance_accessibility: return MA_AAUDIO_USAGE_NOTIFICATION_RINGTONE; + case ma_aaudio_usage_assistance_navigation_guidance: return MA_AAUDIO_USAGE_NOTIFICATION_EVENT; + case ma_aaudio_usage_assistance_sonification: return MA_AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY; + case ma_aaudio_usage_assitant: return MA_AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE; + case ma_aaudio_usage_game: return MA_AAUDIO_USAGE_ASSISTANCE_SONIFICATION; + case ma_aaudio_usage_media: return MA_AAUDIO_USAGE_GAME; + case ma_aaudio_usage_notification: return MA_AAUDIO_USAGE_ASSISTANT; + case ma_aaudio_usage_notification_event: return MA_AAUDIO_SYSTEM_USAGE_EMERGENCY; + case ma_aaudio_usage_notification_ringtone: return MA_AAUDIO_SYSTEM_USAGE_SAFETY; + case ma_aaudio_usage_voice_communication: return MA_AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS; + case ma_aaudio_usage_voice_communication_signalling: return MA_AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT; + default: break; + } + + return MA_AAUDIO_USAGE_MEDIA; +} + +static ma_aaudio_content_type_t ma_to_content_type__aaudio(ma_aaudio_content_type contentType) +{ + switch (contentType) { + case ma_aaudio_content_type_movie: return MA_AAUDIO_CONTENT_TYPE_MOVIE; + case ma_aaudio_content_type_music: return MA_AAUDIO_CONTENT_TYPE_MUSIC; + case ma_aaudio_content_type_sonification: return MA_AAUDIO_CONTENT_TYPE_SONIFICATION; + case ma_aaudio_content_type_speech: return MA_AAUDIO_CONTENT_TYPE_SPEECH; + default: break; + } + + return MA_AAUDIO_CONTENT_TYPE_SPEECH; +} + +static ma_aaudio_input_preset_t ma_to_input_preset__aaudio(ma_aaudio_input_preset inputPreset) +{ + switch (inputPreset) { + case ma_aaudio_input_preset_generic: return MA_AAUDIO_INPUT_PRESET_GENERIC; + case ma_aaudio_input_preset_camcorder: return MA_AAUDIO_INPUT_PRESET_CAMCORDER; + case ma_aaudio_input_preset_unprocessed: return MA_AAUDIO_INPUT_PRESET_UNPROCESSED; + case ma_aaudio_input_preset_voice_recognition: return MA_AAUDIO_INPUT_PRESET_VOICE_RECOGNITION; + case ma_aaudio_input_preset_voice_communication: return MA_AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION; + case ma_aaudio_input_preset_voice_performance: return MA_AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE; + default: break; + } + + return MA_AAUDIO_INPUT_PRESET_GENERIC; +} + static void ma_stream_error_callback__aaudio(ma_AAudioStream* pStream, void* pUserData, ma_aaudio_result_t error) { ma_device* pDevice = (ma_device*)pUserData; @@ -27263,8 +29760,20 @@ static ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type dev ((MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback)pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback)(pBuilder, bufferCapacityInFrames / pConfig->periods); if (deviceType == ma_device_type_capture) { + if (pConfig->aaudio.inputPreset != ma_aaudio_input_preset_default && pContext->aaudio.AAudioStreamBuilder_setInputPreset != NULL) { + ((MA_PFN_AAudioStreamBuilder_setInputPreset)pContext->aaudio.AAudioStreamBuilder_setInputPreset)(pBuilder, ma_to_input_preset__aaudio(pConfig->aaudio.inputPreset)); + } + ((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_capture__aaudio, (void*)pDevice); } else { + if (pConfig->aaudio.usage != ma_aaudio_usage_default && pContext->aaudio.AAudioStreamBuilder_setUsage != NULL) { + ((MA_PFN_AAudioStreamBuilder_setUsage)pContext->aaudio.AAudioStreamBuilder_setUsage)(pBuilder, ma_to_usage__aaudio(pConfig->aaudio.usage)); + } + + if (pConfig->aaudio.contentType != ma_aaudio_content_type_default && pContext->aaudio.AAudioStreamBuilder_setContentType != NULL) { + ((MA_PFN_AAudioStreamBuilder_setContentType)pContext->aaudio.AAudioStreamBuilder_setContentType)(pBuilder, ma_to_content_type__aaudio(pConfig->aaudio.contentType)); + } + ((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_playback__aaudio, (void*)pDevice); } @@ -27319,16 +29828,6 @@ static ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContex } -static ma_bool32 ma_context_is_device_id_equal__aaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return pID0->aaudio == pID1->aaudio; -} - static ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; @@ -27383,7 +29882,7 @@ static ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_dev } else { pDeviceInfo->id.aaudio = MA_AAUDIO_UNSPECIFIED; } - + /* Name */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); @@ -27659,7 +30158,7 @@ static ma_result ma_context_uninit__aaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_aaudio); - + ma_dlclose(pContext, pContext->aaudio.hAAudio); pContext->aaudio.hAAudio = NULL; @@ -27697,6 +30196,9 @@ static ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_co pContext->aaudio.AAudioStreamBuilder_setDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDataCallback"); pContext->aaudio.AAudioStreamBuilder_setErrorCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setErrorCallback"); pContext->aaudio.AAudioStreamBuilder_setPerformanceMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setPerformanceMode"); + pContext->aaudio.AAudioStreamBuilder_setUsage = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setUsage"); + pContext->aaudio.AAudioStreamBuilder_setContentType = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setContentType"); + pContext->aaudio.AAudioStreamBuilder_setInputPreset = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setInputPreset"); pContext->aaudio.AAudioStreamBuilder_openStream = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_openStream"); pContext->aaudio.AAudioStream_close = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_close"); pContext->aaudio.AAudioStream_getState = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getState"); @@ -27713,7 +30215,6 @@ static ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_co pContext->isBackendAsynchronous = MA_TRUE; pContext->onUninit = ma_context_uninit__aaudio; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__aaudio; pContext->onEnumDevices = ma_context_enumerate_devices__aaudio; pContext->onGetDeviceInfo = ma_context_get_device_info__aaudio; pContext->onDeviceInit = ma_device_init__aaudio; @@ -27738,10 +30239,13 @@ OpenSL|ES Backend #include #endif +typedef SLresult (SLAPIENTRY * ma_slCreateEngine_proc)(SLObjectItf* pEngine, SLuint32 numOptions, SLEngineOption* pEngineOptions, SLuint32 numInterfaces, SLInterfaceID* pInterfaceIds, SLboolean* pInterfaceRequired); + /* OpenSL|ES has one-per-application objects :( */ -SLObjectItf g_maEngineObjectSL = NULL; -SLEngineItf g_maEngineSL = NULL; -ma_uint32 g_maOpenSLInitCounter = 0; +static SLObjectItf g_maEngineObjectSL = NULL; +static SLEngineItf g_maEngineSL = NULL; +static ma_uint32 g_maOpenSLInitCounter = 0; +static ma_spinlock g_maOpenSLSpinlock = 0; /* For init/uninit. */ #define MA_OPENSL_OBJ(p) (*((SLObjectItf)(p))) #define MA_OPENSL_OUTPUTMIX(p) (*((SLOutputMixItf)(p))) @@ -27835,37 +30339,37 @@ static SLuint32 ma_channel_id_to_opensl(ma_uint8 id) } /* Converts a channel mapping to an OpenSL-style channel mask. */ -static SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels) +static SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel* pChannelMap, ma_uint32 channels) { SLuint32 channelMask = 0; ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { - channelMask |= ma_channel_id_to_opensl(channelMap[iChannel]); + channelMask |= ma_channel_id_to_opensl(pChannelMap[iChannel]); } return channelMask; } /* Converts an OpenSL-style channel mask to a miniaudio channel map. */ -static void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel* pChannelMap) { if (channels == 1 && channelMask == 0) { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } else if (channels == 2 && channelMask == 0) { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; } else { if (channels == 1 && (channelMask & SL_SPEAKER_FRONT_CENTER) != 0) { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } else { /* Just iterate over each bit. */ ma_uint32 iChannel = 0; ma_uint32 iBit; - for (iBit = 0; iBit < 32; ++iBit) { + for (iBit = 0; iBit < 32 && iChannel < channels; ++iBit) { SLuint32 bitValue = (channelMask & (1UL << iBit)); if (bitValue != 0) { /* The bit is set. */ - channelMap[iChannel] = ma_channel_id_to_ma__opensl(bitValue); + pChannelMap[iChannel] = ma_channel_id_to_ma__opensl(bitValue); iChannel += 1; } } @@ -27923,16 +30427,36 @@ static SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec) } -static ma_bool32 ma_context_is_device_id_equal__opensl(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) +static SLint32 ma_to_stream_type__opensl(ma_opensl_stream_type streamType) { - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; + switch (streamType) { + case ma_opensl_stream_type_voice: return SL_ANDROID_STREAM_VOICE; + case ma_opensl_stream_type_system: return SL_ANDROID_STREAM_SYSTEM; + case ma_opensl_stream_type_ring: return SL_ANDROID_STREAM_RING; + case ma_opensl_stream_type_media: return SL_ANDROID_STREAM_MEDIA; + case ma_opensl_stream_type_alarm: return SL_ANDROID_STREAM_ALARM; + case ma_opensl_stream_type_notification: return SL_ANDROID_STREAM_NOTIFICATION; + default: break; + } - return pID0->opensl == pID1->opensl; + return SL_ANDROID_STREAM_VOICE; } +static SLint32 ma_to_recording_preset__opensl(ma_opensl_recording_preset recordingPreset) +{ + switch (recordingPreset) { + case ma_opensl_recording_preset_generic: return SL_ANDROID_RECORDING_PRESET_GENERIC; + case ma_opensl_recording_preset_camcorder: return SL_ANDROID_RECORDING_PRESET_CAMCORDER; + case ma_opensl_recording_preset_voice_recognition: return SL_ANDROID_RECORDING_PRESET_VOICE_RECOGNITION; + case ma_opensl_recording_preset_voice_communication: return SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION; + case ma_opensl_recording_preset_voice_unprocessed: return SL_ANDROID_RECORDING_PRESET_UNPROCESSED; + default: break; + } + + return SL_ANDROID_RECORDING_PRESET_NONE; +} + + static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult; @@ -27947,7 +30471,7 @@ static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_e /* TODO: Test Me. - + This is currently untested, so for now we are just returning default devices. */ #if 0 && !defined(MA_ANDROID) @@ -27957,7 +30481,7 @@ static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_e SLint32 deviceCount = sizeof(pDeviceIDs) / sizeof(pDeviceIDs[0]); SLAudioIODeviceCapabilitiesItf deviceCaps; - SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); + SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); if (resultSL != SL_RESULT_SUCCESS) { /* The interface may not be supported so just report a default device. */ goto return_default_device; @@ -28058,12 +30582,12 @@ static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_dev /* TODO: Test Me. - + This is currently untested, so for now we are just returning default devices. */ #if 0 && !defined(MA_ANDROID) SLAudioIODeviceCapabilitiesItf deviceCaps; - SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); + SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); if (resultSL != SL_RESULT_SUCCESS) { /* The interface may not be supported so just report a default device. */ goto return_default_device; @@ -28313,7 +30837,7 @@ static ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 ch return MA_SUCCESS; } -static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap) +static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_bool32 isFloatingPoint = MA_FALSE; #if defined(MA_ANDROID) && __ANDROID_API__ >= 21 @@ -28340,7 +30864,7 @@ static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pD *pChannels = pDataFormat->numChannels; *pSampleRate = ((SLDataFormat_PCM*)pDataFormat)->samplesPerSec / 1000; - ma_channel_mask_to_channel_map__opensl(pDataFormat->channelMask, pDataFormat->numChannels, pChannelMap); + ma_channel_mask_to_channel_map__opensl(pDataFormat->channelMask, ma_min(pDataFormat->numChannels, channelMapCap), pChannelMap); return MA_SUCCESS; } @@ -28352,7 +30876,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co SLresult resultSL; ma_uint32 periodSizeInFrames; size_t bufferSizeInBytes; - const SLInterfaceID itfIDs1[] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE}; + SLInterfaceID itfIDs1[1]; const SLboolean itfIDsRequired1[] = {SL_BOOLEAN_TRUE}; #endif @@ -28373,6 +30897,8 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co queues). */ #ifdef MA_ANDROID + itfIDs1[0] = (SLInterfaceID)pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE; + /* No exclusive mode with OpenSL|ES. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) { @@ -28392,6 +30918,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co SLDataLocator_IODevice locatorDevice; SLDataSource source; SLDataSink sink; + SLAndroidConfigurationItf pRecorderConfig; ma_SLDataFormat_PCM_init__opensl(pConfig->capture.format, pConfig->capture.channels, pConfig->sampleRate, pConfig->capture.channelMap, &pcm); @@ -28423,19 +30950,32 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio recorder.", ma_result_from_OpenSL(resultSL)); } + + /* Set the recording preset before realizing the player. */ + if (pConfig->opensl.recordingPreset != ma_opensl_recording_preset_default) { + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pContext->opensl.SL_IID_ANDROIDCONFIGURATION, &pRecorderConfig); + if (resultSL == SL_RESULT_SUCCESS) { + SLint32 recordingPreset = ma_to_recording_preset__opensl(pConfig->opensl.recordingPreset); + resultSL = (*pRecorderConfig)->SetConfiguration(pRecorderConfig, SL_ANDROID_KEY_RECORDING_PRESET, &recordingPreset, sizeof(SLint32)); + if (resultSL != SL_RESULT_SUCCESS) { + /* Failed to set the configuration. Just keep going. */ + } + } + } + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Realize((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_BOOLEAN_FALSE); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio recorder.", ma_result_from_OpenSL(resultSL)); } - resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_RECORD, &pDevice->opensl.pAudioRecorder); + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, (SLInterfaceID)pContext->opensl.SL_IID_RECORD, &pDevice->opensl.pAudioRecorder); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_RECORD interface.", ma_result_from_OpenSL(resultSL)); } - resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture); + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, (SLInterfaceID)pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL)); @@ -28448,7 +30988,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co } /* The internal format is determined by the "pcm" object. */ - ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->capture.internalFormat, &pDevice->capture.internalChannels, &pDevice->capture.internalSampleRate, pDevice->capture.internalChannelMap); + ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->capture.internalFormat, &pDevice->capture.internalChannels, &pDevice->capture.internalSampleRate, pDevice->capture.internalChannelMap, ma_countof(pDevice->capture.internalChannelMap)); /* Buffer. */ periodSizeInFrames = pConfig->periodSizeInFrames; @@ -28473,6 +31013,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co SLDataSource source; SLDataLocator_OutputMix outmixLocator; SLDataSink sink; + SLAndroidConfigurationItf pPlayerConfig; ma_SLDataFormat_PCM_init__opensl(pConfig->playback.format, pConfig->playback.channels, pConfig->sampleRate, pConfig->playback.channelMap, &pcm); @@ -28488,7 +31029,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize output mix object.", ma_result_from_OpenSL(resultSL)); } - resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix); + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, (SLInterfaceID)pContext->opensl.SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_OUTPUTMIX interface.", ma_result_from_OpenSL(resultSL)); @@ -28499,7 +31040,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co SLuint32 deviceID_OpenSL = pConfig->playback.pDeviceID->opensl; MA_OPENSL_OUTPUTMIX(pDevice->opensl.pOutputMix)->ReRoute((SLOutputMixItf)pDevice->opensl.pOutputMix, 1, &deviceID_OpenSL); } - + source.pLocator = &queue; source.pFormat = (SLDataFormat_PCM*)&pcm; @@ -28526,19 +31067,32 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio player.", ma_result_from_OpenSL(resultSL)); } + + /* Set the stream type before realizing the player. */ + if (pConfig->opensl.streamType != ma_opensl_stream_type_default) { + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pContext->opensl.SL_IID_ANDROIDCONFIGURATION, &pPlayerConfig); + if (resultSL == SL_RESULT_SUCCESS) { + SLint32 streamType = ma_to_stream_type__opensl(pConfig->opensl.streamType); + resultSL = (*pPlayerConfig)->SetConfiguration(pPlayerConfig, SL_ANDROID_KEY_STREAM_TYPE, &streamType, sizeof(SLint32)); + if (resultSL != SL_RESULT_SUCCESS) { + /* Failed to set the configuration. Just keep going. */ + } + } + } + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Realize((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_BOOLEAN_FALSE); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio player.", ma_result_from_OpenSL(resultSL)); } - resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_PLAY, &pDevice->opensl.pAudioPlayer); + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pContext->opensl.SL_IID_PLAY, &pDevice->opensl.pAudioPlayer); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_PLAY interface.", ma_result_from_OpenSL(resultSL)); } - resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback); + resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL)); @@ -28551,7 +31105,7 @@ static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_co } /* The internal format is determined by the "pcm" object. */ - ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->playback.internalFormat, &pDevice->playback.internalChannels, &pDevice->playback.internalSampleRate, pDevice->playback.internalChannelMap); + ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->playback.internalFormat, &pDevice->playback.internalChannels, &pDevice->playback.internalSampleRate, pDevice->playback.internalChannelMap, ma_countof(pDevice->playback.internalChannelMap)); /* Buffer. */ periodSizeInFrames = pConfig->periodSizeInFrames; @@ -28737,43 +31291,144 @@ static ma_result ma_context_uninit__opensl(ma_context* pContext) (void)pContext; /* Uninit global data. */ - if (g_maOpenSLInitCounter > 0) { - if (ma_atomic_decrement_32(&g_maOpenSLInitCounter) == 0) { + ma_spinlock_lock(&g_maOpenSLSpinlock); + { + MA_ASSERT(g_maOpenSLInitCounter > 0); /* If you've triggered this, it means you have ma_context_init/uninit mismatch. Each successful call to ma_context_init() must be matched up with a call to ma_context_uninit(). */ + + g_maOpenSLInitCounter -= 1; + if (g_maOpenSLInitCounter == 0) { (*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL); } } + ma_spinlock_unlock(&g_maOpenSLSpinlock); + + return MA_SUCCESS; +} + +static ma_result ma_dlsym_SLInterfaceID__opensl(ma_context* pContext, const char* pName, ma_handle* pHandle) +{ + /* We need to return an error if the symbol cannot be found. This is important because there have been reports that some symbols do not exist. */ + ma_handle* p = (ma_handle*)ma_dlsym(pContext, pContext->opensl.libOpenSLES, pName); + if (p == NULL) { + ma_post_log_messagef(pContext, NULL, MA_LOG_LEVEL_INFO, "[OpenSL|ES] Cannot find symbol %s", pName); + return MA_NO_BACKEND; + } + + *pHandle = *p; + return MA_SUCCESS; +} + +static ma_result ma_context_init_engine_nolock__opensl(ma_context* pContext) +{ + g_maOpenSLInitCounter += 1; + if (g_maOpenSLInitCounter == 1) { + SLresult resultSL; + + resultSL = ((ma_slCreateEngine_proc)pContext->opensl.slCreateEngine)(&g_maEngineObjectSL, 0, NULL, 0, NULL, NULL); + if (resultSL != SL_RESULT_SUCCESS) { + g_maOpenSLInitCounter -= 1; + return ma_result_from_OpenSL(resultSL); + } + + (*g_maEngineObjectSL)->Realize(g_maEngineObjectSL, SL_BOOLEAN_FALSE); + + resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_ENGINE, &g_maEngineSL); + if (resultSL != SL_RESULT_SUCCESS) { + (*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL); + g_maOpenSLInitCounter -= 1; + return ma_result_from_OpenSL(resultSL); + } + } return MA_SUCCESS; } static ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_context* pContext) { + ma_result result; + size_t i; + const char* libOpenSLESNames[] = { + "libOpenSLES.so" + }; + MA_ASSERT(pContext != NULL); (void)pConfig; - /* Initialize global data first if applicable. */ - if (ma_atomic_increment_32(&g_maOpenSLInitCounter) == 1) { - SLresult resultSL = slCreateEngine(&g_maEngineObjectSL, 0, NULL, 0, NULL, NULL); - if (resultSL != SL_RESULT_SUCCESS) { - ma_atomic_decrement_32(&g_maOpenSLInitCounter); - return ma_result_from_OpenSL(resultSL); - } - - (*g_maEngineObjectSL)->Realize(g_maEngineObjectSL, SL_BOOLEAN_FALSE); - - resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_ENGINE, &g_maEngineSL); - if (resultSL != SL_RESULT_SUCCESS) { - (*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL); - ma_atomic_decrement_32(&g_maOpenSLInitCounter); - return ma_result_from_OpenSL(resultSL); + /* + Dynamically link against libOpenSLES.so. I have now had multiple reports that SL_IID_ANDROIDSIMPLEBUFFERQUEUE cannot be found. One + report was happening at compile time and another at runtime. To try working around this, I'm going to link to libOpenSLES at runtime + and extract the symbols rather than reference them directly. This should, hopefully, fix these issues as the compiler won't see any + references to the symbols and will hopefully skip the checks. + */ + for (i = 0; i < ma_countof(libOpenSLESNames); i += 1) { + pContext->opensl.libOpenSLES = ma_dlopen(pContext, libOpenSLESNames[i]); + if (pContext->opensl.libOpenSLES != NULL) { + break; } } + if (pContext->opensl.libOpenSLES == NULL) { + return MA_NO_BACKEND; /* Couldn't find libOpenSLES.so */ + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ENGINE", &pContext->opensl.SL_IID_ENGINE); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_AUDIOIODEVICECAPABILITIES", &pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ANDROIDSIMPLEBUFFERQUEUE", &pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_RECORD", &pContext->opensl.SL_IID_RECORD); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_PLAY", &pContext->opensl.SL_IID_PLAY); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_OUTPUTMIX", &pContext->opensl.SL_IID_OUTPUTMIX); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ANDROIDCONFIGURATION", &pContext->opensl.SL_IID_ANDROIDCONFIGURATION); + if (result != MA_SUCCESS) { + return result; + } + + pContext->opensl.slCreateEngine = (ma_proc)ma_dlsym(pContext, pContext->opensl.libOpenSLES, "slCreateEngine"); + if (pContext->opensl.slCreateEngine == NULL) { + ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_INFO, "[OpenSL|ES] Cannot find symbol slCreateEngine."); + return MA_NO_BACKEND; + } + + + /* Initialize global data first if applicable. */ + ma_spinlock_lock(&g_maOpenSLSpinlock); + { + result = ma_context_init_engine_nolock__opensl(pContext); + } + ma_spinlock_unlock(&g_maOpenSLSpinlock); + + if (result != MA_SUCCESS) { + return result; /* Failed to initialize the OpenSL engine. */ + } + + pContext->isBackendAsynchronous = MA_TRUE; pContext->onUninit = ma_context_uninit__opensl; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__opensl; pContext->onEnumDevices = ma_context_enumerate_devices__opensl; pContext->onGetDeviceInfo = ma_context_get_device_info__opensl; pContext->onDeviceInit = ma_device_init__opensl; @@ -28806,35 +31461,17 @@ extern "C" { #endif void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_capture__webaudio(ma_device* pDevice, int frameCount, float* pFrames) { - if (pDevice->type == ma_device_type_duplex) { - ma_device__handle_duplex_callback_capture(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB); - } else { - ma_device__send_frames_to_client(pDevice, (ma_uint32)frameCount, pFrames); /* Send directly to the client. */ - } + ma_device_handle_backend_data_callback(pDevice, NULL, pFrames, (ma_uint32)frameCount); } void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_playback__webaudio(ma_device* pDevice, int frameCount, float* pFrames) { - if (pDevice->type == ma_device_type_duplex) { - ma_device__handle_duplex_callback_playback(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB); - } else { - ma_device__read_frames_from_client(pDevice, (ma_uint32)frameCount, pFrames); /* Read directly from the device. */ - } + ma_device_handle_backend_data_callback(pDevice, pFrames, NULL, (ma_uint32)frameCount); } #ifdef __cplusplus } #endif -static ma_bool32 ma_context_is_device_id_equal__webaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1) -{ - MA_ASSERT(pContext != NULL); - MA_ASSERT(pID0 != NULL); - MA_ASSERT(pID1 != NULL); - (void)pContext; - - return ma_strcmp(pID0->webaudio, pID1->webaudio) == 0; -} - static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; @@ -28849,6 +31486,7 @@ static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); + deviceInfo.isDefault = MA_TRUE; /* Only supporting default devices. */ cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } @@ -28858,6 +31496,7 @@ static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); + deviceInfo.isDefault = MA_TRUE; /* Only supporting default devices. */ cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } @@ -28865,20 +31504,14 @@ static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma return MA_SUCCESS; } -static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) +static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); - /* No exclusive mode with Web Audio. */ - if (shareMode == ma_share_mode_exclusive) { - return MA_SHARE_MODE_NOT_SUPPORTED; - } - if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) { return MA_NO_DEVICE; } - MA_ZERO_MEMORY(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio)); /* Only supporting default devices for now. */ @@ -28889,15 +31522,14 @@ static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_d ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } - /* Web Audio can support any number of channels and sample rates. It only supports f32 formats, however. */ - pDeviceInfo->minChannels = 1; - pDeviceInfo->maxChannels = MA_MAX_CHANNELS; - if (pDeviceInfo->maxChannels > 32) { - pDeviceInfo->maxChannels = 32; /* Maximum output channel count is 32 for createScriptProcessor() (JavaScript). */ - } + /* Only supporting default devices. */ + pDeviceInfo->isDefault = MA_TRUE; - /* We can query the sample rate by just using a temporary audio context. */ - pDeviceInfo->minSampleRate = EM_ASM_INT({ + /* Web Audio can support any number of channels and sample rates. It only supports f32 formats, however. */ + pDeviceInfo->nativeDataFormats[0].flags = 0; + pDeviceInfo->nativeDataFormats[0].format = ma_format_unknown; + pDeviceInfo->nativeDataFormats[0].channels = 0; /* All channels are supported. */ + pDeviceInfo->nativeDataFormats[0].sampleRate = EM_ASM_INT({ try { var temp = new (window.AudioContext || window.webkitAudioContext)(); var sampleRate = temp.sampleRate; @@ -28907,14 +31539,12 @@ static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_d return 0; } }, 0); /* Must pass in a dummy argument for C99 compatibility. */ - pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate; - if (pDeviceInfo->minSampleRate == 0) { + + if (pDeviceInfo->nativeDataFormats[0].sampleRate == 0) { return MA_NO_DEVICE; } - /* Web Audio only supports f32. */ - pDeviceInfo->formatCount = 1; - pDeviceInfo->formats[0] = ma_format_f32; + pDeviceInfo->nativeDataFormatCount = 1; return MA_SUCCESS; } @@ -28958,7 +31588,7 @@ static void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_ty }, deviceIndex, deviceType); } -static void ma_device_uninit__webaudio(ma_device* pDevice) +static ma_result ma_device_uninit__webaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); @@ -28970,39 +31600,60 @@ static void ma_device_uninit__webaudio(ma_device* pDevice) ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_playback, pDevice->webaudio.indexPlayback); } - if (pDevice->type == ma_device_type_duplex) { - ma_pcm_rb_uninit(&pDevice->webaudio.duplexRB); - } + return MA_SUCCESS; } -static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice) +static ma_uint32 ma_calculate_period_size_in_frames__dsound(ma_uint32 periodSizeInFrames, ma_uint32 periodSizeInMilliseconds, ma_uint32 sampleRate, ma_performance_profile performanceProfile) +{ + /* + There have been reports of the default buffer size being too small on some browsers. There have been reports of the default buffer + size being too small on some browsers. If we're using default buffer size, we'll make sure the period size is a big biffer than our + standard defaults. + */ + if (periodSizeInFrames == 0) { + if (periodSizeInMilliseconds == 0) { + if (performanceProfile == ma_performance_profile_low_latency) { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(33, sampleRate); /* 1 frame @ 30 FPS */ + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(333, sampleRate); + } + } else { + periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, sampleRate); + } + } + + /* The size of the buffer must be a power of 2 and between 256 and 16384. */ + if (periodSizeInFrames < 256) { + periodSizeInFrames = 256; + } else if (periodSizeInFrames > 16384) { + periodSizeInFrames = 16384; + } else { + periodSizeInFrames = ma_next_power_of_2(periodSizeInFrames); + } + + return periodSizeInFrames; +} + +static ma_result ma_device_init_by_type__webaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { int deviceIndex; - ma_uint32 internalPeriodSizeInFrames; + ma_uint32 channels; + ma_uint32 sampleRate; + ma_uint32 periodSizeInFrames; - MA_ASSERT(pContext != NULL); + MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); - MA_ASSERT(pDevice != NULL); if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) { return MA_NO_DEVICE; } - /* Try calculating an appropriate buffer size. */ - internalPeriodSizeInFrames = pConfig->periodSizeInFrames; - if (internalPeriodSizeInFrames == 0) { - internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate); - } + /* We're going to calculate some stuff in C just to simplify the JS code. */ + channels = (pDescriptor->channels > 0) ? pDescriptor->channels : MA_DEFAULT_CHANNELS; + sampleRate = (pDescriptor->sampleRate > 0) ? pDescriptor->sampleRate : MA_DEFAULT_SAMPLE_RATE; + periodSizeInFrames = ma_calculate_period_size_in_frames__dsound(pDescriptor->periodSizeInFrames, pDescriptor->periodSizeInMilliseconds, pDescriptor->sampleRate, pConfig->performanceProfile); - /* The size of the buffer must be a power of 2 and between 256 and 16384. */ - if (internalPeriodSizeInFrames < 256) { - internalPeriodSizeInFrames = 256; - } else if (internalPeriodSizeInFrames > 16384) { - internalPeriodSizeInFrames = 16384; - } else { - internalPeriodSizeInFrames = ma_next_power_of_2(internalPeriodSizeInFrames); - } /* We create the device on the JavaScript side and reference it using an index. We use this to make it possible to reference the device between JavaScript and C. */ deviceIndex = EM_ASM_INT({ @@ -29054,6 +31705,11 @@ static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma return; /* This means the device has been uninitialized. */ } + if(device.intermediaryBufferView.length == 0) { + /* Recreate intermediaryBufferView when losing reference to the underlying buffer, probably due to emscripten resizing heap. */ + device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes); + } + /* Make sure silence it output to the AudioContext destination. Not doing this will cause sound to come out of the speakers! */ for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) { e.outputBuffer.getChannelData(iChannel).fill(0.0); @@ -29114,6 +31770,11 @@ static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma return; /* This means the device has been uninitialized. */ } + if(device.intermediaryBufferView.length == 0) { + /* Recreate intermediaryBufferView when losing reference to the underlying buffer, probably due to emscripten resizing heap. */ + device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes); + } + var outputSilence = false; /* Sanity check. This will never happen, right? */ @@ -29156,34 +31817,29 @@ static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma } return miniaudio.track_device(device); - }, (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels, pConfig->sampleRate, internalPeriodSizeInFrames, deviceType == ma_device_type_capture, pDevice); + }, channels, sampleRate, periodSizeInFrames, deviceType == ma_device_type_capture, pDevice); if (deviceIndex < 0) { return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } if (deviceType == ma_device_type_capture) { - pDevice->webaudio.indexCapture = deviceIndex; - pDevice->capture.internalFormat = ma_format_f32; - pDevice->capture.internalChannels = pConfig->capture.channels; - ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); - pDevice->capture.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex); - pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames; - pDevice->capture.internalPeriods = 1; + pDevice->webaudio.indexCapture = deviceIndex; } else { - pDevice->webaudio.indexPlayback = deviceIndex; - pDevice->playback.internalFormat = ma_format_f32; - pDevice->playback.internalChannels = pConfig->playback.channels; - ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); - pDevice->playback.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex); - pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames; - pDevice->playback.internalPeriods = 1; + pDevice->webaudio.indexPlayback = deviceIndex; } + pDescriptor->format = ma_format_f32; + pDescriptor->channels = channels; + ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDescriptor->channels, pDescriptor->channelMap); + pDescriptor->sampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex); + pDescriptor->periodSizeInFrames = periodSizeInFrames; + pDescriptor->periodCount = 1; + return MA_SUCCESS; } -static ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) +static ma_result ma_device_init__webaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; @@ -29192,20 +31848,20 @@ static ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_ } /* No exclusive mode with Web Audio. */ - if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) || - ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) { + if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || + ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { - result = ma_device_init_by_type__webaudio(pContext, pConfig, ma_device_type_capture, pDevice); + result = ma_device_init_by_type__webaudio(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { - result = ma_device_init_by_type__webaudio(pContext, pConfig, ma_device_type_playback, pDevice); + result = ma_device_init_by_type__webaudio(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture); @@ -29214,36 +31870,6 @@ static ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_ } } - /* - We need a ring buffer for moving data from the capture device to the playback device. The capture callback is the producer - and the playback callback is the consumer. The buffer needs to be large enough to hold internalPeriodSizeInFrames based on - the external sample rate. - */ - if (pConfig->deviceType == ma_device_type_duplex) { - ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * 2; - result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->webaudio.duplexRB); - if (result != MA_SUCCESS) { - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture); - } - if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { - ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_playback, pDevice->webaudio.indexPlayback); - } - return result; - } - - /* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */ - { - ma_uint32 marginSizeInFrames = rbSizeInFrames / 3; /* <-- Dividing by 3 because internalPeriods is always set to 1 for WebAudio. */ - void* pMarginData; - ma_pcm_rb_acquire_write(&pDevice->webaudio.duplexRB, &marginSizeInFrames, &pMarginData); - { - MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels)); - } - ma_pcm_rb_commit_write(&pDevice->webaudio.duplexRB, marginSizeInFrames, pMarginData); - } - } - return MA_SUCCESS; } @@ -29311,12 +31937,14 @@ static ma_result ma_context_uninit__webaudio(ma_context* pContext) return MA_SUCCESS; } -static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_context* pContext) +static ma_result ma_context_init__webaudio(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { int resultFromJS; MA_ASSERT(pContext != NULL); + (void)pConfig; /* Unused. */ + /* Here is where our global JavaScript object is initialized. */ resultFromJS = EM_ASM_INT({ if ((window.AudioContext || window.webkitAudioContext) === undefined) { @@ -29326,7 +31954,7 @@ static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_ if (typeof(miniaudio) === 'undefined') { miniaudio = {}; miniaudio.devices = []; /* Device cache for mapping devices to indexes for JavaScript/C interop. */ - + miniaudio.track_device = function(device) { /* Try inserting into a free slot first. */ for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) { @@ -29335,16 +31963,16 @@ static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_ return iDevice; } } - + /* Getting here means there is no empty slots in the array so we just push to the end. */ miniaudio.devices.push(device); return miniaudio.devices.length - 1; }; - + miniaudio.untrack_device_by_index = function(deviceIndex) { /* We just set the device's slot to null. The slot will get reused in the next call to ma_track_device. */ miniaudio.devices[deviceIndex] = null; - + /* Trim the array if possible. */ while (miniaudio.devices.length > 0) { if (miniaudio.devices[miniaudio.devices.length-1] == null) { @@ -29354,7 +31982,7 @@ static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_ } } }; - + miniaudio.untrack_device = function(device) { for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) { if (miniaudio.devices[iDevice] == device) { @@ -29362,12 +31990,12 @@ static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_ } } }; - + miniaudio.get_device_by_index = function(deviceIndex) { return miniaudio.devices[deviceIndex]; }; } - + return 1; }, 0); /* Must pass in a dummy argument for C99 compatibility. */ @@ -29375,19 +32003,18 @@ static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_ return MA_FAILED_TO_INIT_BACKEND; } + pCallbacks->onContextInit = ma_context_init__webaudio; + pCallbacks->onContextUninit = ma_context_uninit__webaudio; + pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__webaudio; + pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__webaudio; + pCallbacks->onDeviceInit = ma_device_init__webaudio; + pCallbacks->onDeviceUninit = ma_device_uninit__webaudio; + pCallbacks->onDeviceStart = ma_device_start__webaudio; + pCallbacks->onDeviceStop = ma_device_stop__webaudio; + pCallbacks->onDeviceRead = NULL; /* Not needed because WebAudio is asynchronous. */ + pCallbacks->onDeviceWrite = NULL; /* Not needed because WebAudio is asynchronous. */ + pCallbacks->onDeviceAudioThread = NULL; /* Not needed because WebAudio is asynchronous. */ - pContext->isBackendAsynchronous = MA_TRUE; - - pContext->onUninit = ma_context_uninit__webaudio; - pContext->onDeviceIDEqual = ma_context_is_device_id_equal__webaudio; - pContext->onEnumDevices = ma_context_enumerate_devices__webaudio; - pContext->onGetDeviceInfo = ma_context_get_device_info__webaudio; - pContext->onDeviceInit = ma_device_init__webaudio; - pContext->onDeviceUninit = ma_device_uninit__webaudio; - pContext->onDeviceStart = ma_device_start__webaudio; - pContext->onDeviceStop = ma_device_stop__webaudio; - - (void)pConfig; /* Unused. */ return MA_SUCCESS; } #endif /* Web Audio */ @@ -29400,8 +32027,8 @@ static ma_bool32 ma__is_channel_map_valid(const ma_channel* channelMap, ma_uint3 if (channelMap[0] != MA_CHANNEL_NONE) { ma_uint32 iChannel; - if (channels == 0) { - return MA_FALSE; /* No channels. */ + if (channels == 0 || channels > MA_MAX_CHANNELS) { + return MA_FALSE; /* Channel count out of range. */ } /* A channel cannot be present in the channel map more than once. */ @@ -29433,10 +32060,15 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d pDevice->capture.channels = pDevice->capture.internalChannels; } if (pDevice->capture.usingDefaultChannelMap) { + MA_ASSERT(pDevice->capture.channels <= MA_MAX_CHANNELS); if (pDevice->capture.internalChannels == pDevice->capture.channels) { ma_channel_map_copy(pDevice->capture.channelMap, pDevice->capture.internalChannelMap, pDevice->capture.channels); } else { - ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->capture.channels, pDevice->capture.channelMap); + if (pDevice->capture.channelMixMode == ma_channel_mix_mode_simple) { + ma_channel_map_init_blank(pDevice->capture.channels, pDevice->capture.channelMap); + } else { + ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->capture.channels, pDevice->capture.channelMap); + } } } } @@ -29449,10 +32081,15 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d pDevice->playback.channels = pDevice->playback.internalChannels; } if (pDevice->playback.usingDefaultChannelMap) { + MA_ASSERT(pDevice->playback.channels <= MA_MAX_CHANNELS); if (pDevice->playback.internalChannels == pDevice->playback.channels) { ma_channel_map_copy(pDevice->playback.channelMap, pDevice->playback.internalChannelMap, pDevice->playback.channels); } else { - ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->playback.channels, pDevice->playback.channelMap); + if (pDevice->playback.channelMixMode == ma_channel_mix_mode_simple) { + ma_channel_map_init_blank(pDevice->playback.channels, pDevice->playback.channelMap); + } else { + ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->playback.channels, pDevice->playback.channelMap); + } } } } @@ -29465,18 +32102,19 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d } } - /* PCM converters. */ + /* Data converters. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { /* Converting from internal device format to client format. */ ma_data_converter_config converterConfig = ma_data_converter_config_init_default(); converterConfig.formatIn = pDevice->capture.internalFormat; converterConfig.channelsIn = pDevice->capture.internalChannels; converterConfig.sampleRateIn = pDevice->capture.internalSampleRate; - ma_channel_map_copy(converterConfig.channelMapIn, pDevice->capture.internalChannelMap, pDevice->capture.internalChannels); + ma_channel_map_copy(converterConfig.channelMapIn, pDevice->capture.internalChannelMap, ma_min(pDevice->capture.internalChannels, MA_MAX_CHANNELS)); converterConfig.formatOut = pDevice->capture.format; converterConfig.channelsOut = pDevice->capture.channels; converterConfig.sampleRateOut = pDevice->sampleRate; - ma_channel_map_copy(converterConfig.channelMapOut, pDevice->capture.channelMap, pDevice->capture.channels); + ma_channel_map_copy(converterConfig.channelMapOut, pDevice->capture.channelMap, ma_min(pDevice->capture.channels, MA_MAX_CHANNELS)); + converterConfig.channelMixMode = pDevice->capture.channelMixMode; converterConfig.resampling.allowDynamicSampleRate = MA_FALSE; converterConfig.resampling.algorithm = pDevice->resampling.algorithm; converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder; @@ -29494,11 +32132,12 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d converterConfig.formatIn = pDevice->playback.format; converterConfig.channelsIn = pDevice->playback.channels; converterConfig.sampleRateIn = pDevice->sampleRate; - ma_channel_map_copy(converterConfig.channelMapIn, pDevice->playback.channelMap, pDevice->playback.channels); + ma_channel_map_copy(converterConfig.channelMapIn, pDevice->playback.channelMap, ma_min(pDevice->playback.channels, MA_MAX_CHANNELS)); converterConfig.formatOut = pDevice->playback.internalFormat; converterConfig.channelsOut = pDevice->playback.internalChannels; converterConfig.sampleRateOut = pDevice->playback.internalSampleRate; - ma_channel_map_copy(converterConfig.channelMapOut, pDevice->playback.internalChannelMap, pDevice->playback.internalChannels); + ma_channel_map_copy(converterConfig.channelMapOut, pDevice->playback.internalChannelMap, ma_min(pDevice->playback.internalChannels, MA_MAX_CHANNELS)); + converterConfig.channelMixMode = pDevice->playback.channelMixMode; converterConfig.resampling.allowDynamicSampleRate = MA_FALSE; converterConfig.resampling.algorithm = pDevice->resampling.algorithm; converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder; @@ -29514,6 +32153,15 @@ static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type d } +/* TEMP: Helper for determining whether or not a context is using the new callback system. Eventually all backends will be using the new callback system. */ +static ma_bool32 ma_context__is_using_new_callbacks(ma_context* pContext) +{ + MA_ASSERT(pContext != NULL); + + return pContext->callbacks.onContextInit != NULL; +} + + static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) { ma_device* pDevice = (ma_device*)pData; @@ -29542,7 +32190,7 @@ static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) pDevice->workResult = MA_SUCCESS; /* If the reason for the wake up is that we are terminating, just break from the loop. */ - if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) { + if (ma_device_get_state(pDevice) == MA_STATE_UNINITIALIZED) { break; } @@ -29551,16 +32199,33 @@ static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) be started will be waiting on an event (pDevice->startEvent) which means we need to make sure we signal the event in both the success and error case. It's important that the state of the device is set _before_ signaling the event. */ - MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTING); + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_STARTING); + + /* If the device has a start callback, start it now. */ + if (pDevice->pContext->callbacks.onDeviceStart != NULL) { + ma_result result = pDevice->pContext->callbacks.onDeviceStart(pDevice); + if (result != MA_SUCCESS) { + pDevice->workResult = result; /* Failed to start the device. */ + } + } /* Make sure the state is set appropriately. */ ma_device__set_state(pDevice, MA_STATE_STARTED); ma_event_signal(&pDevice->startEvent); - if (pDevice->pContext->onDeviceMainLoop != NULL) { - pDevice->pContext->onDeviceMainLoop(pDevice); + if (ma_context__is_using_new_callbacks(pDevice->pContext)) { + if (pDevice->pContext->callbacks.onDeviceAudioThread != NULL) { + pDevice->pContext->callbacks.onDeviceAudioThread(pDevice); + } else { + /* The backend is not using a custom main loop implementation, so now fall back to the blocking read-write implementation. */ + ma_device_audio_thread__default_read_write(pDevice, &pDevice->pContext->callbacks); + } } else { - ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "No main loop implementation.", MA_API_NOT_FOUND); + if (pDevice->pContext->onDeviceMainLoop != NULL) { + pDevice->pContext->onDeviceMainLoop(pDevice); + } else { + ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "No main loop implementation.", MA_API_NOT_FOUND); + } } /* @@ -29568,9 +32233,15 @@ static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) may have actually already happened above if the device was lost and miniaudio has attempted to re-initialize the device. In this case we don't want to be doing this a second time. */ - if (ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED) { - if (pDevice->pContext->onDeviceStop) { - pDevice->pContext->onDeviceStop(pDevice); + if (ma_device_get_state(pDevice) != MA_STATE_UNINITIALIZED) { + if (ma_context__is_using_new_callbacks(pDevice->pContext)) { + if (pDevice->pContext->callbacks.onDeviceStop != NULL) { + pDevice->pContext->callbacks.onDeviceStop(pDevice); + } + } else { + if (pDevice->pContext->onDeviceStop != NULL) { + pDevice->pContext->onDeviceStop(pDevice); + } } } @@ -29585,7 +32256,7 @@ static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) it's possible that the device has been uninitialized which means we need to _not_ change the status to stopped. We cannot go from an uninitialized state to stopped state. */ - if (ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED) { + if (ma_device_get_state(pDevice) != MA_STATE_UNINITIALIZED) { ma_device__set_state(pDevice, MA_STATE_STOPPED); ma_event_signal(&pDevice->stopEvent); } @@ -29609,7 +32280,7 @@ static ma_bool32 ma_device__is_initialized(ma_device* pDevice) return MA_FALSE; } - return ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED; + return ma_device_get_state(pDevice) != MA_STATE_UNINITIALIZED; } @@ -29765,7 +32436,21 @@ static ma_result ma_context_uninit_backend_apis(ma_context* pContext) static ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext) { - return pContext->isBackendAsynchronous; + MA_ASSERT(pContext != NULL); + + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onDeviceRead == NULL && pContext->callbacks.onDeviceWrite == NULL) { + if (pContext->callbacks.onDeviceAudioThread == NULL) { + return MA_TRUE; + } else { + return MA_FALSE; + } + } else { + return MA_FALSE; + } + } else { + return pContext->isBackendAsynchronous; + } } @@ -29780,7 +32465,7 @@ MA_API ma_context_config ma_context_config_init() MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext) { ma_result result; - ma_context_config config; + ma_context_config defaultConfig; ma_backend defaultBackends[ma_backend_null+1]; ma_uint32 iBackend; ma_backend* pBackendsToIterate; @@ -29793,17 +32478,17 @@ MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendC MA_ZERO_OBJECT(pContext); /* Always make sure the config is set first to ensure properties are available as soon as possible. */ - if (pConfig != NULL) { - config = *pConfig; - } else { - config = ma_context_config_init(); + if (pConfig == NULL) { + defaultConfig = ma_context_config_init(); + pConfig = &defaultConfig; } - pContext->logCallback = config.logCallback; - pContext->threadPriority = config.threadPriority; - pContext->pUserData = config.pUserData; + pContext->logCallback = pConfig->logCallback; + pContext->threadPriority = pConfig->threadPriority; + pContext->threadStackSize = pConfig->threadStackSize; + pContext->pUserData = pConfig->pUserData; - result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &config.allocationCallbacks); + result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &pConfig->allocationCallbacks); if (result != MA_SUCCESS) { return result; } @@ -29830,103 +32515,176 @@ MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendC for (iBackend = 0; iBackend < backendsToIterateCount; ++iBackend) { ma_backend backend = pBackendsToIterate[iBackend]; - result = MA_NO_BACKEND; + /* + I've had a subtle bug where some state is set by the backend's ma_context_init__*() function, but then later failed because + a setting in the context that was set in the prior failed attempt was left unchanged in the next attempt which resulted in + inconsistent state. Specifically what happened was the PulseAudio backend set the pContext->isBackendAsynchronous flag to true, + but since ALSA is not an asynchronous backend (it's a blocking read-write backend) it just left it unmodified with the assumption + that it would be initialized to false. This assumption proved to be incorrect because of the fact that the PulseAudio backend set + it earlier. For safety I'm going to reset this flag for each iteration. + + TODO: Remove this comment when the isBackendAsynchronous flag is removed. + */ + pContext->isBackendAsynchronous = MA_FALSE; + + /* These backends are using the new callback system. */ switch (backend) { #ifdef MA_HAS_WASAPI case ma_backend_wasapi: { - result = ma_context_init__wasapi(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__wasapi; } break; #endif #ifdef MA_HAS_DSOUND case ma_backend_dsound: { - result = ma_context_init__dsound(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__dsound; } break; #endif #ifdef MA_HAS_WINMM case ma_backend_winmm: { - result = ma_context_init__winmm(&config, pContext); - } break; - #endif - #ifdef MA_HAS_ALSA - case ma_backend_alsa: - { - result = ma_context_init__alsa(&config, pContext); - } break; - #endif - #ifdef MA_HAS_PULSEAUDIO - case ma_backend_pulseaudio: - { - result = ma_context_init__pulse(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__winmm; } break; #endif #ifdef MA_HAS_JACK case ma_backend_jack: { - result = ma_context_init__jack(&config, pContext); - } break; - #endif - #ifdef MA_HAS_COREAUDIO - case ma_backend_coreaudio: - { - result = ma_context_init__coreaudio(&config, pContext); - } break; - #endif - #ifdef MA_HAS_SNDIO - case ma_backend_sndio: - { - result = ma_context_init__sndio(&config, pContext); - } break; - #endif - #ifdef MA_HAS_AUDIO4 - case ma_backend_audio4: - { - result = ma_context_init__audio4(&config, pContext); - } break; - #endif - #ifdef MA_HAS_OSS - case ma_backend_oss: - { - result = ma_context_init__oss(&config, pContext); - } break; - #endif - #ifdef MA_HAS_AAUDIO - case ma_backend_aaudio: - { - result = ma_context_init__aaudio(&config, pContext); - } break; - #endif - #ifdef MA_HAS_OPENSL - case ma_backend_opensl: - { - result = ma_context_init__opensl(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__jack; } break; #endif #ifdef MA_HAS_WEBAUDIO case ma_backend_webaudio: { - result = ma_context_init__webaudio(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__webaudio; + } break; + #endif + #ifdef MA_HAS_CUSTOM + case ma_backend_custom: + { + /* Slightly different logic for custom backends. Custom backends can optionally set all of their callbacks in the config. */ + pContext->callbacks = pConfig->custom; } break; #endif #ifdef MA_HAS_NULL case ma_backend_null: { - result = ma_context_init__null(&config, pContext); + pContext->callbacks.onContextInit = ma_context_init__null; } break; #endif default: break; } + if (pContext->callbacks.onContextInit != NULL) { + result = pContext->callbacks.onContextInit(pContext, pConfig, &pContext->callbacks); + } else { + result = MA_NO_BACKEND; + + /* TEMP. Try falling back to the old callback system. Eventually this switch will be removed completely. */ + switch (backend) { + #ifdef MA_HAS_WASAPI + case ma_backend_wasapi: + { + /*result = ma_context_init__wasapi(&config, pContext);*/ + } break; + #endif + #ifdef MA_HAS_DSOUND + case ma_backend_dsound: + { + /*result = ma_context_init__dsound(pConfig, pContext);*/ + } break; + #endif + #ifdef MA_HAS_WINMM + case ma_backend_winmm: + { + /*result = ma_context_init__winmm(pConfig, pContext);*/ + } break; + #endif + #ifdef MA_HAS_ALSA + case ma_backend_alsa: + { + result = ma_context_init__alsa(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_PULSEAUDIO + case ma_backend_pulseaudio: + { + result = ma_context_init__pulse(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_JACK + case ma_backend_jack: + { + /*result = ma_context_init__jack(pConfig, pContext);*/ + } break; + #endif + #ifdef MA_HAS_COREAUDIO + case ma_backend_coreaudio: + { + result = ma_context_init__coreaudio(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_SNDIO + case ma_backend_sndio: + { + result = ma_context_init__sndio(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_AUDIO4 + case ma_backend_audio4: + { + result = ma_context_init__audio4(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_OSS + case ma_backend_oss: + { + result = ma_context_init__oss(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_AAUDIO + case ma_backend_aaudio: + { + result = ma_context_init__aaudio(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_OPENSL + case ma_backend_opensl: + { + result = ma_context_init__opensl(pConfig, pContext); + } break; + #endif + #ifdef MA_HAS_WEBAUDIO + case ma_backend_webaudio: + { + /*result = ma_context_init__webaudio(pConfig, pContext);*/ + } break; + #endif + #ifdef MA_HAS_CUSTOM + case ma_backend_custom: + { + /*result = ma_context_init__custom(pConfig, pContext);*/ + } break; + #endif + #ifdef MA_HAS_NULL + case ma_backend_null: + { + /*result = ma_context_init__null(pConfig, pContext);*/ + } break; + #endif + + default: break; + } + } + /* If this iteration was successful, return. */ if (result == MA_SUCCESS) { - result = ma_mutex_init(pContext, &pContext->deviceEnumLock); + result = ma_mutex_init(&pContext->deviceEnumLock); if (result != MA_SUCCESS) { ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device enumeration. ma_context_get_devices() is not thread safe.", result); } - result = ma_mutex_init(pContext, &pContext->deviceInfoLock); + result = ma_mutex_init(&pContext->deviceInfoLock); if (result != MA_SUCCESS) { ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device info retrieval. ma_context_get_device_info() is not thread safe.", result); } @@ -29955,7 +32713,15 @@ MA_API ma_result ma_context_uninit(ma_context* pContext) return MA_INVALID_ARGS; } - pContext->onUninit(pContext); + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onContextUninit != NULL) { + pContext->callbacks.onContextUninit(pContext); + } + } else { + if (pContext->onUninit != NULL) { + pContext->onUninit(pContext); + } + } ma_mutex_uninit(&pContext->deviceEnumLock); ma_mutex_uninit(&pContext->deviceInfoLock); @@ -29975,15 +32741,31 @@ MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devi { ma_result result; - if (pContext == NULL || pContext->onEnumDevices == NULL || callback == NULL) { + if (pContext == NULL || callback == NULL) { return MA_INVALID_ARGS; } - ma_mutex_lock(&pContext->deviceEnumLock); - { - result = pContext->onEnumDevices(pContext, callback, pUserData); + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onContextEnumerateDevices == NULL) { + return MA_INVALID_OPERATION; + } + + ma_mutex_lock(&pContext->deviceEnumLock); + { + result = pContext->callbacks.onContextEnumerateDevices(pContext, callback, pUserData); + } + ma_mutex_unlock(&pContext->deviceEnumLock); + } else { + if (pContext->onEnumDevices == NULL) { + return MA_INVALID_OPERATION; + } + + ma_mutex_lock(&pContext->deviceEnumLock); + { + result = pContext->onEnumDevices(pContext, callback, pUserData); + } + ma_mutex_unlock(&pContext->deviceEnumLock); } - ma_mutex_unlock(&pContext->deviceEnumLock); return result; } @@ -30048,10 +32830,20 @@ MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** p if (ppCaptureDeviceInfos != NULL) *ppCaptureDeviceInfos = NULL; if (pCaptureDeviceCount != NULL) *pCaptureDeviceCount = 0; - if (pContext == NULL || pContext->onEnumDevices == NULL) { + if (pContext == NULL) { return MA_INVALID_ARGS; } + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onContextEnumerateDevices == NULL) { + return MA_INVALID_OPERATION; + } + } else { + if (pContext->onEnumDevices == NULL) { + return MA_INVALID_OPERATION; + } + } + /* Note that we don't use ma_context_enumerate_devices() here because we want to do locking at a higher level. */ ma_mutex_lock(&pContext->deviceEnumLock); { @@ -30060,7 +32852,12 @@ MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** p pContext->captureDeviceInfoCount = 0; /* Now enumerate over available devices. */ - result = pContext->onEnumDevices(pContext, ma_context_get_devices__enum_callback, NULL); + if (ma_context__is_using_new_callbacks(pContext)) { + result = pContext->callbacks.onContextEnumerateDevices(pContext, ma_context_get_devices__enum_callback, NULL); + } else { + result = pContext->onEnumDevices(pContext, ma_context_get_devices__enum_callback, NULL); + } + if (result == MA_SUCCESS) { /* Playback devices. */ if (ppPlaybackDeviceInfos != NULL) { @@ -30086,6 +32883,7 @@ MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** p MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo) { + ma_result result; ma_device_info deviceInfo; /* NOTE: Do not clear pDeviceInfo on entry. The reason is the pDeviceID may actually point to pDeviceInfo->id which will break things. */ @@ -30100,27 +32898,103 @@ MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type MA_COPY_MEMORY(&deviceInfo.id, pDeviceID, sizeof(*pDeviceID)); } - /* The backend may have an optimized device info retrieval function. If so, try that first. */ - if (pContext->onGetDeviceInfo != NULL) { - ma_result result; - ma_mutex_lock(&pContext->deviceInfoLock); - { - result = pContext->onGetDeviceInfo(pContext, deviceType, pDeviceID, shareMode, &deviceInfo); + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onContextGetDeviceInfo == NULL) { + return MA_INVALID_OPERATION; + } + } else { + if (pContext->onGetDeviceInfo == NULL) { + return MA_INVALID_OPERATION; } - ma_mutex_unlock(&pContext->deviceInfoLock); - - /* Clamp ranges. */ - deviceInfo.minChannels = ma_max(deviceInfo.minChannels, MA_MIN_CHANNELS); - deviceInfo.maxChannels = ma_min(deviceInfo.maxChannels, MA_MAX_CHANNELS); - deviceInfo.minSampleRate = ma_max(deviceInfo.minSampleRate, MA_MIN_SAMPLE_RATE); - deviceInfo.maxSampleRate = ma_min(deviceInfo.maxSampleRate, MA_MAX_SAMPLE_RATE); - - *pDeviceInfo = deviceInfo; - return result; } - /* Getting here means onGetDeviceInfo has not been set. */ - return MA_ERROR; + ma_mutex_lock(&pContext->deviceInfoLock); + { + if (ma_context__is_using_new_callbacks(pContext)) { + result = pContext->callbacks.onContextGetDeviceInfo(pContext, deviceType, pDeviceID, &deviceInfo); + } else { + result = pContext->onGetDeviceInfo(pContext, deviceType, pDeviceID, shareMode, &deviceInfo); + } + } + ma_mutex_unlock(&pContext->deviceInfoLock); + + /* + If the backend is using the new device info system, do a pass to fill out the old settings for backwards compatibility. This will be removed in + the future when all backends have implemented the new device info system. + */ + if (deviceInfo.nativeDataFormatCount > 0) { + ma_uint32 iNativeFormat; + ma_uint32 iSampleFormat; + + deviceInfo.minChannels = 0xFFFFFFFF; + deviceInfo.maxChannels = 0; + deviceInfo.minSampleRate = 0xFFFFFFFF; + deviceInfo.maxSampleRate = 0; + + for (iNativeFormat = 0; iNativeFormat < deviceInfo.nativeDataFormatCount; iNativeFormat += 1) { + /* Formats. */ + if (deviceInfo.nativeDataFormats[iNativeFormat].format == ma_format_unknown) { + /* All formats are supported. */ + deviceInfo.formats[0] = ma_format_u8; + deviceInfo.formats[1] = ma_format_s16; + deviceInfo.formats[2] = ma_format_s24; + deviceInfo.formats[3] = ma_format_s32; + deviceInfo.formats[4] = ma_format_f32; + deviceInfo.formatCount = 5; + } else { + /* Make sure the format isn't already in the list. If so, skip. */ + ma_bool32 alreadyExists = MA_FALSE; + for (iSampleFormat = 0; iSampleFormat < deviceInfo.formatCount; iSampleFormat += 1) { + if (deviceInfo.formats[iSampleFormat] == deviceInfo.nativeDataFormats[iNativeFormat].format) { + alreadyExists = MA_TRUE; + break; + } + } + + if (!alreadyExists) { + deviceInfo.formats[deviceInfo.formatCount++] = deviceInfo.nativeDataFormats[iNativeFormat].format; + } + } + + /* Channels. */ + if (deviceInfo.nativeDataFormats[iNativeFormat].channels == 0) { + /* All channels supported. */ + deviceInfo.minChannels = MA_MIN_CHANNELS; + deviceInfo.maxChannels = MA_MAX_CHANNELS; + } else { + if (deviceInfo.minChannels > deviceInfo.nativeDataFormats[iNativeFormat].channels) { + deviceInfo.minChannels = deviceInfo.nativeDataFormats[iNativeFormat].channels; + } + if (deviceInfo.maxChannels < deviceInfo.nativeDataFormats[iNativeFormat].channels) { + deviceInfo.maxChannels = deviceInfo.nativeDataFormats[iNativeFormat].channels; + } + } + + /* Sample rate. */ + if (deviceInfo.nativeDataFormats[iNativeFormat].sampleRate == 0) { + /* All sample rates supported. */ + deviceInfo.minSampleRate = MA_MIN_SAMPLE_RATE; + deviceInfo.maxSampleRate = MA_MAX_SAMPLE_RATE; + } else { + if (deviceInfo.minSampleRate > deviceInfo.nativeDataFormats[iNativeFormat].sampleRate) { + deviceInfo.minSampleRate = deviceInfo.nativeDataFormats[iNativeFormat].sampleRate; + } + if (deviceInfo.maxSampleRate < deviceInfo.nativeDataFormats[iNativeFormat].sampleRate) { + deviceInfo.maxSampleRate = deviceInfo.nativeDataFormats[iNativeFormat].sampleRate; + } + } + } + } + + + /* Clamp ranges. */ + deviceInfo.minChannels = ma_max(deviceInfo.minChannels, MA_MIN_CHANNELS); + deviceInfo.maxChannels = ma_min(deviceInfo.maxChannels, MA_MAX_CHANNELS); + deviceInfo.minSampleRate = ma_max(deviceInfo.minSampleRate, MA_MIN_SAMPLE_RATE); + deviceInfo.maxSampleRate = ma_min(deviceInfo.maxSampleRate, MA_MAX_SAMPLE_RATE); + + *pDeviceInfo = deviceInfo; + return result; } MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext) @@ -30152,16 +33026,34 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC ma_result result; ma_device_config config; + /* The context can be null, in which case we self-manage it. */ if (pContext == NULL) { return ma_device_init_ex(NULL, 0, NULL, pConfig, pDevice); } + if (pDevice == NULL) { return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS); } + + MA_ZERO_OBJECT(pDevice); + if (pConfig == NULL) { return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid arguments (pConfig == NULL).", MA_INVALID_ARGS); } + + /* Check that we have our callbacks defined. */ + if (ma_context__is_using_new_callbacks(pContext)) { + if (pContext->callbacks.onDeviceInit == NULL) { + return MA_INVALID_OPERATION; + } + } else { + if (pContext->onDeviceInit == NULL) { + return MA_INVALID_OPERATION; + } + } + + /* We need to make a copy of the config so we can set default values if they were left unset in the input config. */ config = *pConfig; @@ -30188,8 +33080,6 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC } } - - MA_ZERO_OBJECT(pDevice); pDevice->pContext = pContext; /* Set the user data and log callback ASAP to ensure it is available for the entire initialization process. */ @@ -30203,6 +33093,14 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC } } + if (config.playback.pDeviceID != NULL) { + MA_COPY_MEMORY(&pDevice->playback.id, config.playback.pDeviceID, sizeof(pDevice->playback.id)); + } + + if (config.capture.pDeviceID != NULL) { + MA_COPY_MEMORY(&pDevice->capture.id, config.capture.pDeviceID, sizeof(pDevice->capture.id)); + } + pDevice->noPreZeroedOutputBuffer = config.noPreZeroedOutputBuffer; pDevice->noClip = config.noClip; pDevice->masterVolumeFactor = 1; @@ -30260,24 +33158,28 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC config.periodSizeInMilliseconds = (config.performanceProfile == ma_performance_profile_low_latency) ? MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY : MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE; pDevice->usingDefaultBufferSize = MA_TRUE; } - + MA_ASSERT(config.capture.channels <= MA_MAX_CHANNELS); + MA_ASSERT(config.playback.channels <= MA_MAX_CHANNELS); - pDevice->type = config.deviceType; - pDevice->sampleRate = config.sampleRate; + pDevice->type = config.deviceType; + pDevice->sampleRate = config.sampleRate; pDevice->resampling.algorithm = config.resampling.algorithm; pDevice->resampling.linear.lpfOrder = config.resampling.linear.lpfOrder; pDevice->resampling.speex.quality = config.resampling.speex.quality; - pDevice->capture.shareMode = config.capture.shareMode; - pDevice->capture.format = config.capture.format; - pDevice->capture.channels = config.capture.channels; + pDevice->capture.shareMode = config.capture.shareMode; + pDevice->capture.format = config.capture.format; + pDevice->capture.channels = config.capture.channels; ma_channel_map_copy(pDevice->capture.channelMap, config.capture.channelMap, config.capture.channels); - - pDevice->playback.shareMode = config.playback.shareMode; - pDevice->playback.format = config.playback.format; - pDevice->playback.channels = config.playback.channels; + pDevice->capture.channelMixMode = config.capture.channelMixMode; + + pDevice->playback.shareMode = config.playback.shareMode; + pDevice->playback.format = config.playback.format; + pDevice->playback.channels = config.playback.channels; ma_channel_map_copy(pDevice->playback.channelMap, config.playback.channelMap, config.playback.channels); + pDevice->playback.channelMixMode = config.playback.channelMixMode; + /* The internal format, channel count and sample rate can be modified by the backend. */ @@ -30290,8 +33192,8 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC pDevice->playback.internalChannels = pDevice->playback.channels; pDevice->playback.internalSampleRate = pDevice->sampleRate; ma_channel_map_copy(pDevice->playback.internalChannelMap, pDevice->playback.channelMap, pDevice->playback.channels); - - result = ma_mutex_init(pContext, &pDevice->lock); + + result = ma_mutex_init(&pDevice->lock); if (result != MA_SUCCESS) { return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create mutex.", result); } @@ -30299,24 +33201,24 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC /* When the device is started, the worker thread is the one that does the actual startup of the backend device. We use a semaphore to wait for the background thread to finish the work. The same applies for stopping the device. - + Each of these semaphores is released internally by the worker thread when the work is completed. The start semaphore is also used to wake up the worker thread. */ - result = ma_event_init(pContext, &pDevice->wakeupEvent); + result = ma_event_init(&pDevice->wakeupEvent); if (result != MA_SUCCESS) { ma_mutex_uninit(&pDevice->lock); return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread wakeup event.", result); } - result = ma_event_init(pContext, &pDevice->startEvent); + result = ma_event_init(&pDevice->startEvent); if (result != MA_SUCCESS) { ma_event_uninit(&pDevice->wakeupEvent); ma_mutex_uninit(&pDevice->lock); return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread start event.", result); } - result = ma_event_init(pContext, &pDevice->stopEvent); + result = ma_event_init(&pDevice->stopEvent); if (result != MA_SUCCESS) { ma_event_uninit(&pDevice->startEvent); ma_event_uninit(&pDevice->wakeupEvent); @@ -30325,35 +33227,144 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC } - result = pContext->onDeviceInit(pContext, &config, pDevice); - if (result != MA_SUCCESS) { - return result; + if (ma_context__is_using_new_callbacks(pContext)) { + ma_device_descriptor descriptorPlayback; + ma_device_descriptor descriptorCapture; + + MA_ZERO_OBJECT(&descriptorPlayback); + descriptorPlayback.pDeviceID = pConfig->playback.pDeviceID; + descriptorPlayback.shareMode = pConfig->playback.shareMode; + descriptorPlayback.format = pConfig->playback.format; + descriptorPlayback.channels = pConfig->playback.channels; + descriptorPlayback.sampleRate = pConfig->sampleRate; + ma_channel_map_copy(descriptorPlayback.channelMap, pConfig->playback.channelMap, pConfig->playback.channels); + descriptorPlayback.periodSizeInFrames = pConfig->periodSizeInFrames; + descriptorPlayback.periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; + descriptorPlayback.periodCount = pConfig->periods; + + if (descriptorPlayback.periodCount == 0) { + descriptorPlayback.periodCount = MA_DEFAULT_PERIODS; + } + + + MA_ZERO_OBJECT(&descriptorCapture); + descriptorCapture.pDeviceID = pConfig->capture.pDeviceID; + descriptorCapture.shareMode = pConfig->capture.shareMode; + descriptorCapture.format = pConfig->capture.format; + descriptorCapture.channels = pConfig->capture.channels; + descriptorCapture.sampleRate = pConfig->sampleRate; + ma_channel_map_copy(descriptorCapture.channelMap, pConfig->capture.channelMap, pConfig->capture.channels); + descriptorCapture.periodSizeInFrames = pConfig->periodSizeInFrames; + descriptorCapture.periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; + descriptorCapture.periodCount = pConfig->periods; + + if (descriptorCapture.periodCount == 0) { + descriptorCapture.periodCount = MA_DEFAULT_PERIODS; + } + + + result = pContext->callbacks.onDeviceInit(pDevice, pConfig, &descriptorPlayback, &descriptorCapture); + if (result != MA_SUCCESS) { + ma_event_uninit(&pDevice->startEvent); + ma_event_uninit(&pDevice->wakeupEvent); + ma_mutex_uninit(&pDevice->lock); + return result; + } + + /* + On output the descriptors will contain the *actual* data format of the device. We need this to know how to convert the data between + the requested format and the internal format. + */ + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { + if (!ma_device_descriptor_is_valid(&descriptorCapture)) { + ma_device_uninit(pDevice); + return MA_INVALID_ARGS; + } + + pDevice->capture.internalFormat = descriptorCapture.format; + pDevice->capture.internalChannels = descriptorCapture.channels; + pDevice->capture.internalSampleRate = descriptorCapture.sampleRate; + ma_channel_map_copy(pDevice->capture.internalChannelMap, descriptorCapture.channelMap, descriptorCapture.channels); + pDevice->capture.internalPeriodSizeInFrames = descriptorCapture.periodSizeInFrames; + pDevice->capture.internalPeriods = descriptorCapture.periodCount; + + if (pDevice->capture.internalPeriodSizeInFrames == 0) { + pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(descriptorCapture.periodSizeInMilliseconds, descriptorCapture.sampleRate); + } + } + + if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { + if (!ma_device_descriptor_is_valid(&descriptorPlayback)) { + ma_device_uninit(pDevice); + return MA_INVALID_ARGS; + } + + pDevice->playback.internalFormat = descriptorPlayback.format; + pDevice->playback.internalChannels = descriptorPlayback.channels; + pDevice->playback.internalSampleRate = descriptorPlayback.sampleRate; + ma_channel_map_copy(pDevice->playback.internalChannelMap, descriptorPlayback.channelMap, descriptorPlayback.channels); + pDevice->playback.internalPeriodSizeInFrames = descriptorPlayback.periodSizeInFrames; + pDevice->playback.internalPeriods = descriptorPlayback.periodCount; + + if (pDevice->playback.internalPeriodSizeInFrames == 0) { + pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(descriptorPlayback.periodSizeInMilliseconds, descriptorPlayback.sampleRate); + } + } + + + /* + The name of the device can be retrieved from device info. This may be temporary and replaced with a `ma_device_get_info(pDevice, deviceType)` instead. + For loopback devices, we need to retrieve the name of the playback device. + */ + { + ma_device_info deviceInfo; + + if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { + result = ma_context_get_device_info(pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_playback : ma_device_type_capture, descriptorCapture.pDeviceID, descriptorCapture.shareMode, &deviceInfo); + if (result == MA_SUCCESS) { + ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), deviceInfo.name, (size_t)-1); + } else { + /* We failed to retrieve the device info. Fall back to a default name. */ + if (descriptorCapture.pDeviceID == NULL) { + ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); + } else { + ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), "Capture Device", (size_t)-1); + } + } + } + + if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { + result = ma_context_get_device_info(pContext, ma_device_type_playback, descriptorPlayback.pDeviceID, descriptorPlayback.shareMode, &deviceInfo); + if (result == MA_SUCCESS) { + ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), deviceInfo.name, (size_t)-1); + } else { + /* We failed to retrieve the device info. Fall back to a default name. */ + if (descriptorPlayback.pDeviceID == NULL) { + ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); + } else { + ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), "Playback Device", (size_t)-1); + } + } + } + } + } else { + result = pContext->onDeviceInit(pContext, &config, pDevice); + if (result != MA_SUCCESS) { + ma_event_uninit(&pDevice->startEvent); + ma_event_uninit(&pDevice->wakeupEvent); + ma_mutex_uninit(&pDevice->lock); + return result; + } } + ma_device__post_init_setup(pDevice, pConfig->deviceType); - /* If the backend did not fill out a name for the device, try a generic method. */ - if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - if (pDevice->capture.name[0] == '\0') { - if (ma_context__try_get_device_name_by_id(pContext, ma_device_type_capture, config.capture.pDeviceID, pDevice->capture.name, sizeof(pDevice->capture.name)) != MA_SUCCESS) { - ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), (config.capture.pDeviceID == NULL) ? MA_DEFAULT_CAPTURE_DEVICE_NAME : "Capture Device", (size_t)-1); - } - } - } - if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { - if (pDevice->playback.name[0] == '\0') { - if (ma_context__try_get_device_name_by_id(pContext, ma_device_type_playback, config.playback.pDeviceID, pDevice->playback.name, sizeof(pDevice->playback.name)) != MA_SUCCESS) { - ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), (config.playback.pDeviceID == NULL) ? MA_DEFAULT_PLAYBACK_DEVICE_NAME : "Playback Device", (size_t)-1); - } - } - } - - /* Some backends don't require the worker thread. */ if (!ma_context_is_backend_asynchronous(pContext)) { /* The worker thread. */ - result = ma_thread_create(pContext, &pDevice->thread, ma_worker_thread, pDevice); + result = ma_thread_create(&pDevice->thread, pContext->threadPriority, pContext->threadStackSize, ma_worker_thread, pDevice); if (result != MA_SUCCESS) { ma_device_uninit(pDevice); return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread.", result); @@ -30361,43 +33372,57 @@ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pC /* Wait for the worker thread to put the device into it's stopped state for real. */ ma_event_wait(&pDevice->stopEvent); + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_STOPPED); } else { + /* + If the backend is asynchronous and the device is duplex, we'll need an intermediary ring buffer. Note that this needs to be done + after ma_device__post_init_setup(). + */ + if (ma_context__is_using_new_callbacks(pContext)) { /* <-- TEMP: Will be removed once all asynchronous backends have been converted to the new callbacks. */ + if (ma_context_is_backend_asynchronous(pContext)) { + if (pConfig->deviceType == ma_device_type_duplex) { + result = ma_duplex_rb_init(pDevice->sampleRate, pDevice->capture.internalFormat, pDevice->capture.internalChannels, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames, &pDevice->pContext->allocationCallbacks, &pDevice->duplexRB); + if (result != MA_SUCCESS) { + ma_device_uninit(pDevice); + return result; + } + } + } + } + ma_device__set_state(pDevice, MA_STATE_STOPPED); } -#ifdef MA_DEBUG_OUTPUT - printf("[%s]\n", ma_get_backend_name(pDevice->pContext->backend)); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, "[%s]", ma_get_backend_name(pDevice->pContext->backend)); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { - printf(" %s (%s)\n", pDevice->capture.name, "Capture"); - printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat)); - printf(" Channels: %d -> %d\n", pDevice->capture.channels, pDevice->capture.internalChannels); - printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->capture.internalSampleRate); - printf(" Buffer Size: %d*%d (%d)\n", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods)); - printf(" Conversion:\n"); - printf(" Pre Format Conversion: %s\n", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO"); - printf(" Post Format Conversion: %s\n", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO"); - printf(" Channel Routing: %s\n", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO"); - printf(" Resampling: %s\n", pDevice->capture.converter.hasResampler ? "YES" : "NO"); - printf(" Passthrough: %s\n", pDevice->capture.converter.isPassthrough ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->capture.name, "Capture"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat)); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->capture.channels, pDevice->capture.internalChannels); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->capture.internalSampleRate); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods)); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->capture.converter.hasResampler ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->capture.converter.isPassthrough ? "YES" : "NO"); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { - printf(" %s (%s)\n", pDevice->playback.name, "Playback"); - printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat)); - printf(" Channels: %d -> %d\n", pDevice->playback.channels, pDevice->playback.internalChannels); - printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->playback.internalSampleRate); - printf(" Buffer Size: %d*%d (%d)\n", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods)); - printf(" Conversion:\n"); - printf(" Pre Format Conversion: %s\n", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO"); - printf(" Post Format Conversion: %s\n", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO"); - printf(" Channel Routing: %s\n", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO"); - printf(" Resampling: %s\n", pDevice->playback.converter.hasResampler ? "YES" : "NO"); - printf(" Passthrough: %s\n", pDevice->playback.converter.isPassthrough ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->playback.name, "Playback"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat)); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->playback.channels, pDevice->playback.internalChannels); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->playback.internalSampleRate); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods)); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->playback.converter.hasResampler ? "YES" : "NO"); + ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->playback.converter.isPassthrough ? "YES" : "NO"); } -#endif - - MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED); + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_STOPPED); return MA_SUCCESS; } @@ -30423,7 +33448,7 @@ MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backen } else { allocationCallbacks = ma_allocation_callbacks_init_default(); } - + pContext = (ma_context*)ma__malloc_from_callbacks(sizeof(*pContext), &allocationCallbacks); if (pContext == NULL) { @@ -30484,7 +33509,16 @@ MA_API void ma_device_uninit(ma_device* pDevice) ma_thread_wait(&pDevice->thread); } - pDevice->pContext->onDeviceUninit(pDevice); + if (ma_context__is_using_new_callbacks(pDevice->pContext)) { + if (pDevice->pContext->callbacks.onDeviceUninit != NULL) { + pDevice->pContext->callbacks.onDeviceUninit(pDevice); + } + } else { + if (pDevice->pContext->onDeviceUninit != NULL) { + pDevice->pContext->onDeviceUninit(pDevice); + } + } + ma_event_uninit(&pDevice->stopEvent); ma_event_uninit(&pDevice->startEvent); @@ -30509,25 +33543,37 @@ MA_API ma_result ma_device_start(ma_device* pDevice) return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_start() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS); } - if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) { + if (ma_device_get_state(pDevice) == MA_STATE_UNINITIALIZED) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_start() called for an uninitialized device.", MA_DEVICE_NOT_INITIALIZED); } - if (ma_device__get_state(pDevice) == MA_STATE_STARTED) { + if (ma_device_get_state(pDevice) == MA_STATE_STARTED) { return ma_post_error(pDevice, MA_LOG_LEVEL_WARNING, "ma_device_start() called when the device is already started.", MA_INVALID_OPERATION); /* Already started. Returning an error to let the application know because it probably means they're doing something wrong. */ } - result = MA_ERROR; ma_mutex_lock(&pDevice->lock); { /* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a stopped or paused state. */ - MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED); + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_STOPPED); ma_device__set_state(pDevice, MA_STATE_STARTING); /* Asynchronous backends need to be handled differently. */ if (ma_context_is_backend_asynchronous(pDevice->pContext)) { - result = pDevice->pContext->onDeviceStart(pDevice); + if (ma_context__is_using_new_callbacks(pDevice->pContext)) { + if (pDevice->pContext->callbacks.onDeviceStart != NULL) { + result = pDevice->pContext->callbacks.onDeviceStart(pDevice); + } else { + result = MA_INVALID_OPERATION; + } + } else { + if (pDevice->pContext->onDeviceStart != NULL) { + result = pDevice->pContext->onDeviceStart(pDevice); + } else { + result = MA_INVALID_OPERATION; + } + } + if (result == MA_SUCCESS) { ma_device__set_state(pDevice, MA_STATE_STARTED); } @@ -30545,6 +33591,11 @@ MA_API ma_result ma_device_start(ma_device* pDevice) ma_event_wait(&pDevice->startEvent); result = pDevice->workResult; } + + /* We changed the state from stopped to started, so if we failed, make sure we put the state back to stopped. */ + if (result != MA_SUCCESS) { + ma_device__set_state(pDevice, MA_STATE_STOPPED); + } } ma_mutex_unlock(&pDevice->lock); @@ -30559,35 +33610,41 @@ MA_API ma_result ma_device_stop(ma_device* pDevice) return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_stop() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS); } - if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) { + if (ma_device_get_state(pDevice) == MA_STATE_UNINITIALIZED) { return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_stop() called for an uninitialized device.", MA_DEVICE_NOT_INITIALIZED); } - if (ma_device__get_state(pDevice) == MA_STATE_STOPPED) { + if (ma_device_get_state(pDevice) == MA_STATE_STOPPED) { return ma_post_error(pDevice, MA_LOG_LEVEL_WARNING, "ma_device_stop() called when the device is already stopped.", MA_INVALID_OPERATION); /* Already stopped. Returning an error to let the application know because it probably means they're doing something wrong. */ } - result = MA_ERROR; ma_mutex_lock(&pDevice->lock); { /* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a started or paused state. */ - MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTED); + MA_ASSERT(ma_device_get_state(pDevice) == MA_STATE_STARTED); ma_device__set_state(pDevice, MA_STATE_STOPPING); - /* There's no need to wake up the thread like we do when starting. */ - - if (pDevice->pContext->onDeviceStop) { - result = pDevice->pContext->onDeviceStop(pDevice); - } else { - result = MA_SUCCESS; - } - /* Asynchronous backends need to be handled differently. */ if (ma_context_is_backend_asynchronous(pDevice->pContext)) { + /* Asynchronous backends must have a stop operation. */ + if (ma_context__is_using_new_callbacks(pDevice->pContext)) { + if (pDevice->pContext->callbacks.onDeviceStop != NULL) { + result = pDevice->pContext->callbacks.onDeviceStop(pDevice); + } else { + result = MA_INVALID_OPERATION; + } + } else { + if (pDevice->pContext->onDeviceStop != NULL) { + result = pDevice->pContext->onDeviceStop(pDevice); + } else { + result = MA_INVALID_OPERATION; + } + } + ma_device__set_state(pDevice, MA_STATE_STOPPED); } else { - /* Synchronous backends. */ + /* Synchronous backends. The stop callback is always called from the worker thread. Do not call the stop callback here. */ /* We need to wait for the worker thread to become available for work before returning. Note that the worker thread will be @@ -30602,13 +33659,18 @@ MA_API ma_result ma_device_stop(ma_device* pDevice) return result; } -MA_API ma_bool32 ma_device_is_started(ma_device* pDevice) +MA_API ma_bool32 ma_device_is_started(const ma_device* pDevice) +{ + return ma_device_get_state(pDevice) == MA_STATE_STARTED; +} + +MA_API ma_uint32 ma_device_get_state(const ma_device* pDevice) { if (pDevice == NULL) { - return MA_FALSE; + return MA_STATE_UNINITIALIZED; } - return ma_device__get_state(pDevice) == MA_STATE_STARTED; + return c89atomic_load_32((ma_uint32*)&pDevice->state); /* Naughty cast to get rid of a const warning. */ } MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume) @@ -30621,7 +33683,7 @@ MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume) return MA_INVALID_ARGS; } - pDevice->masterVolumeFactor = volume; + c89atomic_exchange_f32(&pDevice->masterVolumeFactor, volume); return MA_SUCCESS; } @@ -30637,7 +33699,7 @@ MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume) return MA_INVALID_ARGS; } - *pVolume = pDevice->masterVolumeFactor; + *pVolume = c89atomic_load_f32(&pDevice->masterVolumeFactor); return MA_SUCCESS; } @@ -30670,9 +33732,2693 @@ MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB return MA_SUCCESS; } + + +MA_API ma_result ma_device_handle_backend_data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount) +{ + if (pDevice == NULL) { + return MA_INVALID_ARGS; + } + + if (pOutput == NULL && pInput == NULL) { + return MA_INVALID_ARGS; + } + + if (pDevice->type == ma_device_type_duplex) { + if (pInput != NULL) { + ma_device__handle_duplex_callback_capture(pDevice, frameCount, pInput, &pDevice->duplexRB.rb); + } + + if (pOutput != NULL) { + ma_device__handle_duplex_callback_playback(pDevice, frameCount, pOutput, &pDevice->duplexRB.rb); + } + } else { + if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_loopback) { + if (pInput == NULL) { + return MA_INVALID_ARGS; + } + + ma_device__send_frames_to_client(pDevice, frameCount, pInput); + } + + if (pDevice->type == ma_device_type_playback) { + if (pOutput == NULL) { + return MA_INVALID_ARGS; + } + + ma_device__read_frames_from_client(pDevice, frameCount, pOutput); + } + } + + return MA_SUCCESS; +} #endif /* MA_NO_DEVICE_IO */ +MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale) +{ + return ma_max(1, (ma_uint32)(baseBufferSize*scale)); +} + +MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate) +{ + return bufferSizeInFrames / (sampleRate/1000); +} + +MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate) +{ + return bufferSizeInMilliseconds * (sampleRate/1000); +} + +MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels) +{ + if (dst == src) { + return; /* No-op. */ + } + + ma_copy_memory_64(dst, src, frameCount * ma_get_bytes_per_frame(format, channels)); +} + +MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels) +{ + if (format == ma_format_u8) { + ma_uint64 sampleCount = frameCount * channels; + ma_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + ((ma_uint8*)p)[iSample] = 128; + } + } else { + ma_zero_memory_64(p, frameCount * ma_get_bytes_per_frame(format, channels)); + } +} + +MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels) +{ + return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels)); +} + +MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels) +{ + return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels)); +} + + +MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount) +{ + ma_uint32 iSample; + + /* TODO: Research a branchless SSE implementation. */ + for (iSample = 0; iSample < sampleCount; iSample += 1) { + p[iSample] = ma_clip_f32(p[iSample]); + } +} + + +MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint64 sampleCount, float factor) +{ + ma_uint64 iSample; + + if (pSamplesOut == NULL || pSamplesIn == NULL) { + return; + } + + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor); + } +} + +MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint64 sampleCount, float factor) +{ + ma_uint64 iSample; + + if (pSamplesOut == NULL || pSamplesIn == NULL) { + return; + } + + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor); + } +} + +MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint64 sampleCount, float factor) +{ + ma_uint64 iSample; + ma_uint8* pSamplesOut8; + ma_uint8* pSamplesIn8; + + if (pSamplesOut == NULL || pSamplesIn == NULL) { + return; + } + + pSamplesOut8 = (ma_uint8*)pSamplesOut; + pSamplesIn8 = (ma_uint8*)pSamplesIn; + + for (iSample = 0; iSample < sampleCount; iSample += 1) { + ma_int32 sampleS32; + + sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24); + sampleS32 = (ma_int32)(sampleS32 * factor); + + pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8); + pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16); + pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24); + } +} + +MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint64 sampleCount, float factor) +{ + ma_uint64 iSample; + + if (pSamplesOut == NULL || pSamplesIn == NULL) { + return; + } + + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor); + } +} + +MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint64 sampleCount, float factor) +{ + ma_uint64 iSample; + + if (pSamplesOut == NULL || pSamplesIn == NULL) { + return; + } + + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamplesOut[iSample] = pSamplesIn[iSample] * factor; + } +} + +MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint64 sampleCount, float factor) +{ + ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor); +} + +MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint64 sampleCount, float factor) +{ + ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor); +} + +MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint64 sampleCount, float factor) +{ + ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor); +} + +MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint64 sampleCount, float factor) +{ + ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor); +} + +MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint64 sampleCount, float factor) +{ + ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_u8(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_s16(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_s24(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_s32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_f32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor); +} + +MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor) +{ + switch (format) + { + case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pPCMFramesOut, (const ma_uint8*)pPCMFramesIn, frameCount, channels, factor); return; + case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pPCMFramesOut, (const ma_int16*)pPCMFramesIn, frameCount, channels, factor); return; + case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pPCMFramesOut, pPCMFramesIn, frameCount, channels, factor); return; + case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pPCMFramesOut, (const ma_int32*)pPCMFramesIn, frameCount, channels, factor); return; + case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pPCMFramesOut, (const float*)pPCMFramesIn, frameCount, channels, factor); return; + default: return; /* Do nothing. */ + } +} + +MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames_u8(pPCMFrames, pPCMFrames, frameCount, channels, factor); +} + +MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames_s16(pPCMFrames, pPCMFrames, frameCount, channels, factor); +} + +MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pPCMFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames_s24(pPCMFrames, pPCMFrames, frameCount, channels, factor); +} + +MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames_s32(pPCMFrames, pPCMFrames, frameCount, channels, factor); +} + +MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pPCMFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames_f32(pPCMFrames, pPCMFrames, frameCount, channels, factor); +} + +MA_API void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor) +{ + ma_copy_and_apply_volume_factor_pcm_frames(pPCMFrames, pPCMFrames, frameCount, format, channels, factor); +} + + +MA_API float ma_factor_to_gain_db(float factor) +{ + return (float)(20*ma_log10f(factor)); +} + +MA_API float ma_gain_db_to_factor(float gain) +{ + return (float)ma_powf(10, gain/20.0f); +} + + +/************************************************************************************************************************************************************** + +Format Conversion + +**************************************************************************************************************************************************************/ + +static MA_INLINE ma_int16 ma_pcm_sample_f32_to_s16(float x) +{ + return (ma_int16)(x * 32767.0f); +} + +static MA_INLINE ma_int16 ma_pcm_sample_u8_to_s16_no_scale(ma_uint8 x) +{ + return (ma_int16)((ma_int16)x - 128); +} + +static MA_INLINE ma_int64 ma_pcm_sample_s24_to_s32_no_scale(const ma_uint8* x) +{ + return (ma_int64)(((ma_uint64)x[0] << 40) | ((ma_uint64)x[1] << 48) | ((ma_uint64)x[2] << 56)) >> 40; /* Make sure the sign bits are maintained. */ +} + +static MA_INLINE void ma_pcm_sample_s32_to_s24_no_scale(ma_int64 x, ma_uint8* s24) +{ + s24[0] = (ma_uint8)((x & 0x000000FF) >> 0); + s24[1] = (ma_uint8)((x & 0x0000FF00) >> 8); + s24[2] = (ma_uint8)((x & 0x00FF0000) >> 16); +} + + +static MA_INLINE ma_uint8 ma_clip_u8(ma_int16 x) +{ + return (ma_uint8)(ma_clamp(x, -128, 127) + 128); +} + +static MA_INLINE ma_int16 ma_clip_s16(ma_int32 x) +{ + return (ma_int16)ma_clamp(x, -32768, 32767); +} + +static MA_INLINE ma_int64 ma_clip_s24(ma_int64 x) +{ + return (ma_int64)ma_clamp(x, -8388608, 8388607); +} + +static MA_INLINE ma_int32 ma_clip_s32(ma_int64 x) +{ + /* This dance is to silence warnings with -std=c89. A good compiler should be able to optimize this away. */ + ma_int64 clipMin; + ma_int64 clipMax; + clipMin = -((ma_int64)2147483647 + 1); + clipMax = (ma_int64)2147483647; + + return (ma_int32)ma_clamp(x, clipMin, clipMax); +} + + +/* u8 */ +MA_API void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + (void)ditherMode; + ma_copy_memory_64(dst, src, count * sizeof(ma_uint8)); +} + + +static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int16* dst_s16 = (ma_int16*)dst; + const ma_uint8* src_u8 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int16 x = src_u8[i]; + x = (ma_int16)(x - 128); + x = (ma_int16)(x << 8); + dst_s16[i] = x; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_s24 = (ma_uint8*)dst; + const ma_uint8* src_u8 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int16 x = src_u8[i]; + x = (ma_int16)(x - 128); + + dst_s24[i*3+0] = 0; + dst_s24[i*3+1] = 0; + dst_s24[i*3+2] = (ma_uint8)((ma_int8)x); + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int32* dst_s32 = (ma_int32*)dst; + const ma_uint8* src_u8 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = src_u8[i]; + x = x - 128; + x = x << 24; + dst_s32[i] = x; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + float* dst_f32 = (float*)dst; + const ma_uint8* src_u8 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + float x = (float)src_u8[i]; + x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */ + x = x - 1; /* 0..2 to -1..1 */ + + dst_f32[i] = x; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +#ifdef MA_USE_REFERENCE_CONVERSION_APIS +static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_uint8* dst_u8 = (ma_uint8*)dst; + const ma_uint8** src_u8 = (const ma_uint8**)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; + } + } +} +#else +static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_uint8* dst_u8 = (ma_uint8*)dst; + const ma_uint8** src_u8 = (const ma_uint8**)src; + + if (channels == 1) { + ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8)); + } else if (channels == 2) { + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + dst_u8[iFrame*2 + 0] = src_u8[0][iFrame]; + dst_u8[iFrame*2 + 1] = src_u8[1][iFrame]; + } + } else { + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; + } + } + } +} +#endif + +MA_API void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_interleave_u8__reference(dst, src, frameCount, channels); +#else + ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels); +#endif +} + + +static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_uint8** dst_u8 = (ma_uint8**)dst; + const ma_uint8* src_u8 = (const ma_uint8*)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel]; + } + } +} + +static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); +#else + ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels); +#endif +} + + +/* s16 */ +static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_u8 = (ma_uint8*)dst; + const ma_int16* src_s16 = (const ma_int16*)src; + + if (ditherMode == ma_dither_mode_none) { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int16 x = src_s16[i]; + x = (ma_int16)(x >> 8); + x = (ma_int16)(x + 128); + dst_u8[i] = (ma_uint8)x; + } + } else { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int16 x = src_s16[i]; + + /* Dither. Don't overflow. */ + ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F); + if ((x + dither) <= 0x7FFF) { + x = (ma_int16)(x + dither); + } else { + x = 0x7FFF; + } + + x = (ma_int16)(x >> 8); + x = (ma_int16)(x + 128); + dst_u8[i] = (ma_uint8)x; + } + } +} + +static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); + } +#endif +} + + +MA_API void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + (void)ditherMode; + ma_copy_memory_64(dst, src, count * sizeof(ma_int16)); +} + + +static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_s24 = (ma_uint8*)dst; + const ma_int16* src_s16 = (const ma_int16*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + dst_s24[i*3+0] = 0; + dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF); + dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8); + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int32* dst_s32 = (ma_int32*)dst; + const ma_int16* src_s16 = (const ma_int16*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + dst_s32[i] = src_s16[i] << 16; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + float* dst_f32 = (float*)dst; + const ma_int16* src_s16 = (const ma_int16*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + float x = (float)src_s16[i]; + +#if 0 + /* The accurate way. */ + x = x + 32768.0f; /* -32768..32767 to 0..65535 */ + x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */ + x = x - 1; /* 0..2 to -1..1 */ +#else + /* The fast way. */ + x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */ +#endif + + dst_f32[i] = x; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_int16* dst_s16 = (ma_int16*)dst; + const ma_int16** src_s16 = (const ma_int16**)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame]; + } + } +} + +static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); +#else + ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels); +#endif +} + + +static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_int16** dst_s16 = (ma_int16**)dst; + const ma_int16* src_s16 = (const ma_int16*)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel]; + } + } +} + +static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); +#else + ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels); +#endif +} + + +/* s24 */ +static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_u8 = (ma_uint8*)dst; + const ma_uint8* src_s24 = (const ma_uint8*)src; + + if (ditherMode == ma_dither_mode_none) { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + dst_u8[i] = (ma_uint8)((ma_int8)src_s24[i*3 + 2] + 128); + } + } else { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); + + /* Dither. Don't overflow. */ + ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); + if ((ma_int64)x + dither <= 0x7FFFFFFF) { + x = x + dither; + } else { + x = 0x7FFFFFFF; + } + + x = x >> 24; + x = x + 128; + dst_u8[i] = (ma_uint8)x; + } + } +} + +static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int16* dst_s16 = (ma_int16*)dst; + const ma_uint8* src_s24 = (const ma_uint8*)src; + + if (ditherMode == ma_dither_mode_none) { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]); + ma_uint16 dst_hi = (ma_uint16)((ma_uint16)src_s24[i*3 + 2] << 8); + dst_s16[i] = (ma_int16)(dst_lo | dst_hi); + } + } else { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); + + /* Dither. Don't overflow. */ + ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); + if ((ma_int64)x + dither <= 0x7FFFFFFF) { + x = x + dither; + } else { + x = 0x7FFFFFFF; + } + + x = x >> 16; + dst_s16[i] = (ma_int16)x; + } + } +} + +static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); + } +#endif +} + + +MA_API void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + (void)ditherMode; + + ma_copy_memory_64(dst, src, count * 3); +} + + +static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int32* dst_s32 = (ma_int32*)dst; + const ma_uint8* src_s24 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + float* dst_f32 = (float*)dst; + const ma_uint8* src_s24 = (const ma_uint8*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8); + +#if 0 + /* The accurate way. */ + x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */ + x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */ + x = x - 1; /* 0..2 to -1..1 */ +#else + /* The fast way. */ + x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */ +#endif + + dst_f32[i] = x; + } + + (void)ditherMode; +} + +static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_uint8* dst8 = (ma_uint8*)dst; + const ma_uint8** src8 = (const ma_uint8**)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0]; + dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1]; + dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2]; + } + } +} + +static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); +#else + ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels); +#endif +} + + +static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_uint8** dst8 = (ma_uint8**)dst; + const ma_uint8* src8 = (const ma_uint8*)src; + + ma_uint32 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0]; + dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1]; + dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2]; + } + } +} + +static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); +#else + ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels); +#endif +} + + + +/* s32 */ +static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_u8 = (ma_uint8*)dst; + const ma_int32* src_s32 = (const ma_int32*)src; + + if (ditherMode == ma_dither_mode_none) { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = src_s32[i]; + x = x >> 24; + x = x + 128; + dst_u8[i] = (ma_uint8)x; + } + } else { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = src_s32[i]; + + /* Dither. Don't overflow. */ + ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); + if ((ma_int64)x + dither <= 0x7FFFFFFF) { + x = x + dither; + } else { + x = 0x7FFFFFFF; + } + + x = x >> 24; + x = x + 128; + dst_u8[i] = (ma_uint8)x; + } + } +} + +static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int16* dst_s16 = (ma_int16*)dst; + const ma_int32* src_s32 = (const ma_int32*)src; + + if (ditherMode == ma_dither_mode_none) { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = src_s32[i]; + x = x >> 16; + dst_s16[i] = (ma_int16)x; + } + } else { + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 x = src_s32[i]; + + /* Dither. Don't overflow. */ + ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); + if ((ma_int64)x + dither <= 0x7FFFFFFF) { + x = x + dither; + } else { + x = 0x7FFFFFFF; + } + + x = x >> 16; + dst_s16[i] = (ma_int16)x; + } + } +} + +static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_s24 = (ma_uint8*)dst; + const ma_int32* src_s32 = (const ma_int32*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_uint32 x = (ma_uint32)src_s32[i]; + dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8); + dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16); + dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24); + } + + (void)ditherMode; /* No dithering for s32 -> s24. */ +} + +static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); + } +#endif +} + + +MA_API void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + (void)ditherMode; + + ma_copy_memory_64(dst, src, count * sizeof(ma_int32)); +} + + +static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + float* dst_f32 = (float*)dst; + const ma_int32* src_s32 = (const ma_int32*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + double x = src_s32[i]; + +#if 0 + x = x + 2147483648.0; + x = x * 0.0000000004656612873077392578125; + x = x - 1; +#else + x = x / 2147483648.0; +#endif + + dst_f32[i] = (float)x; + } + + (void)ditherMode; /* No dithering for s32 -> f32. */ +} + +static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_int32* dst_s32 = (ma_int32*)dst; + const ma_int32** src_s32 = (const ma_int32**)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame]; + } + } +} + +static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); +#else + ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels); +#endif +} + + +static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_int32** dst_s32 = (ma_int32**)dst; + const ma_int32* src_s32 = (const ma_int32*)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel]; + } + } +} + +static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); +#else + ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels); +#endif +} + + +/* f32 */ +static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + + ma_uint8* dst_u8 = (ma_uint8*)dst; + const float* src_f32 = (const float*)src; + + float ditherMin = 0; + float ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -128; + ditherMax = 1.0f / 127; + } + + for (i = 0; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + x = x + 1; /* -1..1 to 0..2 */ + x = x * 127.5f; /* 0..2 to 0..255 */ + + dst_u8[i] = (ma_uint8)x; + } +} + +static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); + } +#endif +} + +#ifdef MA_USE_REFERENCE_CONVERSION_APIS +static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + + ma_int16* dst_s16 = (ma_int16*)dst; + const float* src_f32 = (const float*)src; + + float ditherMin = 0; + float ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -32768; + ditherMax = 1.0f / 32767; + } + + for (i = 0; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + +#if 0 + /* The accurate way. */ + x = x + 1; /* -1..1 to 0..2 */ + x = x * 32767.5f; /* 0..2 to 0..65535 */ + x = x - 32768.0f; /* 0...65535 to -32768..32767 */ +#else + /* The fast way. */ + x = x * 32767.0f; /* -1..1 to -32767..32767 */ +#endif + + dst_s16[i] = (ma_int16)x; + } +} +#else +static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + ma_uint64 i4; + ma_uint64 count4; + + ma_int16* dst_s16 = (ma_int16*)dst; + const float* src_f32 = (const float*)src; + + float ditherMin = 0; + float ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -32768; + ditherMax = 1.0f / 32767; + } + + /* Unrolled. */ + i = 0; + count4 = count >> 2; + for (i4 = 0; i4 < count4; i4 += 1) { + float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax); + float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax); + float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax); + float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax); + + float x0 = src_f32[i+0]; + float x1 = src_f32[i+1]; + float x2 = src_f32[i+2]; + float x3 = src_f32[i+3]; + + x0 = x0 + d0; + x1 = x1 + d1; + x2 = x2 + d2; + x3 = x3 + d3; + + x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0)); + x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1)); + x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2)); + x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3)); + + x0 = x0 * 32767.0f; + x1 = x1 * 32767.0f; + x2 = x2 * 32767.0f; + x3 = x3 * 32767.0f; + + dst_s16[i+0] = (ma_int16)x0; + dst_s16[i+1] = (ma_int16)x1; + dst_s16[i+2] = (ma_int16)x2; + dst_s16[i+3] = (ma_int16)x3; + + i += 4; + } + + /* Leftover. */ + for (; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + x = x * 32767.0f; /* -1..1 to -32767..32767 */ + + dst_s16[i] = (ma_int16)x; + } +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + ma_uint64 i8; + ma_uint64 count8; + ma_int16* dst_s16; + const float* src_f32; + float ditherMin; + float ditherMax; + + /* Both the input and output buffers need to be aligned to 16 bytes. */ + if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { + ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); + return; + } + + dst_s16 = (ma_int16*)dst; + src_f32 = (const float*)src; + + ditherMin = 0; + ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -32768; + ditherMax = 1.0f / 32767; + } + + i = 0; + + /* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ + count8 = count >> 3; + for (i8 = 0; i8 < count8; i8 += 1) { + __m128 d0; + __m128 d1; + __m128 x0; + __m128 x1; + + if (ditherMode == ma_dither_mode_none) { + d0 = _mm_set1_ps(0); + d1 = _mm_set1_ps(0); + } else if (ditherMode == ma_dither_mode_rectangle) { + d0 = _mm_set_ps( + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax) + ); + d1 = _mm_set_ps( + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax) + ); + } else { + d0 = _mm_set_ps( + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax) + ); + d1 = _mm_set_ps( + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax) + ); + } + + x0 = *((__m128*)(src_f32 + i) + 0); + x1 = *((__m128*)(src_f32 + i) + 1); + + x0 = _mm_add_ps(x0, d0); + x1 = _mm_add_ps(x1, d1); + + x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f)); + x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f)); + + _mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1))); + + i += 8; + } + + + /* Leftover. */ + for (; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + x = x * 32767.0f; /* -1..1 to -32767..32767 */ + + dst_s16[i] = (ma_int16)x; + } +} +#endif /* SSE2 */ + +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + ma_uint64 i16; + ma_uint64 count16; + ma_int16* dst_s16; + const float* src_f32; + float ditherMin; + float ditherMax; + + /* Both the input and output buffers need to be aligned to 32 bytes. */ + if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) { + ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); + return; + } + + dst_s16 = (ma_int16*)dst; + src_f32 = (const float*)src; + + ditherMin = 0; + ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -32768; + ditherMax = 1.0f / 32767; + } + + i = 0; + + /* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */ + count16 = count >> 4; + for (i16 = 0; i16 < count16; i16 += 1) { + __m256 d0; + __m256 d1; + __m256 x0; + __m256 x1; + __m256i i0; + __m256i i1; + __m256i p0; + __m256i p1; + __m256i r; + + if (ditherMode == ma_dither_mode_none) { + d0 = _mm256_set1_ps(0); + d1 = _mm256_set1_ps(0); + } else if (ditherMode == ma_dither_mode_rectangle) { + d0 = _mm256_set_ps( + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax) + ); + d1 = _mm256_set_ps( + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax), + ma_dither_f32_rectangle(ditherMin, ditherMax) + ); + } else { + d0 = _mm256_set_ps( + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax) + ); + d1 = _mm256_set_ps( + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax), + ma_dither_f32_triangle(ditherMin, ditherMax) + ); + } + + x0 = *((__m256*)(src_f32 + i) + 0); + x1 = *((__m256*)(src_f32 + i) + 1); + + x0 = _mm256_add_ps(x0, d0); + x1 = _mm256_add_ps(x1, d1); + + x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f)); + x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f)); + + /* Computing the final result is a little more complicated for AVX2 than SSE2. */ + i0 = _mm256_cvttps_epi32(x0); + i1 = _mm256_cvttps_epi32(x1); + p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32); + p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48); + r = _mm256_packs_epi32(p0, p1); + + _mm256_stream_si256(((__m256i*)(dst_s16 + i)), r); + + i += 16; + } + + + /* Leftover. */ + for (; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + x = x * 32767.0f; /* -1..1 to -32767..32767 */ + + dst_s16[i] = (ma_int16)x; + } +} +#endif /* AVX2 */ + +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint64 i; + ma_uint64 i8; + ma_uint64 count8; + ma_int16* dst_s16; + const float* src_f32; + float ditherMin; + float ditherMax; + + if (!ma_has_neon()) { + return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); + } + + /* Both the input and output buffers need to be aligned to 16 bytes. */ + if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { + ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); + return; + } + + dst_s16 = (ma_int16*)dst; + src_f32 = (const float*)src; + + ditherMin = 0; + ditherMax = 0; + if (ditherMode != ma_dither_mode_none) { + ditherMin = 1.0f / -32768; + ditherMax = 1.0f / 32767; + } + + i = 0; + + /* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ + count8 = count >> 3; + for (i8 = 0; i8 < count8; i8 += 1) { + float32x4_t d0; + float32x4_t d1; + float32x4_t x0; + float32x4_t x1; + int32x4_t i0; + int32x4_t i1; + + if (ditherMode == ma_dither_mode_none) { + d0 = vmovq_n_f32(0); + d1 = vmovq_n_f32(0); + } else if (ditherMode == ma_dither_mode_rectangle) { + float d0v[4]; + d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d0 = vld1q_f32(d0v); + + float d1v[4]; + d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); + d1 = vld1q_f32(d1v); + } else { + float d0v[4]; + d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); + d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); + d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); + d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); + d0 = vld1q_f32(d0v); + + float d1v[4]; + d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); + d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); + d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); + d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); + d1 = vld1q_f32(d1v); + } + + x0 = *((float32x4_t*)(src_f32 + i) + 0); + x1 = *((float32x4_t*)(src_f32 + i) + 1); + + x0 = vaddq_f32(x0, d0); + x1 = vaddq_f32(x1, d1); + + x0 = vmulq_n_f32(x0, 32767.0f); + x1 = vmulq_n_f32(x1, 32767.0f); + + i0 = vcvtq_s32_f32(x0); + i1 = vcvtq_s32_f32(x1); + *((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1)); + + i += 8; + } + + + /* Leftover. */ + for (; i < count; i += 1) { + float x = src_f32[i]; + x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + x = x * 32767.0f; /* -1..1 to -32767..32767 */ + + dst_s16[i] = (ma_int16)x; + } +} +#endif /* Neon */ +#endif /* MA_USE_REFERENCE_CONVERSION_APIS */ + +MA_API void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_uint8* dst_s24 = (ma_uint8*)dst; + const float* src_f32 = (const float*)src; + + ma_uint64 i; + for (i = 0; i < count; i += 1) { + ma_int32 r; + float x = src_f32[i]; + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + +#if 0 + /* The accurate way. */ + x = x + 1; /* -1..1 to 0..2 */ + x = x * 8388607.5f; /* 0..2 to 0..16777215 */ + x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */ +#else + /* The fast way. */ + x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */ +#endif + + r = (ma_int32)x; + dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0); + dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8); + dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16); + } + + (void)ditherMode; /* No dithering for f32 -> s24. */ +} + +static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); + } +#endif +} + + +static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_int32* dst_s32 = (ma_int32*)dst; + const float* src_f32 = (const float*)src; + + ma_uint32 i; + for (i = 0; i < count; i += 1) { + double x = src_f32[i]; + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ + +#if 0 + /* The accurate way. */ + x = x + 1; /* -1..1 to 0..2 */ + x = x * 2147483647.5; /* 0..2 to 0..4294967295 */ + x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */ +#else + /* The fast way. */ + x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */ +#endif + + dst_s32[i] = (ma_int32)x; + } + + (void)ditherMode; /* No dithering for f32 -> s32. */ +} + +static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); +} + +#if defined(MA_SUPPORT_SSE2) +static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_AVX2) +static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); +} +#endif +#if defined(MA_SUPPORT_NEON) +static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); +} +#endif + +MA_API void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); +#else + # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 + if (ma_has_avx2()) { + ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 + if (ma_has_sse2()) { + ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode); + } else + #elif MA_PREFERRED_SIMD == MA_SIMD_NEON + if (ma_has_neon()) { + ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode); + } else + #endif + { + ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); + } +#endif +} + + +MA_API void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) +{ + (void)ditherMode; + + ma_copy_memory_64(dst, src, count * sizeof(float)); +} + + +static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + float* dst_f32 = (float*)dst; + const float** src_f32 = (const float**)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame]; + } + } +} + +static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); +#else + ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels); +#endif +} + + +static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + float** dst_f32 = (float**)dst; + const float* src_f32 = (const float*)src; + + ma_uint64 iFrame; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; iChannel += 1) { + dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel]; + } + } +} + +static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ + ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); +} + +MA_API void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) +{ +#ifdef MA_USE_REFERENCE_CONVERSION_APIS + ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); +#else + ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels); +#endif +} + + +MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode) +{ + if (formatOut == formatIn) { + ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut)); + return; + } + + switch (formatIn) + { + case ma_format_u8: + { + switch (formatOut) + { + case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return; + default: break; + } + } break; + + case ma_format_s16: + { + switch (formatOut) + { + case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return; + default: break; + } + } break; + + case ma_format_s24: + { + switch (formatOut) + { + case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return; + default: break; + } + } break; + + case ma_format_s32: + { + switch (formatOut) + { + case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return; + default: break; + } + } break; + + case ma_format_f32: + { + switch (formatOut) + { + case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return; + case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return; + default: break; + } + } break; + + default: break; + } +} + +MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode) +{ + ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode); +} + +MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames) +{ + if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) { + return; /* Invalid args. */ + } + + /* For efficiency we do this per format. */ + switch (format) { + case ma_format_s16: + { + const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames; + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel]; + pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel]; + } + } + } break; + + case ma_format_f32: + { + const float* pSrcF32 = (const float*)pInterleavedPCMFrames; + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel]; + pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel]; + } + } + } break; + + default: + { + ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); + const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); + memcpy(pDst, pSrc, sampleSizeInBytes); + } + } + } break; + } +} + +MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames) +{ + switch (format) + { + case ma_format_s16: + { + ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames; + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel]; + pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame]; + } + } + } break; + + case ma_format_f32: + { + float* pDstF32 = (float*)pInterleavedPCMFrames; + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel]; + pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame]; + } + } + } break; + + default: + { + ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); + ma_uint64 iPCMFrame; + for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { + void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); + const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); + memcpy(pDst, pSrc, sampleSizeInBytes); + } + } + } break; + } +} + + /************************************************************************************************************************************************************** Biquad Filter @@ -30716,6 +36462,10 @@ MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ) return MA_INVALID_ARGS; } + if (pConfig->channels < MA_MIN_CHANNELS || pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + return ma_biquad_reinit(pConfig, pBQ); } @@ -30774,7 +36524,7 @@ static MA_INLINE void ma_biquad_process_pcm_frame_f32__direct_form_2_transposed( const float b2 = pBQ->b2.f32; const float a1 = pBQ->a1.f32; const float a2 = pBQ->a2.f32; - + for (c = 0; c < pBQ->channels; c += 1) { float r1 = pBQ->r1[c].f32; float r2 = pBQ->r2[c].f32; @@ -30804,7 +36554,7 @@ static MA_INLINE void ma_biquad_process_pcm_frame_s16__direct_form_2_transposed( const ma_int32 b2 = pBQ->b2.s32; const ma_int32 a1 = pBQ->a1.s32; const ma_int32 a2 = pBQ->a2.s32; - + for (c = 0; c < pBQ->channels; c += 1) { ma_int32 r1 = pBQ->r1[c].s32; ma_int32 r2 = pBQ->r2[c].s32; @@ -30880,7 +36630,7 @@ Low-Pass Filter MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency) { ma_lpf1_config config; - + MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; @@ -30894,7 +36644,7 @@ MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_lpf2_config config; - + MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; @@ -30923,6 +36673,10 @@ MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, ma_lpf1* pLPF) return MA_INVALID_ARGS; } + if (pConfig->channels < MA_MIN_CHANNELS || pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + return ma_lpf1_reinit(pConfig, pLPF); } @@ -30967,7 +36721,7 @@ static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, co ma_uint32 c; const float a = pLPF->a.f32; const float b = 1 - a; - + for (c = 0; c < pLPF->channels; c += 1) { float r1 = pLPF->r1[c].f32; float x = pX[c]; @@ -30985,7 +36739,7 @@ static MA_INLINE void ma_lpf1_process_pcm_frame_s16(ma_lpf1* pLPF, ma_int16* pY, ma_uint32 c; const ma_int32 a = pLPF->a.s32; const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a); - + for (c = 0; c < pLPF->channels; c += 1) { ma_int32 r1 = pLPF->r1[c].s32; ma_int32 x = pX[c]; @@ -31243,10 +36997,11 @@ static ma_result ma_lpf_reinit__internal(const ma_lpf_config* pConfig, ma_lpf* p } } - pLPF->lpf1Count = lpf1Count; - pLPF->lpf2Count = lpf2Count; - pLPF->format = pConfig->format; - pLPF->channels = pConfig->channels; + pLPF->lpf1Count = lpf1Count; + pLPF->lpf2Count = lpf2Count; + pLPF->format = pConfig->format; + pLPF->channels = pConfig->channels; + pLPF->sampleRate = pConfig->sampleRate; return MA_SUCCESS; } @@ -31383,7 +37138,7 @@ High-Pass Filtering MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency) { ma_hpf1_config config; - + MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; @@ -31396,7 +37151,7 @@ MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_hpf2_config config; - + MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; @@ -31425,6 +37180,10 @@ MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, ma_hpf1* pHPF) return MA_INVALID_ARGS; } + if (pConfig->channels < MA_MIN_CHANNELS || pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + return ma_hpf1_reinit(pConfig, pHPF); } @@ -31469,7 +37228,7 @@ static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, co ma_uint32 c; const float a = 1 - pHPF->a.f32; const float b = 1 - a; - + for (c = 0; c < pHPF->channels; c += 1) { float r1 = pHPF->r1[c].f32; float x = pX[c]; @@ -31487,7 +37246,7 @@ static MA_INLINE void ma_hpf1_process_pcm_frame_s16(ma_hpf1* pHPF, ma_int16* pY, ma_uint32 c; const ma_int32 a = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - pHPF->a.s32); const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a); - + for (c = 0; c < pHPF->channels; c += 1) { ma_int32 r1 = pHPF->r1[c].s32; ma_int32 x = pX[c]; @@ -31745,10 +37504,11 @@ static ma_result ma_hpf_reinit__internal(const ma_hpf_config* pConfig, ma_hpf* p } } - pHPF->hpf1Count = hpf1Count; - pHPF->hpf2Count = hpf2Count; - pHPF->format = pConfig->format; - pHPF->channels = pConfig->channels; + pHPF->hpf1Count = hpf1Count; + pHPF->hpf2Count = hpf2Count; + pHPF->format = pConfig->format; + pHPF->channels = pConfig->channels; + pHPF->sampleRate = pConfig->sampleRate; return MA_SUCCESS; } @@ -31867,7 +37627,7 @@ Band-Pass Filtering MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_bpf2_config config; - + MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; @@ -32687,9 +38447,32 @@ MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format form return config; } +static void ma_linear_resampler_adjust_timer_for_new_rate(ma_linear_resampler* pResampler, ma_uint32 oldSampleRateOut, ma_uint32 newSampleRateOut) +{ + /* + So what's happening here? Basically we need to adjust the fractional component of the time advance based on the new rate. The old time advance will + be based on the old sample rate, but we are needing to adjust it to that it's based on the new sample rate. + */ + ma_uint32 oldRateTimeWhole = pResampler->inTimeFrac / oldSampleRateOut; /* <-- This should almost never be anything other than 0, but leaving it here to make this more general and robust just in case. */ + ma_uint32 oldRateTimeFract = pResampler->inTimeFrac % oldSampleRateOut; + + pResampler->inTimeFrac = + (oldRateTimeWhole * newSampleRateOut) + + ((oldRateTimeFract * newSampleRateOut) / oldSampleRateOut); + + /* Make sure the fractional part is less than the output sample rate. */ + pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut; + pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut; +} + static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_bool32 isResamplerAlreadyInitialized) { + ma_result result; ma_uint32 gcf; + ma_uint32 lpfSampleRate; + double lpfCutoffFrequency; + ma_lpf_config lpfConfig; + ma_uint32 oldSampleRateOut; /* Required for adjusting time advance down the bottom. */ if (pResampler == NULL) { return MA_INVALID_ARGS; @@ -32699,6 +38482,8 @@ static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pRes return MA_INVALID_ARGS; } + oldSampleRateOut = pResampler->config.sampleRateOut; + pResampler->config.sampleRateIn = sampleRateIn; pResampler->config.sampleRateOut = sampleRateOut; @@ -32707,42 +38492,36 @@ static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pRes pResampler->config.sampleRateIn /= gcf; pResampler->config.sampleRateOut /= gcf; - if (pResampler->config.lpfOrder > 0) { - ma_result result; - ma_uint32 lpfSampleRate; - double lpfCutoffFrequency; - ma_lpf_config lpfConfig; - - if (pResampler->config.lpfOrder > MA_MAX_FILTER_ORDER) { - return MA_INVALID_ARGS; - } - - lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut)); - lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor); - - lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency, pResampler->config.lpfOrder); - - /* - If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames - getting cleared. Instead we re-initialize the filter which will maintain any cached frames. - */ - if (isResamplerAlreadyInitialized) { - result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf); - } else { - result = ma_lpf_init(&lpfConfig, &pResampler->lpf); - } - - if (result != MA_SUCCESS) { - return result; - } + /* Always initialize the low-pass filter, even when the order is 0. */ + if (pResampler->config.lpfOrder > MA_MAX_FILTER_ORDER) { + return MA_INVALID_ARGS; } + lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut)); + lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor); + + lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency, pResampler->config.lpfOrder); + + /* + If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames + getting cleared. Instead we re-initialize the filter which will maintain any cached frames. + */ + if (isResamplerAlreadyInitialized) { + result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf); + } else { + result = ma_lpf_init(&lpfConfig, &pResampler->lpf); + } + + if (result != MA_SUCCESS) { + return result; + } + + pResampler->inAdvanceInt = pResampler->config.sampleRateIn / pResampler->config.sampleRateOut; pResampler->inAdvanceFrac = pResampler->config.sampleRateIn % pResampler->config.sampleRateOut; - /* Make sure the fractional part is less than the output sample rate. */ - pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut; - pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut; + /* Our timer was based on the old rate. We need to adjust it so that it's based on the new rate. */ + ma_linear_resampler_adjust_timer_for_new_rate(pResampler, oldSampleRateOut, pResampler->config.sampleRateOut); return MA_SUCCESS; } @@ -32761,6 +38540,10 @@ MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pCon return MA_INVALID_ARGS; } + if (pConfig->channels < MA_MIN_CHANNELS || pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + pResampler->config = *pConfig; /* Setting the rate will set up the filter and time advances for us. */ @@ -32793,7 +38576,7 @@ static MA_INLINE ma_int16 ma_linear_resampler_mix_s16(ma_int16 x, ma_int16 y, ma b = x * ((1<> shift); } @@ -32851,13 +38634,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear framesProcessedIn = 0; framesProcessedOut = 0; - for (;;) { - if (framesProcessedOut >= frameCountOut) { - break; - } - + while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */ - while (pResampler->inTimeInt > 0 && frameCountIn > 0) { + while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInS16 != NULL) { @@ -32876,7 +38655,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear /* Filter. */ ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pResampler->x1.s16, pResampler->x1.s16); - frameCountIn -= 1; framesProcessedIn += 1; pResampler->inTimeInt -= 1; } @@ -32930,13 +38708,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_r framesProcessedIn = 0; framesProcessedOut = 0; - for (;;) { - if (framesProcessedOut >= frameCountOut) { - break; - } - + while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. */ - while (pResampler->inTimeInt > 0 && frameCountIn > 0) { + while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInS16 != NULL) { @@ -32952,7 +38726,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_r } } - frameCountIn -= 1; framesProcessedIn += 1; pResampler->inTimeInt -= 1; } @@ -33021,13 +38794,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear framesProcessedIn = 0; framesProcessedOut = 0; - for (;;) { - if (framesProcessedOut >= frameCountOut) { - break; - } - + while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */ - while (pResampler->inTimeInt > 0 && frameCountIn > 0) { + while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInF32 != NULL) { @@ -33046,7 +38815,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear /* Filter. */ ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pResampler->x1.f32, pResampler->x1.f32); - frameCountIn -= 1; framesProcessedIn += 1; pResampler->inTimeInt -= 1; } @@ -33100,13 +38868,9 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_r framesProcessedIn = 0; framesProcessedOut = 0; - for (;;) { - if (framesProcessedOut >= frameCountOut) { - break; - } - + while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. */ - while (pResampler->inTimeInt > 0 && frameCountIn > 0) { + while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInF32 != NULL) { @@ -33122,7 +38886,6 @@ static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_r } } - frameCountIn -= 1; framesProcessedIn += 1; pResampler->inTimeInt -= 1; } @@ -33199,7 +38962,7 @@ MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResamp ma_uint32 n; ma_uint32 d; - d = 1000000; /* We use up to 6 decimal places. */ + d = 1000; n = (ma_uint32)(ratioInOut * d); if (n == 0) { @@ -33207,14 +38970,14 @@ MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResamp } MA_ASSERT(n != 0); - + return ma_linear_resampler_set_rate(pResampler, n, d); } MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount) { - ma_uint64 count; + ma_uint64 inputFrameCount; if (pResampler == NULL) { return 0; @@ -33225,51 +38988,48 @@ MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_re } /* Any whole input frames are consumed before the first output frame is generated. */ - count = pResampler->inTimeInt; + inputFrameCount = pResampler->inTimeInt; outputFrameCount -= 1; /* The rest of the output frames can be calculated in constant time. */ - count += outputFrameCount * pResampler->inAdvanceInt; - count += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut; + inputFrameCount += outputFrameCount * pResampler->inAdvanceInt; + inputFrameCount += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut; - return count; + return inputFrameCount; } MA_API ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount) { ma_uint64 outputFrameCount; - ma_uint64 inTimeInt; - ma_uint64 inTimeFrac; + ma_uint64 preliminaryInputFrameCountFromFrac; + ma_uint64 preliminaryInputFrameCount; if (pResampler == NULL) { return 0; } - /* TODO: Try making this run in constant time. */ + /* + The first step is to get a preliminary output frame count. This will either be exactly equal to what we need, or less by 1. We need to + determine how many input frames will be consumed by this value. If it's greater than our original input frame count it means we won't + be able to generate an extra frame because we will have run out of input data. Otherwise we will have enough input for the generation + of an extra output frame. This add-by-one logic is necessary due to how the data loading logic works when processing frames. + */ + outputFrameCount = (inputFrameCount * pResampler->config.sampleRateOut) / pResampler->config.sampleRateIn; - outputFrameCount = 0; - inTimeInt = pResampler->inTimeInt; - inTimeFrac = pResampler->inTimeFrac; - - for (;;) { - while (inTimeInt > 0 && inputFrameCount > 0) { - inputFrameCount -= 1; - inTimeInt -= 1; - } - - if (inTimeInt > 0) { - break; - } + /* + We need to determine how many *whole* input frames will have been processed to generate our preliminary output frame count. This is + used in the logic below to determine whether or not we need to add an extra output frame. + */ + preliminaryInputFrameCountFromFrac = (pResampler->inTimeFrac + outputFrameCount*pResampler->inAdvanceFrac) / pResampler->config.sampleRateOut; + preliminaryInputFrameCount = (pResampler->inTimeInt + outputFrameCount*pResampler->inAdvanceInt ) + preliminaryInputFrameCountFromFrac; + /* + If the total number of *whole* input frames that would be required to generate our preliminary output frame count is greather than + the amount of whole input frames we have available as input we need to *not* add an extra output frame as there won't be enough data + to actually process. Otherwise we need to add the extra output frame. + */ + if (preliminaryInputFrameCount <= inputFrameCount) { outputFrameCount += 1; - - /* Advance time forward. */ - inTimeInt += pResampler->inAdvanceInt; - inTimeFrac += pResampler->inAdvanceFrac; - if (inTimeFrac >= pResampler->config.sampleRateOut) { - inTimeFrac -= pResampler->config.sampleRateOut; - inTimeInt += 1; - } } return outputFrameCount; @@ -33510,7 +39270,7 @@ static ma_result ma_resampler_process_pcm_frames__read(ma_resampler* pResampler, break; #endif } - + default: break; } @@ -33532,7 +39292,7 @@ static ma_result ma_resampler_process_pcm_frames__seek__linear(ma_resampler* pRe static ma_result ma_resampler_process_pcm_frames__seek__speex(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut) { /* The generic seek method is implemented in on top of ma_resampler_process_pcm_frames__read() by just processing into a dummy buffer. */ - float devnull[8192]; + float devnull[4096]; ma_uint64 totalOutputFramesToProcess; ma_uint64 totalOutputFramesProcessed; ma_uint64 totalInputFramesProcessed; @@ -33701,7 +39461,7 @@ MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float rat ma_uint32 n; ma_uint32 d; - d = 1000000; /* We use up to 6 decimal places. */ + d = 1000; n = (ma_uint32)(ratio * d); if (n == 0) { @@ -33709,7 +39469,7 @@ MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float rat } MA_ASSERT(n != 0); - + return ma_resampler_set_rate(pResampler, n, d); } } @@ -33734,13 +39494,13 @@ MA_API ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResa case ma_resample_algorithm_speex: { #if defined(MA_HAS_SPEEX_RESAMPLER) - ma_uint64 count; + spx_uint64_t count; int speexErr = ma_speex_resampler_get_required_input_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, outputFrameCount, &count); if (speexErr != RESAMPLER_ERR_SUCCESS) { return 0; } - return count; + return (ma_uint64)count; #else break; #endif @@ -33774,13 +39534,13 @@ MA_API ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pRes case ma_resample_algorithm_speex: { #if defined(MA_HAS_SPEEX_RESAMPLER) - ma_uint64 count; + spx_uint64_t count; int speexErr = ma_speex_resampler_get_expected_output_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, inputFrameCount, &count); if (speexErr != RESAMPLER_ERR_SUCCESS) { return 0; } - return count; + return (ma_uint64)count; #else break; #endif @@ -33930,34 +39690,34 @@ static float ma_calculate_channel_position_rectangular_weight(ma_channel channel /* Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to the following output configuration: - + - front/left - side/left - back/left - + The front/left output is easy - it the same speaker position so it receives the full contribution of the front/left input. The amount of contribution to apply to the side/left and back/left speakers, however, is a bit more complicated. - + Imagine the front/left speaker as emitting audio from two planes - the front plane and the left plane. You can think of the front/left speaker emitting half of it's total volume from the front, and the other half from the left. Since part of it's volume is being emitted from the left side, and the side/left and back/left channels also emit audio from the left plane, one would expect that they would receive some amount of contribution from front/left speaker. The amount of contribution depends on how many planes are shared between the two speakers. Note that in the examples below I've added a top/front/left speaker as an example just to show how the math works across 3 spatial dimensions. - + The first thing to do is figure out how each speaker's volume is spread over each of plane: - front/left: 2 planes (front and left) = 1/2 = half it's total volume on each plane - side/left: 1 plane (left only) = 1/1 = entire volume from left plane - back/left: 2 planes (back and left) = 1/2 = half it's total volume on each plane - top/front/left: 3 planes (top, front and left) = 1/3 = one third it's total volume on each plane - + The amount of volume each channel contributes to each of it's planes is what controls how much it is willing to given and take to other channels on the same plane. The volume that is willing to the given by one channel is multiplied by the volume that is willing to be taken by the other to produce the final contribution. */ /* Contribution = Sum(Volume to Give * Volume to Take) */ - float contribution = + float contribution = g_maChannelPlaneRatios[channelPositionA][0] * g_maChannelPlaneRatios[channelPositionB][0] + g_maChannelPlaneRatios[channelPositionA][1] * g_maChannelPlaneRatios[channelPositionB][1] + g_maChannelPlaneRatios[channelPositionA][2] * g_maChannelPlaneRatios[channelPositionB][2] + @@ -33968,21 +39728,26 @@ static float ma_calculate_channel_position_rectangular_weight(ma_channel channel return contribution; } -MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode) +MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel* pChannelMapIn, ma_uint32 channelsOut, const ma_channel* pChannelMapOut, ma_channel_mix_mode mixingMode) { ma_channel_converter_config config; + + /* Channel counts need to be clamped. */ + channelsIn = ma_min(channelsIn, ma_countof(config.channelMapIn)); + channelsOut = ma_min(channelsOut, ma_countof(config.channelMapOut)); + MA_ZERO_OBJECT(&config); config.format = format; config.channelsIn = channelsIn; config.channelsOut = channelsOut; - ma_channel_map_copy(config.channelMapIn, channelMapIn, channelsIn); - ma_channel_map_copy(config.channelMapOut, channelMapOut, channelsOut); + ma_channel_map_copy_or_default(config.channelMapIn, pChannelMapIn, channelsIn); + ma_channel_map_copy_or_default(config.channelMapOut, pChannelMapOut, channelsOut); config.mixingMode = mixingMode; return config; } -static ma_int32 ma_channel_converter_float_to_fp(float x) +static ma_int32 ma_channel_converter_float_to_fixed(float x) { return (ma_int32)(x * (1<channelsIn < MA_MIN_CHANNELS || pConfig->channelsIn > MA_MAX_CHANNELS || + pConfig->channelsOut < MA_MIN_CHANNELS || pConfig->channelsOut > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + if (!ma_channel_map_valid(pConfig->channelsIn, pConfig->channelMapIn)) { return MA_INVALID_ARGS; /* Invalid input channel map. */ } @@ -34026,10 +39797,6 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC return MA_INVALID_ARGS; /* Invalid output channel map. */ } - if (pConfig->format != ma_format_s16 && pConfig->format != ma_format_f32) { - return MA_INVALID_ARGS; /* Invalid format. */ - } - pConverter->format = pConfig->format; pConverter->channelsIn = pConfig->channelsIn; pConverter->channelsOut = pConfig->channelsOut; @@ -34039,14 +39806,14 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { - if (pConverter->format == ma_format_s16) { + if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = pConfig->weights[iChannelIn][iChannelOut]; } else { - pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(pConfig->weights[iChannelIn][iChannelOut]); + pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(pConfig->weights[iChannelIn][iChannelOut]); } } } - + /* If the input and output channels and channel maps are the same we should use a passthrough. */ @@ -34088,7 +39855,7 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC /* Here is where we do a bit of pre-processing to know how each channel should be combined to make up the output. Rules: - + 1) If it's a passthrough, do nothing - it's just a simple memcpy(). 2) If the channel counts are the same and every channel position in the input map is present in the output map, use a simple shuffle. An example might be different 5.1 channel layouts. @@ -34135,7 +39902,7 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC /* Here is where weights are calculated. Note that we calculate the weights at all times, even when using a passthrough and simple shuffling. We use different algorithms for calculating weights depending on our mixing mode. - + In simple mode we don't do any blending (except for converting between mono, which is done in a later step). Instead we just map 1:1 matching channels. In this mode, if no channels in the input channel map correspond to anything in the output channel map, nothing will be heard! @@ -34149,10 +39916,10 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut]; if (channelPosIn == channelPosOut) { - if (pConverter->format == ma_format_s16) { - pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT); - } else { + if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = 1; + } else { + pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT); } } } @@ -34170,10 +39937,10 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut]; if (channelPosOut != MA_CHANNEL_NONE && channelPosOut != MA_CHANNEL_MONO && channelPosOut != MA_CHANNEL_LFE) { - if (pConverter->format == ma_format_s16) { - pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT); - } else { + if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = 1; + } else { + pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT); } } } @@ -34202,10 +39969,10 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn]; if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) { - if (pConverter->format == ma_format_s16) { - pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(monoWeight); - } else { + if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = monoWeight; + } else { + pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(monoWeight); } } } @@ -34236,14 +40003,14 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC } /* Only apply the weight if we haven't already got some contribution from the respective channels. */ - if (pConverter->format == ma_format_s16) { - if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { - pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight); - } - } else { + if (pConverter->format == ma_format_f32) { if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } + } else { + if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { + pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); + } } } } @@ -34267,14 +40034,14 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC } /* Only apply the weight if we haven't already got some contribution from the respective channels. */ - if (pConverter->format == ma_format_s16) { - if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { - pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight); - } - } else { + if (pConverter->format == ma_format_f32) { if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } + } else { + if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { + pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); + } } } } @@ -34283,8 +40050,24 @@ MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pC } } break; - case ma_channel_mix_mode_custom_weights: case ma_channel_mix_mode_simple: + { + /* In simple mode, excess channels need to be silenced or dropped. */ + ma_uint32 iChannel; + for (iChannel = 0; iChannel < ma_min(pConverter->channelsIn, pConverter->channelsOut); iChannel += 1) { + if (pConverter->format == ma_format_f32) { + if (pConverter->weights.f32[iChannel][iChannel] == 0) { + pConverter->weights.f32[iChannel][iChannel] = 1; + } + } else { + if (pConverter->weights.s16[iChannel][iChannel] == 0) { + pConverter->weights.s16[iChannel][iChannel] = ma_channel_converter_float_to_fixed(1); + } + } + } + } break; + + case ma_channel_mix_mode_custom_weights: default: { /* Fallthrough. */ @@ -34322,24 +40105,87 @@ static ma_result ma_channel_converter_process_pcm_frames__simple_shuffle(ma_chan MA_ASSERT(pFramesIn != NULL); MA_ASSERT(pConverter->channelsIn == pConverter->channelsOut); - if (pConverter->format == ma_format_s16) { - /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; - const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + switch (pConverter->format) + { + case ma_format_u8: + { + /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { - pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn]; - } - } - } else { - /* */ float* pFramesOutF32 = ( float*)pFramesOut; - const float* pFramesInF32 = (const float*)pFramesIn; + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + pFramesOutU8[pConverter->shuffleTable[iChannelIn]] = pFramesInU8[iChannelIn]; + } - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { - pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn]; + pFramesOutU8 += pConverter->channelsOut; + pFramesInU8 += pConverter->channelsIn; } - } + } break; + + case ma_format_s16: + { + /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; + const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn]; + } + + pFramesOutS16 += pConverter->channelsOut; + pFramesInS16 += pConverter->channelsIn; + } + } break; + + case ma_format_s24: + { + /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + ma_uint32 iChannelOut = pConverter->shuffleTable[iChannelIn]; + pFramesOutS24[iChannelOut*3 + 0] = pFramesInS24[iChannelIn*3 + 0]; + pFramesOutS24[iChannelOut*3 + 1] = pFramesInS24[iChannelIn*3 + 1]; + pFramesOutS24[iChannelOut*3 + 2] = pFramesInS24[iChannelIn*3 + 2]; + } + + pFramesOutS24 += pConverter->channelsOut*3; + pFramesInS24 += pConverter->channelsIn*3; + } + } break; + + case ma_format_s32: + { + /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; + const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + pFramesOutS32[pConverter->shuffleTable[iChannelIn]] = pFramesInS32[iChannelIn]; + } + + pFramesOutS32 += pConverter->channelsOut; + pFramesInS32 += pConverter->channelsIn; + } + } break; + + case ma_format_f32: + { + /* */ float* pFramesOutF32 = ( float*)pFramesOut; + const float* pFramesInF32 = (const float*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn]; + } + + pFramesOutF32 += pConverter->channelsOut; + pFramesInF32 += pConverter->channelsIn; + } + } break; + + default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; @@ -34352,41 +40198,94 @@ static ma_result ma_channel_converter_process_pcm_frames__simple_mono_expansion( MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); + MA_ASSERT(pConverter->channelsIn == 1); - if (pConverter->format == ma_format_s16) { - /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; - const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + switch (pConverter->format) + { + case ma_format_u8: + { + /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; - if (pConverter->channelsOut == 2) { - for (iFrame = 0; iFrame < frameCount; ++iFrame) { - pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame]; - pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame]; - } - } else { for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { - pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame]; + pFramesOutU8[iFrame*pConverter->channelsOut + iChannel] = pFramesInU8[iFrame]; } } - } - } else { - /* */ float* pFramesOutF32 = ( float*)pFramesOut; - const float* pFramesInF32 = (const float*)pFramesIn; + } break; - if (pConverter->channelsOut == 2) { - for (iFrame = 0; iFrame < frameCount; ++iFrame) { - pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame]; - pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame]; + case ma_format_s16: + { + /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; + const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + + if (pConverter->channelsOut == 2) { + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame]; + pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame]; + } + } else { + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { + pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame]; + } + } } - } else { + } break; + + case ma_format_s24: + { + /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; + for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { - pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame]; + ma_uint64 iSampleOut = iFrame*pConverter->channelsOut + iChannel; + ma_uint64 iSampleIn = iFrame; + pFramesOutS24[iSampleOut*3 + 0] = pFramesInS24[iSampleIn*3 + 0]; + pFramesOutS24[iSampleOut*3 + 1] = pFramesInS24[iSampleIn*3 + 1]; + pFramesOutS24[iSampleOut*3 + 2] = pFramesInS24[iSampleIn*3 + 2]; } } - } + } break; + + case ma_format_s32: + { + /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; + const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { + pFramesOutS32[iFrame*pConverter->channelsOut + iChannel] = pFramesInS32[iFrame]; + } + } + } break; + + case ma_format_f32: + { + /* */ float* pFramesOutF32 = ( float*)pFramesOut; + const float* pFramesInF32 = (const float*)pFramesIn; + + if (pConverter->channelsOut == 2) { + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame]; + pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame]; + } + } else { + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { + pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame]; + } + } + } + } break; + + default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; @@ -34402,20 +40301,61 @@ static ma_result ma_channel_converter_process_pcm_frames__stereo_to_mono(ma_chan MA_ASSERT(pConverter->channelsIn == 2); MA_ASSERT(pConverter->channelsOut == 1); - if (pConverter->format == ma_format_s16) { - /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; - const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + switch (pConverter->format) + { + case ma_format_u8: + { + /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; - for (iFrame = 0; iFrame < frameCount; ++iFrame) { - pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2); - } - } else { - /* */ float* pFramesOutF32 = ( float*)pFramesOut; - const float* pFramesInF32 = (const float*)pFramesIn; + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutU8[iFrame] = ma_clip_u8((ma_int16)((ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+0]) + ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+1])) / 2)); + } + } break; - for (iFrame = 0; iFrame < frameCount; ++iFrame) { - pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f; - } + case ma_format_s16: + { + /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; + const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2); + } + } break; + + case ma_format_s24: + { + /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + ma_int64 s24_0 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+0)*3]); + ma_int64 s24_1 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+1)*3]); + ma_pcm_sample_s32_to_s24_no_scale((s24_0 + s24_1) / 2, &pFramesOutS24[iFrame*3]); + } + } break; + + case ma_format_s32: + { + /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; + const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutS32[iFrame] = (ma_int16)(((ma_int32)pFramesInS32[iFrame*2+0] + (ma_int32)pFramesInS32[iFrame*2+1]) / 2); + } + } break; + + case ma_format_f32: + { + /* */ float* pFramesOutF32 = ( float*)pFramesOut; + const float* pFramesInF32 = (const float*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; ++iFrame) { + pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f; + } + } break; + + default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; @@ -34437,33 +40377,93 @@ static ma_result ma_channel_converter_process_pcm_frames__weights(ma_channel_con ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut)); /* Accumulate. */ - if (pConverter->format == ma_format_s16) { - /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; - const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + switch (pConverter->format) + { + case ma_format_u8: + { + /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { - for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { - ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut]; - s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT; - - pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767); + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { + ma_int16 u8_O = ma_pcm_sample_u8_to_s16_no_scale(pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut]); + ma_int16 u8_I = ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8 [iFrame*pConverter->channelsIn + iChannelIn ]); + ma_int32 s = (ma_int32)ma_clamp(u8_O + ((u8_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -128, 127); + pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_u8((ma_int16)s); + } } } - } - } else { - /* */ float* pFramesOutF32 = ( float*)pFramesOut; - const float* pFramesInF32 = (const float*)pFramesIn; + } break; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { - for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { - pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut]; + case ma_format_s16: + { + /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; + const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { + ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut]; + s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT; + + pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767); + } } } - } + } break; + + case ma_format_s24: + { + /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; + const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { + ma_int64 s24_O = ma_pcm_sample_s24_to_s32_no_scale(&pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]); + ma_int64 s24_I = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24 [(iFrame*pConverter->channelsIn + iChannelIn )*3]); + ma_int64 s24 = (ma_int32)ma_clamp(s24_O + ((s24_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -8388608, 8388607); + ma_pcm_sample_s32_to_s24_no_scale(s24, &pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]); + } + } + } + } break; + + case ma_format_s32: + { + /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; + const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { + ma_int64 s = pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut]; + s += ((ma_int64)pFramesInS32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT; + + pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_s32(s); + } + } + } + } break; + + case ma_format_f32: + { + /* */ float* pFramesOutF32 = ( float*)pFramesOut; + const float* pFramesInF32 = (const float*)pFramesIn; + + for (iFrame = 0; iFrame < frameCount; iFrame += 1) { + for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { + for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { + pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut]; + } + } + } + } break; + + default: return MA_INVALID_OPERATION; /* Unknown format. */ } - + return MA_SUCCESS; } @@ -34523,13 +40523,13 @@ MA_API ma_data_converter_config ma_data_converter_config_init_default() MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { ma_data_converter_config config = ma_data_converter_config_init_default(); - config.formatIn = formatIn; - config.formatOut = formatOut; - config.channelsIn = channelsIn; - config.channelsOut = channelsOut; - config.sampleRateIn = sampleRateIn; + config.formatIn = formatIn; + config.formatOut = formatOut; + config.channelsIn = ma_min(channelsIn, MA_MAX_CHANNELS); + config.channelsOut = ma_min(channelsOut, MA_MAX_CHANNELS); + config.sampleRateIn = sampleRateIn; config.sampleRateOut = sampleRateOut; - + return config; } @@ -34550,6 +40550,12 @@ MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, pConverter->config = *pConfig; + /* Basic validation. */ + if (pConfig->channelsIn < MA_MIN_CHANNELS || pConfig->channelsOut < MA_MIN_CHANNELS || + pConfig->channelsIn > MA_MAX_CHANNELS || pConfig->channelsOut > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + /* We want to avoid as much data conversion as possible. The channel converter and resampler both support s16 and f32 natively. We need to decide on the format to use for this stage. We call this the mid format because it's used in the middle stage of the conversion pipeline. If the output @@ -34571,14 +40577,14 @@ MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_channel_converter_config channelConverterConfig; channelConverterConfig = ma_channel_converter_config_init(midFormat, pConverter->config.channelsIn, pConverter->config.channelMapIn, pConverter->config.channelsOut, pConverter->config.channelMapOut, pConverter->config.channelMixMode); - + /* Channel weights. */ for (iChannelIn = 0; iChannelIn < pConverter->config.channelsIn; iChannelIn += 1) { for (iChannelOut = 0; iChannelOut < pConverter->config.channelsOut; iChannelOut += 1) { channelConverterConfig.weights[iChannelIn][iChannelOut] = pConverter->config.channelWeights[iChannelIn][iChannelOut]; } } - + result = ma_channel_converter_init(&channelConverterConfig, &pConverter->channelConverter); if (result != MA_SUCCESS) { return result; @@ -34673,7 +40679,7 @@ static ma_result ma_data_converter_process_pcm_frames__passthrough(ma_data_conve ma_uint64 frameCount; MA_ASSERT(pConverter != NULL); - + frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; @@ -34711,7 +40717,7 @@ static ma_result ma_data_converter_process_pcm_frames__format_only(ma_data_conve ma_uint64 frameCount; MA_ASSERT(pConverter != NULL); - + frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; @@ -35283,7 +41289,7 @@ static ma_result ma_data_converter_process_pcm_frames__channels_first(ma_data_co if (pFrameCountOut != NULL) { *pFrameCountOut = framesProcessedOut; } - + return MA_SUCCESS; } @@ -35416,2761 +41422,513 @@ MA_API ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConver -/************************************************************************************************************************************************************** - -Format Conversion - -**************************************************************************************************************************************************************/ - -static MA_INLINE ma_int16 ma_pcm_sample_f32_to_s16(float x) -{ - return (ma_int16)(x * 32767.0f); -} - -/* u8 */ -MA_API void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - (void)ditherMode; - ma_copy_memory_64(dst, src, count * sizeof(ma_uint8)); -} - - -static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int16* dst_s16 = (ma_int16*)dst; - const ma_uint8* src_u8 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int16 x = src_u8[i]; - x = x - 128; - x = x << 8; - dst_s16[i] = x; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_s24 = (ma_uint8*)dst; - const ma_uint8* src_u8 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int16 x = src_u8[i]; - x = x - 128; - - dst_s24[i*3+0] = 0; - dst_s24[i*3+1] = 0; - dst_s24[i*3+2] = (ma_uint8)((ma_int8)x); - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int32* dst_s32 = (ma_int32*)dst; - const ma_uint8* src_u8 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = src_u8[i]; - x = x - 128; - x = x << 24; - dst_s32[i] = x; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - float* dst_f32 = (float*)dst; - const ma_uint8* src_u8 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - float x = (float)src_u8[i]; - x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */ - x = x - 1; /* 0..2 to -1..1 */ - - dst_f32[i] = x; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -#ifdef MA_USE_REFERENCE_CONVERSION_APIS -static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_uint8* dst_u8 = (ma_uint8*)dst; - const ma_uint8** src_u8 = (const ma_uint8**)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; - } - } -} -#else -static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_uint8* dst_u8 = (ma_uint8*)dst; - const ma_uint8** src_u8 = (const ma_uint8**)src; - - if (channels == 1) { - ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8)); - } else if (channels == 2) { - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - dst_u8[iFrame*2 + 0] = src_u8[0][iFrame]; - dst_u8[iFrame*2 + 1] = src_u8[1][iFrame]; - } - } else { - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; - } - } - } -} -#endif - -MA_API void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_interleave_u8__reference(dst, src, frameCount, channels); -#else - ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels); -#endif -} - - -static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_uint8** dst_u8 = (ma_uint8**)dst; - const ma_uint8* src_u8 = (const ma_uint8*)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel]; - } - } -} - -static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); -#else - ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels); -#endif -} - - -/* s16 */ -static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_u8 = (ma_uint8*)dst; - const ma_int16* src_s16 = (const ma_int16*)src; - - if (ditherMode == ma_dither_mode_none) { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int16 x = src_s16[i]; - x = x >> 8; - x = x + 128; - dst_u8[i] = (ma_uint8)x; - } - } else { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int16 x = src_s16[i]; - - /* Dither. Don't overflow. */ - ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F); - if ((x + dither) <= 0x7FFF) { - x = (ma_int16)(x + dither); - } else { - x = 0x7FFF; - } - - x = x >> 8; - x = x + 128; - dst_u8[i] = (ma_uint8)x; - } - } -} - -static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); - } -#endif -} - - -MA_API void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - (void)ditherMode; - ma_copy_memory_64(dst, src, count * sizeof(ma_int16)); -} - - -static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_s24 = (ma_uint8*)dst; - const ma_int16* src_s16 = (const ma_int16*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - dst_s24[i*3+0] = 0; - dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF); - dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8); - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int32* dst_s32 = (ma_int32*)dst; - const ma_int16* src_s16 = (const ma_int16*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - dst_s32[i] = src_s16[i] << 16; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - float* dst_f32 = (float*)dst; - const ma_int16* src_s16 = (const ma_int16*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - float x = (float)src_s16[i]; - -#if 0 - /* The accurate way. */ - x = x + 32768.0f; /* -32768..32767 to 0..65535 */ - x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */ - x = x - 1; /* 0..2 to -1..1 */ -#else - /* The fast way. */ - x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */ -#endif - - dst_f32[i] = x; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_int16* dst_s16 = (ma_int16*)dst; - const ma_int16** src_s16 = (const ma_int16**)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame]; - } - } -} - -static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); -#else - ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels); -#endif -} - - -static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_int16** dst_s16 = (ma_int16**)dst; - const ma_int16* src_s16 = (const ma_int16*)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel]; - } - } -} - -static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); -#else - ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels); -#endif -} - - -/* s24 */ -static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_u8 = (ma_uint8*)dst; - const ma_uint8* src_s24 = (const ma_uint8*)src; - - if (ditherMode == ma_dither_mode_none) { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int8 x = (ma_int8)src_s24[i*3 + 2] + 128; - dst_u8[i] = (ma_uint8)x; - } - } else { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); - - /* Dither. Don't overflow. */ - ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); - if ((ma_int64)x + dither <= 0x7FFFFFFF) { - x = x + dither; - } else { - x = 0x7FFFFFFF; - } - - x = x >> 24; - x = x + 128; - dst_u8[i] = (ma_uint8)x; - } - } -} - -static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int16* dst_s16 = (ma_int16*)dst; - const ma_uint8* src_s24 = (const ma_uint8*)src; - - if (ditherMode == ma_dither_mode_none) { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]); - ma_uint16 dst_hi = ((ma_uint16)src_s24[i*3 + 2]) << 8; - dst_s16[i] = (ma_int16)dst_lo | dst_hi; - } - } else { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); - - /* Dither. Don't overflow. */ - ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); - if ((ma_int64)x + dither <= 0x7FFFFFFF) { - x = x + dither; - } else { - x = 0x7FFFFFFF; - } - - x = x >> 16; - dst_s16[i] = (ma_int16)x; - } - } -} - -static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); - } -#endif -} - - -MA_API void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - (void)ditherMode; - - ma_copy_memory_64(dst, src, count * 3); -} - - -static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int32* dst_s32 = (ma_int32*)dst; - const ma_uint8* src_s24 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - float* dst_f32 = (float*)dst; - const ma_uint8* src_s24 = (const ma_uint8*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8); - -#if 0 - /* The accurate way. */ - x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */ - x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */ - x = x - 1; /* 0..2 to -1..1 */ -#else - /* The fast way. */ - x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */ -#endif - - dst_f32[i] = x; - } - - (void)ditherMode; -} - -static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_uint8* dst8 = (ma_uint8*)dst; - const ma_uint8** src8 = (const ma_uint8**)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0]; - dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1]; - dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2]; - } - } -} - -static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); -#else - ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels); -#endif -} - - -static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_uint8** dst8 = (ma_uint8**)dst; - const ma_uint8* src8 = (const ma_uint8*)src; - - ma_uint32 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0]; - dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1]; - dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2]; - } - } -} - -static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); -#else - ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels); -#endif -} - - - -/* s32 */ -static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_u8 = (ma_uint8*)dst; - const ma_int32* src_s32 = (const ma_int32*)src; - - if (ditherMode == ma_dither_mode_none) { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = src_s32[i]; - x = x >> 24; - x = x + 128; - dst_u8[i] = (ma_uint8)x; - } - } else { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = src_s32[i]; - - /* Dither. Don't overflow. */ - ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); - if ((ma_int64)x + dither <= 0x7FFFFFFF) { - x = x + dither; - } else { - x = 0x7FFFFFFF; - } - - x = x >> 24; - x = x + 128; - dst_u8[i] = (ma_uint8)x; - } - } -} - -static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int16* dst_s16 = (ma_int16*)dst; - const ma_int32* src_s32 = (const ma_int32*)src; - - if (ditherMode == ma_dither_mode_none) { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = src_s32[i]; - x = x >> 16; - dst_s16[i] = (ma_int16)x; - } - } else { - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 x = src_s32[i]; - - /* Dither. Don't overflow. */ - ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); - if ((ma_int64)x + dither <= 0x7FFFFFFF) { - x = x + dither; - } else { - x = 0x7FFFFFFF; - } - - x = x >> 16; - dst_s16[i] = (ma_int16)x; - } - } -} - -static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_s24 = (ma_uint8*)dst; - const ma_int32* src_s32 = (const ma_int32*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_uint32 x = (ma_uint32)src_s32[i]; - dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8); - dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16); - dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24); - } - - (void)ditherMode; /* No dithering for s32 -> s24. */ -} - -static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); - } -#endif -} - - -MA_API void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - (void)ditherMode; - - ma_copy_memory_64(dst, src, count * sizeof(ma_int32)); -} - - -static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - float* dst_f32 = (float*)dst; - const ma_int32* src_s32 = (const ma_int32*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - double x = src_s32[i]; - -#if 0 - x = x + 2147483648.0; - x = x * 0.0000000004656612873077392578125; - x = x - 1; -#else - x = x / 2147483648.0; -#endif - - dst_f32[i] = (float)x; - } - - (void)ditherMode; /* No dithering for s32 -> f32. */ -} - -static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_int32* dst_s32 = (ma_int32*)dst; - const ma_int32** src_s32 = (const ma_int32**)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame]; - } - } -} - -static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); -#else - ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels); -#endif -} - - -static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_int32** dst_s32 = (ma_int32**)dst; - const ma_int32* src_s32 = (const ma_int32*)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel]; - } - } -} - -static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); -#else - ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels); -#endif -} - - -/* f32 */ -static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - - ma_uint8* dst_u8 = (ma_uint8*)dst; - const float* src_f32 = (const float*)src; - - float ditherMin = 0; - float ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -128; - ditherMax = 1.0f / 127; - } - - for (i = 0; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - x = x + 1; /* -1..1 to 0..2 */ - x = x * 127.5f; /* 0..2 to 0..255 */ - - dst_u8[i] = (ma_uint8)x; - } -} - -static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); - } -#endif -} - -#ifdef MA_USE_REFERENCE_CONVERSION_APIS -static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - - ma_int16* dst_s16 = (ma_int16*)dst; - const float* src_f32 = (const float*)src; - - float ditherMin = 0; - float ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -32768; - ditherMax = 1.0f / 32767; - } - - for (i = 0; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - -#if 0 - /* The accurate way. */ - x = x + 1; /* -1..1 to 0..2 */ - x = x * 32767.5f; /* 0..2 to 0..65535 */ - x = x - 32768.0f; /* 0...65535 to -32768..32767 */ -#else - /* The fast way. */ - x = x * 32767.0f; /* -1..1 to -32767..32767 */ -#endif - - dst_s16[i] = (ma_int16)x; - } -} -#else -static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - ma_uint64 i4; - ma_uint64 count4; - - ma_int16* dst_s16 = (ma_int16*)dst; - const float* src_f32 = (const float*)src; - - float ditherMin = 0; - float ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -32768; - ditherMax = 1.0f / 32767; - } - - /* Unrolled. */ - i = 0; - count4 = count >> 2; - for (i4 = 0; i4 < count4; i4 += 1) { - float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax); - float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax); - float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax); - float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax); - - float x0 = src_f32[i+0]; - float x1 = src_f32[i+1]; - float x2 = src_f32[i+2]; - float x3 = src_f32[i+3]; - - x0 = x0 + d0; - x1 = x1 + d1; - x2 = x2 + d2; - x3 = x3 + d3; - - x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0)); - x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1)); - x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2)); - x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3)); - - x0 = x0 * 32767.0f; - x1 = x1 * 32767.0f; - x2 = x2 * 32767.0f; - x3 = x3 * 32767.0f; - - dst_s16[i+0] = (ma_int16)x0; - dst_s16[i+1] = (ma_int16)x1; - dst_s16[i+2] = (ma_int16)x2; - dst_s16[i+3] = (ma_int16)x3; - - i += 4; - } - - /* Leftover. */ - for (; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - x = x * 32767.0f; /* -1..1 to -32767..32767 */ - - dst_s16[i] = (ma_int16)x; - } -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - ma_uint64 i8; - ma_uint64 count8; - ma_int16* dst_s16; - const float* src_f32; - float ditherMin; - float ditherMax; - - /* Both the input and output buffers need to be aligned to 16 bytes. */ - if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { - ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); - return; - } - - dst_s16 = (ma_int16*)dst; - src_f32 = (const float*)src; - - ditherMin = 0; - ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -32768; - ditherMax = 1.0f / 32767; - } - - i = 0; - - /* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ - count8 = count >> 3; - for (i8 = 0; i8 < count8; i8 += 1) { - __m128 d0; - __m128 d1; - __m128 x0; - __m128 x1; - - if (ditherMode == ma_dither_mode_none) { - d0 = _mm_set1_ps(0); - d1 = _mm_set1_ps(0); - } else if (ditherMode == ma_dither_mode_rectangle) { - d0 = _mm_set_ps( - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax) - ); - d1 = _mm_set_ps( - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax) - ); - } else { - d0 = _mm_set_ps( - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax) - ); - d1 = _mm_set_ps( - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax) - ); - } - - x0 = *((__m128*)(src_f32 + i) + 0); - x1 = *((__m128*)(src_f32 + i) + 1); - - x0 = _mm_add_ps(x0, d0); - x1 = _mm_add_ps(x1, d1); - - x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f)); - x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f)); - - _mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1))); - - i += 8; - } - - - /* Leftover. */ - for (; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - x = x * 32767.0f; /* -1..1 to -32767..32767 */ - - dst_s16[i] = (ma_int16)x; - } -} -#endif /* SSE2 */ - -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - ma_uint64 i16; - ma_uint64 count16; - ma_int16* dst_s16; - const float* src_f32; - float ditherMin; - float ditherMax; - - /* Both the input and output buffers need to be aligned to 32 bytes. */ - if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) { - ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); - return; - } - - dst_s16 = (ma_int16*)dst; - src_f32 = (const float*)src; - - ditherMin = 0; - ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -32768; - ditherMax = 1.0f / 32767; - } - - i = 0; - - /* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */ - count16 = count >> 4; - for (i16 = 0; i16 < count16; i16 += 1) { - __m256 d0; - __m256 d1; - __m256 x0; - __m256 x1; - __m256i i0; - __m256i i1; - __m256i p0; - __m256i p1; - __m256i r; - - if (ditherMode == ma_dither_mode_none) { - d0 = _mm256_set1_ps(0); - d1 = _mm256_set1_ps(0); - } else if (ditherMode == ma_dither_mode_rectangle) { - d0 = _mm256_set_ps( - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax) - ); - d1 = _mm256_set_ps( - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax), - ma_dither_f32_rectangle(ditherMin, ditherMax) - ); - } else { - d0 = _mm256_set_ps( - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax) - ); - d1 = _mm256_set_ps( - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax), - ma_dither_f32_triangle(ditherMin, ditherMax) - ); - } - - x0 = *((__m256*)(src_f32 + i) + 0); - x1 = *((__m256*)(src_f32 + i) + 1); - - x0 = _mm256_add_ps(x0, d0); - x1 = _mm256_add_ps(x1, d1); - - x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f)); - x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f)); - - /* Computing the final result is a little more complicated for AVX2 than SSE2. */ - i0 = _mm256_cvttps_epi32(x0); - i1 = _mm256_cvttps_epi32(x1); - p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32); - p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48); - r = _mm256_packs_epi32(p0, p1); - - _mm256_stream_si256(((__m256i*)(dst_s16 + i)), r); - - i += 16; - } - - - /* Leftover. */ - for (; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - x = x * 32767.0f; /* -1..1 to -32767..32767 */ - - dst_s16[i] = (ma_int16)x; - } -} -#endif /* AVX2 */ - -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint64 i; - ma_uint64 i8; - ma_uint64 count8; - ma_int16* dst_s16; - const float* src_f32; - float ditherMin; - float ditherMax; - - if (!ma_has_neon()) { - return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); - } - - /* Both the input and output buffers need to be aligned to 16 bytes. */ - if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { - ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); - return; - } - - dst_s16 = (ma_int16*)dst; - src_f32 = (const float*)src; - - ditherMin = 0; - ditherMax = 0; - if (ditherMode != ma_dither_mode_none) { - ditherMin = 1.0f / -32768; - ditherMax = 1.0f / 32767; - } - - i = 0; - - /* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ - count8 = count >> 3; - for (i8 = 0; i8 < count8; i8 += 1) { - float32x4_t d0; - float32x4_t d1; - float32x4_t x0; - float32x4_t x1; - int32x4_t i0; - int32x4_t i1; - - if (ditherMode == ma_dither_mode_none) { - d0 = vmovq_n_f32(0); - d1 = vmovq_n_f32(0); - } else if (ditherMode == ma_dither_mode_rectangle) { - float d0v[4]; - d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d0 = vld1q_f32(d0v); - - float d1v[4]; - d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); - d1 = vld1q_f32(d1v); - } else { - float d0v[4]; - d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); - d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); - d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); - d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); - d0 = vld1q_f32(d0v); - - float d1v[4]; - d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); - d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); - d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); - d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); - d1 = vld1q_f32(d1v); - } - - x0 = *((float32x4_t*)(src_f32 + i) + 0); - x1 = *((float32x4_t*)(src_f32 + i) + 1); - - x0 = vaddq_f32(x0, d0); - x1 = vaddq_f32(x1, d1); - - x0 = vmulq_n_f32(x0, 32767.0f); - x1 = vmulq_n_f32(x1, 32767.0f); - - i0 = vcvtq_s32_f32(x0); - i1 = vcvtq_s32_f32(x1); - *((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1)); - - i += 8; - } - - - /* Leftover. */ - for (; i < count; i += 1) { - float x = src_f32[i]; - x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - x = x * 32767.0f; /* -1..1 to -32767..32767 */ - - dst_s16[i] = (ma_int16)x; - } -} -#endif /* Neon */ -#endif /* MA_USE_REFERENCE_CONVERSION_APIS */ - -MA_API void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_uint8* dst_s24 = (ma_uint8*)dst; - const float* src_f32 = (const float*)src; - - ma_uint64 i; - for (i = 0; i < count; i += 1) { - ma_int32 r; - float x = src_f32[i]; - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - -#if 0 - /* The accurate way. */ - x = x + 1; /* -1..1 to 0..2 */ - x = x * 8388607.5f; /* 0..2 to 0..16777215 */ - x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */ -#else - /* The fast way. */ - x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */ -#endif - - r = (ma_int32)x; - dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0); - dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8); - dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16); - } - - (void)ditherMode; /* No dithering for f32 -> s24. */ -} - -static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); - } -#endif -} - - -static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_int32* dst_s32 = (ma_int32*)dst; - const float* src_f32 = (const float*)src; - - ma_uint32 i; - for (i = 0; i < count; i += 1) { - double x = src_f32[i]; - x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ - -#if 0 - /* The accurate way. */ - x = x + 1; /* -1..1 to 0..2 */ - x = x * 2147483647.5; /* 0..2 to 0..4294967295 */ - x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */ -#else - /* The fast way. */ - x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */ -#endif - - dst_s32[i] = (ma_int32)x; - } - - (void)ditherMode; /* No dithering for f32 -> s32. */ -} - -static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); -} - -#if defined(MA_SUPPORT_SSE2) -static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_AVX2) -static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); -} -#endif -#if defined(MA_SUPPORT_NEON) -static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); -} -#endif - -MA_API void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); -#else - # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 - if (ma_has_avx2()) { - ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 - if (ma_has_sse2()) { - ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode); - } else - #elif MA_PREFERRED_SIMD == MA_SIMD_NEON - if (ma_has_neon()) { - ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode); - } else - #endif - { - ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); - } -#endif -} - - -MA_API void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) -{ - (void)ditherMode; - - ma_copy_memory_64(dst, src, count * sizeof(float)); -} - - -static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - float* dst_f32 = (float*)dst; - const float** src_f32 = (const float**)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame]; - } - } -} - -static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); -#else - ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels); -#endif -} - - -static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - float** dst_f32 = (float**)dst; - const float* src_f32 = (const float*)src; - - ma_uint64 iFrame; - for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; iChannel += 1) { - dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel]; - } - } -} - -static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ - ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); -} - -MA_API void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) -{ -#ifdef MA_USE_REFERENCE_CONVERSION_APIS - ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); -#else - ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels); -#endif -} - - -MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode) -{ - if (formatOut == formatIn) { - ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut)); - return; - } - - switch (formatIn) - { - case ma_format_u8: - { - switch (formatOut) - { - case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return; - default: break; - } - } break; - - case ma_format_s16: - { - switch (formatOut) - { - case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return; - default: break; - } - } break; - - case ma_format_s24: - { - switch (formatOut) - { - case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return; - default: break; - } - } break; - - case ma_format_s32: - { - switch (formatOut) - { - case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return; - default: break; - } - } break; - - case ma_format_f32: - { - switch (formatOut) - { - case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return; - case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return; - default: break; - } - } break; - - default: break; - } -} - -MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode) -{ - ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode); -} - -MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames) -{ - if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) { - return; /* Invalid args. */ - } - - /* For efficiency we do this per format. */ - switch (format) { - case ma_format_s16: - { - const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames; - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel]; - pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel]; - } - } - } break; - - case ma_format_f32: - { - const float* pSrcF32 = (const float*)pInterleavedPCMFrames; - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel]; - pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel]; - } - } - } break; - - default: - { - ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); - const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); - memcpy(pDst, pSrc, sampleSizeInBytes); - } - } - } break; - } -} - -MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames) -{ - switch (format) - { - case ma_format_s16: - { - ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames; - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel]; - pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame]; - } - } - } break; - - case ma_format_f32: - { - float* pDstF32 = (float*)pInterleavedPCMFrames; - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel]; - pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame]; - } - } - } break; - - default: - { - ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); - ma_uint64 iPCMFrame; - for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < channels; ++iChannel) { - void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); - const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); - memcpy(pDst, pSrc, sampleSizeInBytes); - } - } - } break; - } -} - - - /************************************************************************************************************************************************************** Channel Maps **************************************************************************************************************************************************************/ -static void ma_get_standard_channel_map_microsoft(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +MA_API void ma_channel_map_init_blank(ma_uint32 channels, ma_channel* pChannelMap) +{ + if (pChannelMap == NULL) { + return; + } + + MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channels); +} + +static void ma_get_standard_channel_map_microsoft(ma_uint32 channels, ma_channel* pChannelMap) { /* Based off the speaker configurations mentioned here: https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-ksaudio_channel_config */ switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; } break; case 3: /* Not defined, but best guess. */ { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; } break; case 4: { #ifndef MA_USE_QUAD_MICROSOFT_CHANNEL_MAP /* Surround. Using the Surround profile has the advantage of the 3rd channel (MA_CHANNEL_FRONT_CENTER) mapping nicely with higher channel counts. */ - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_BACK_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_BACK_CENTER; #else /* Quad. */ - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; #endif } break; case 5: /* Not defined, but best guess. */ { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_BACK_LEFT; - channelMap[4] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_BACK_LEFT; + pChannelMap[4] = MA_CHANNEL_BACK_RIGHT; } break; case 6: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_SIDE_LEFT; - channelMap[5] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[5] = MA_CHANNEL_SIDE_RIGHT; } break; case 7: /* Not defined, but best guess. */ { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_BACK_CENTER; - channelMap[5] = MA_CHANNEL_SIDE_LEFT; - channelMap[6] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_BACK_CENTER; + pChannelMap[5] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[6] = MA_CHANNEL_SIDE_RIGHT; } break; case 8: default: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_BACK_LEFT; - channelMap[5] = MA_CHANNEL_BACK_RIGHT; - channelMap[6] = MA_CHANNEL_SIDE_LEFT; - channelMap[7] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_BACK_LEFT; + pChannelMap[5] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; } break; } /* Remainder. */ if (channels > 8) { ma_uint32 iChannel; - for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + for (iChannel = 8; iChannel < channels; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -static void ma_get_standard_channel_map_alsa(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_get_standard_channel_map_alsa(ma_uint32 channels, ma_channel* pChannelMap) { switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; } break; case 3: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; } break; case 4: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; } break; case 5: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; } break; case 6: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; } break; case 7: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; - channelMap[6] = MA_CHANNEL_BACK_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; + pChannelMap[6] = MA_CHANNEL_BACK_CENTER; } break; case 8: default: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; - channelMap[6] = MA_CHANNEL_SIDE_LEFT; - channelMap[7] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; + pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; } break; } /* Remainder. */ if (channels > 8) { ma_uint32 iChannel; - for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + for (iChannel = 8; iChannel < channels; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -static void ma_get_standard_channel_map_rfc3551(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_get_standard_channel_map_rfc3551(ma_uint32 channels, ma_channel* pChannelMap) { switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; } break; case 3: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; } break; case 4: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; - channelMap[3] = MA_CHANNEL_BACK_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[3] = MA_CHANNEL_BACK_CENTER; } break; case 5: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_BACK_LEFT; - channelMap[4] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_BACK_LEFT; + pChannelMap[4] = MA_CHANNEL_BACK_RIGHT; } break; case 6: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_SIDE_LEFT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_FRONT_RIGHT; - channelMap[4] = MA_CHANNEL_SIDE_RIGHT; - channelMap[5] = MA_CHANNEL_BACK_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[4] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[5] = MA_CHANNEL_BACK_CENTER; } break; } /* Remainder. */ if (channels > 8) { ma_uint32 iChannel; - for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6)); + for (iChannel = 6; iChannel < channels; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -static void ma_get_standard_channel_map_flac(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_get_standard_channel_map_flac(ma_uint32 channels, ma_channel* pChannelMap) { switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; } break; case 3: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; } break; case 4: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; } break; case 5: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_BACK_LEFT; - channelMap[4] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_BACK_LEFT; + pChannelMap[4] = MA_CHANNEL_BACK_RIGHT; } break; case 6: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_BACK_LEFT; - channelMap[5] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_BACK_LEFT; + pChannelMap[5] = MA_CHANNEL_BACK_RIGHT; } break; case 7: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_BACK_CENTER; - channelMap[5] = MA_CHANNEL_SIDE_LEFT; - channelMap[6] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_BACK_CENTER; + pChannelMap[5] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[6] = MA_CHANNEL_SIDE_RIGHT; } break; case 8: default: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - channelMap[3] = MA_CHANNEL_LFE; - channelMap[4] = MA_CHANNEL_BACK_LEFT; - channelMap[5] = MA_CHANNEL_BACK_RIGHT; - channelMap[6] = MA_CHANNEL_SIDE_LEFT; - channelMap[7] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[3] = MA_CHANNEL_LFE; + pChannelMap[4] = MA_CHANNEL_BACK_LEFT; + pChannelMap[5] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; } break; } /* Remainder. */ if (channels > 8) { ma_uint32 iChannel; - for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + for (iChannel = 8; iChannel < channels; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -static void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel* pChannelMap) { /* In Vorbis' type 0 channel mapping, the first two channels are not always the standard left/right - it will have the center speaker where the right usually goes. Why?! */ switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; } break; case 3: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; } break; case 4: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; } break; case 5: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; - channelMap[3] = MA_CHANNEL_BACK_LEFT; - channelMap[4] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[3] = MA_CHANNEL_BACK_LEFT; + pChannelMap[4] = MA_CHANNEL_BACK_RIGHT; } break; case 6: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; - channelMap[3] = MA_CHANNEL_BACK_LEFT; - channelMap[4] = MA_CHANNEL_BACK_RIGHT; - channelMap[5] = MA_CHANNEL_LFE; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[3] = MA_CHANNEL_BACK_LEFT; + pChannelMap[4] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[5] = MA_CHANNEL_LFE; } break; case 7: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; - channelMap[3] = MA_CHANNEL_SIDE_LEFT; - channelMap[4] = MA_CHANNEL_SIDE_RIGHT; - channelMap[5] = MA_CHANNEL_BACK_CENTER; - channelMap[6] = MA_CHANNEL_LFE; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[3] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[4] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[5] = MA_CHANNEL_BACK_CENTER; + pChannelMap[6] = MA_CHANNEL_LFE; } break; case 8: default: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_CENTER; - channelMap[2] = MA_CHANNEL_FRONT_RIGHT; - channelMap[3] = MA_CHANNEL_SIDE_LEFT; - channelMap[4] = MA_CHANNEL_SIDE_RIGHT; - channelMap[5] = MA_CHANNEL_BACK_LEFT; - channelMap[6] = MA_CHANNEL_BACK_RIGHT; - channelMap[7] = MA_CHANNEL_LFE; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[2] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[3] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[4] = MA_CHANNEL_SIDE_RIGHT; + pChannelMap[5] = MA_CHANNEL_BACK_LEFT; + pChannelMap[6] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[7] = MA_CHANNEL_LFE; + } break; + } + + /* Remainder. */ + if (channels > 8) { + ma_uint32 iChannel; + for (iChannel = 8; iChannel < channels; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } + } + } +} + +static void ma_get_standard_channel_map_sound4(ma_uint32 channels, ma_channel* pChannelMap) +{ + switch (channels) + { + case 1: + { + pChannelMap[0] = MA_CHANNEL_MONO; + } break; + + case 2: + { + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; + } break; + + case 3: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_CENTER; + } break; + + case 4: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + } break; + + case 5: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + } break; + + case 6: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; + } break; + + case 7: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_BACK_CENTER; + pChannelMap[6] = MA_CHANNEL_LFE; + } break; + + case 8: + default: + { + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; + pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; + pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; } break; } @@ -38178,192 +41936,117 @@ static void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel ch if (channels > 8) { ma_uint32 iChannel; for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -static void ma_get_standard_channel_map_sound4(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +static void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel* pChannelMap) { switch (channels) { case 1: { - channelMap[0] = MA_CHANNEL_MONO; + pChannelMap[0] = MA_CHANNEL_MONO; } break; case 2: { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; + pChannelMap[0] = MA_CHANNEL_LEFT; + pChannelMap[1] = MA_CHANNEL_RIGHT; } break; case 3: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_FRONT_CENTER; } break; case 4: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; } break; case 5: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - } break; - - case 6: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; - } break; - - case 7: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_BACK_CENTER; - channelMap[6] = MA_CHANNEL_LFE; - } break; - - case 8: - default: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; - channelMap[6] = MA_CHANNEL_SIDE_LEFT; - channelMap[7] = MA_CHANNEL_SIDE_RIGHT; - } break; - } - - /* Remainder. */ - if (channels > 8) { - ma_uint32 iChannel; - for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8)); - } - } -} - -static void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) -{ - switch (channels) - { - case 1: - { - channelMap[0] = MA_CHANNEL_MONO; - } break; - - case 2: - { - channelMap[0] = MA_CHANNEL_LEFT; - channelMap[1] = MA_CHANNEL_RIGHT; - } break; - - case 3: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_FRONT_CENTER; - } break; - - case 4: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - } break; - - case 5: - { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; } break; case 6: default: { - channelMap[0] = MA_CHANNEL_FRONT_LEFT; - channelMap[1] = MA_CHANNEL_FRONT_RIGHT; - channelMap[2] = MA_CHANNEL_BACK_LEFT; - channelMap[3] = MA_CHANNEL_BACK_RIGHT; - channelMap[4] = MA_CHANNEL_FRONT_CENTER; - channelMap[5] = MA_CHANNEL_LFE; + pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; + pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; + pChannelMap[2] = MA_CHANNEL_BACK_LEFT; + pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; + pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; + pChannelMap[5] = MA_CHANNEL_LFE; } break; } /* Remainder. */ if (channels > 6) { ma_uint32 iChannel; - for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) { - channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6)); + for (iChannel = 6; iChannel < channels && iChannel < MA_MAX_CHANNELS; ++iChannel) { + if (iChannel < MA_MAX_CHANNELS) { + pChannelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6)); + } else { + pChannelMap[iChannel] = MA_CHANNEL_NONE; + } } } } -MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]) +MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel* pChannelMap) { switch (standardChannelMap) { case ma_standard_channel_map_alsa: { - ma_get_standard_channel_map_alsa(channels, channelMap); + ma_get_standard_channel_map_alsa(channels, pChannelMap); } break; case ma_standard_channel_map_rfc3551: { - ma_get_standard_channel_map_rfc3551(channels, channelMap); + ma_get_standard_channel_map_rfc3551(channels, pChannelMap); } break; case ma_standard_channel_map_flac: { - ma_get_standard_channel_map_flac(channels, channelMap); + ma_get_standard_channel_map_flac(channels, pChannelMap); } break; case ma_standard_channel_map_vorbis: { - ma_get_standard_channel_map_vorbis(channels, channelMap); + ma_get_standard_channel_map_vorbis(channels, pChannelMap); } break; case ma_standard_channel_map_sound4: { - ma_get_standard_channel_map_sound4(channels, channelMap); + ma_get_standard_channel_map_sound4(channels, pChannelMap); } break; - + case ma_standard_channel_map_sndio: { - ma_get_standard_channel_map_sndio(channels, channelMap); + ma_get_standard_channel_map_sndio(channels, pChannelMap); } break; case ma_standard_channel_map_microsoft: default: { - ma_get_standard_channel_map_microsoft(channels, channelMap); + ma_get_standard_channel_map_microsoft(channels, pChannelMap); } break; } } @@ -38375,9 +42058,22 @@ MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint } } -MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]) +MA_API void ma_channel_map_copy_or_default(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels) { - if (channelMap == NULL) { + if (pOut == NULL || channels == 0) { + return; + } + + if (pIn != NULL) { + ma_channel_map_copy(pOut, pIn, channels); + } else { + ma_get_standard_channel_map(ma_standard_channel_map_default, channels, pOut); + } +} + +MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel* pChannelMap) +{ + if (pChannelMap == NULL) { return MA_FALSE; } @@ -38390,7 +42086,7 @@ MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel chann if (channels > 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { - if (channelMap[iChannel] == MA_CHANNEL_MONO) { + if (pChannelMap[iChannel] == MA_CHANNEL_MONO) { return MA_FALSE; } } @@ -38399,20 +42095,16 @@ MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel chann return MA_TRUE; } -MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]) +MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel* pChannelMapA, const ma_channel* pChannelMapB) { ma_uint32 iChannel; - if (channelMapA == channelMapB) { - return MA_FALSE; - } - - if (channels == 0 || channels > MA_MAX_CHANNELS) { - return MA_FALSE; + if (pChannelMapA == pChannelMapB) { + return MA_TRUE; } for (iChannel = 0; iChannel < channels; ++iChannel) { - if (channelMapA[iChannel] != channelMapB[iChannel]) { + if (pChannelMapA[iChannel] != pChannelMapB[iChannel]) { return MA_FALSE; } } @@ -38420,12 +42112,12 @@ MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel chann return MA_TRUE; } -MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]) +MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel* pChannelMap) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { - if (channelMap[iChannel] != MA_CHANNEL_NONE) { + if (pChannelMap[iChannel] != MA_CHANNEL_NONE) { return MA_FALSE; } } @@ -38433,11 +42125,12 @@ MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel chann return MA_TRUE; } -MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition) +MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition) { ma_uint32 iChannel; + for (iChannel = 0; iChannel < channels; ++iChannel) { - if (channelMap[iChannel] == channelPosition) { + if (pChannelMap[iChannel] == channelPosition) { return MA_TRUE; } } @@ -38689,7 +42382,7 @@ MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBuffer newReadOffsetLoopFlag ^= 0x80000000; } - ma_atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes)); + c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes)); return MA_SUCCESS; } @@ -38775,7 +42468,7 @@ MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBuffe newWriteOffsetLoopFlag ^= 0x80000000; } - ma_atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes)); + c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes)); return MA_SUCCESS; } @@ -38800,7 +42493,6 @@ MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes) writeOffset = pRB->encodedWriteOffset; ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); - newReadOffsetInBytes = readOffsetInBytes; newReadOffsetLoopFlag = readOffsetLoopFlag; /* We cannot go past the write buffer. */ @@ -38820,7 +42512,7 @@ MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes) } } - ma_atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag)); + c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag)); return MA_SUCCESS; } @@ -38845,7 +42537,6 @@ MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes) writeOffset = pRB->encodedWriteOffset; ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); - newWriteOffsetInBytes = writeOffsetInBytes; newWriteOffsetLoopFlag = writeOffsetLoopFlag; /* We cannot go past the write buffer. */ @@ -38865,7 +42556,7 @@ MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes) } } - ma_atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag)); + c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag)); return MA_SUCCESS; } @@ -38961,6 +42652,7 @@ MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pB } + static MA_INLINE ma_uint32 ma_pcm_rb_get_bpf(ma_pcm_rb* pRB) { MA_ASSERT(pRB != NULL); @@ -39159,6 +42851,35 @@ MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferInde +MA_API ma_result ma_duplex_rb_init(ma_uint32 inputSampleRate, ma_format captureFormat, ma_uint32 captureChannels, ma_uint32 captureSampleRate, ma_uint32 capturePeriodSizeInFrames, const ma_allocation_callbacks* pAllocationCallbacks, ma_duplex_rb* pRB) +{ + ma_result result; + ma_uint32 sizeInFrames; + + sizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(inputSampleRate, captureSampleRate, capturePeriodSizeInFrames * 5); + if (sizeInFrames == 0) { + return MA_INVALID_ARGS; + } + + result = ma_pcm_rb_init(captureFormat, captureChannels, sizeInFrames, NULL, pAllocationCallbacks, &pRB->rb); + if (result != MA_SUCCESS) { + return result; + } + + /* Seek forward a bit so we have a bit of a buffer in case of desyncs. */ + ma_pcm_rb_seek_write((ma_pcm_rb*)pRB, capturePeriodSizeInFrames * 2); + + return MA_SUCCESS; +} + +MA_API ma_result ma_duplex_rb_uninit(ma_duplex_rb* pRB) +{ + ma_pcm_rb_uninit((ma_pcm_rb*)pRB); + return MA_SUCCESS; +} + + + /************************************************************************************************************************************************************** Miscellaneous Helpers @@ -39339,6 +43060,2450 @@ MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format) } + +MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + if (pCallbacks == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onRead == NULL) { + return MA_NOT_IMPLEMENTED; + } + + /* A very small optimization for the non looping case. */ + if (loop == MA_FALSE) { + return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead); + } else { + ma_format format; + ma_uint32 channels; + ma_uint32 sampleRate; + if (ma_data_source_get_data_format(pDataSource, &format, &channels, &sampleRate) != MA_SUCCESS) { + return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead); /* We don't have a way to retrieve the data format which means we don't know how to offset the output buffer. Just read as much as we can. */ + } else { + ma_result result = MA_SUCCESS; + ma_uint64 totalFramesProcessed; + void* pRunningFramesOut = pFramesOut; + + totalFramesProcessed = 0; + while (totalFramesProcessed < frameCount) { + ma_uint64 framesProcessed; + ma_uint64 framesRemaining = frameCount - totalFramesProcessed; + + result = pCallbacks->onRead(pDataSource, pRunningFramesOut, framesRemaining, &framesProcessed); + totalFramesProcessed += framesProcessed; + + /* + If we encounted an error from the read callback, make sure it's propagated to the caller. The caller may need to know whether or not MA_BUSY is returned which is + not necessarily considered an error. + */ + if (result != MA_SUCCESS && result != MA_AT_END) { + break; + } + + /* + We can determine if we've reached the end by checking the return value of the onRead() callback. If it's less than what we requested it means + we've reached the end. To loop back to the start, all we need to do is seek back to the first frame. + */ + if (framesProcessed < framesRemaining || result == MA_AT_END) { + if (ma_data_source_seek_to_pcm_frame(pDataSource, 0) != MA_SUCCESS) { + break; + } + } + + if (pRunningFramesOut != NULL) { + pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesProcessed * ma_get_bytes_per_frame(format, channels)); + } + } + + if (pFramesRead != NULL) { + *pFramesRead = totalFramesProcessed; + } + + return result; + } + } +} + +MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop) +{ + return ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount, pFramesSeeked, loop); +} + +MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + if (pCallbacks == NULL || pCallbacks->onSeek == NULL) { + return MA_INVALID_ARGS; + } + + return pCallbacks->onSeek(pDataSource, frameIndex); +} + +MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + if (pCallbacks == NULL || pCallbacks->onMap == NULL) { + return MA_INVALID_ARGS; + } + + return pCallbacks->onMap(pDataSource, ppFramesOut, pFrameCount); +} + +MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + if (pCallbacks == NULL || pCallbacks->onUnmap == NULL) { + return MA_INVALID_ARGS; + } + + return pCallbacks->onUnmap(pDataSource, frameCount); +} + +MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) +{ + ma_result result; + ma_format format; + ma_uint32 channels; + ma_uint32 sampleRate; + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + + if (pFormat != NULL) { + *pFormat = ma_format_unknown; + } + + if (pChannels != NULL) { + *pChannels = 0; + } + + if (pSampleRate != NULL) { + *pSampleRate = 0; + } + + if (pCallbacks == NULL || pCallbacks->onGetDataFormat == NULL) { + return MA_INVALID_ARGS; + } + + result = pCallbacks->onGetDataFormat(pDataSource, &format, &channels, &sampleRate); + if (result != MA_SUCCESS) { + return result; + } + + if (pFormat != NULL) { + *pFormat = format; + } + if (pChannels != NULL) { + *pChannels = channels; + } + if (pSampleRate != NULL) { + *pSampleRate = sampleRate; + } + + return MA_SUCCESS; +} + +MA_API ma_result ma_data_source_get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + + if (pCursor == NULL) { + return MA_INVALID_ARGS; + } + + *pCursor = 0; + + if (pCallbacks == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onGetCursor == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onGetCursor(pDataSource, pCursor); +} + +MA_API ma_result ma_data_source_get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength) +{ + ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource; + + if (pLength == NULL) { + return MA_INVALID_ARGS; + } + + *pLength = 0; + + if (pCallbacks == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onGetLength == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onGetLength(pDataSource, pLength); +} + + + +MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks) +{ + ma_audio_buffer_config config; + + MA_ZERO_OBJECT(&config); + config.format = format; + config.channels = channels; + config.sizeInFrames = sizeInFrames; + config.pData = pData; + ma_allocation_callbacks_init_copy(&config.allocationCallbacks, pAllocationCallbacks); + + return config; +} + + +static ma_result ma_audio_buffer__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) +{ + ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames((ma_audio_buffer*)pDataSource, pFramesOut, frameCount, MA_FALSE); + + if (pFramesRead != NULL) { + *pFramesRead = framesRead; + } + + if (framesRead < frameCount) { + return MA_AT_END; + } + + return MA_SUCCESS; +} + +static ma_result ma_audio_buffer__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) +{ + return ma_audio_buffer_seek_to_pcm_frame((ma_audio_buffer*)pDataSource, frameIndex); +} + +static ma_result ma_audio_buffer__data_source_on_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount) +{ + return ma_audio_buffer_map((ma_audio_buffer*)pDataSource, ppFramesOut, pFrameCount); +} + +static ma_result ma_audio_buffer__data_source_on_unmap(ma_data_source* pDataSource, ma_uint64 frameCount) +{ + return ma_audio_buffer_unmap((ma_audio_buffer*)pDataSource, frameCount); +} + +static ma_result ma_audio_buffer__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) +{ + ma_audio_buffer* pAudioBuffer = (ma_audio_buffer*)pDataSource; + + *pFormat = pAudioBuffer->format; + *pChannels = pAudioBuffer->channels; + *pSampleRate = 0; /* There is no notion of a sample rate with audio buffers. */ + + return MA_SUCCESS; +} + +static ma_result ma_audio_buffer__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) +{ + ma_audio_buffer* pAudioBuffer = (ma_audio_buffer*)pDataSource; + + *pCursor = pAudioBuffer->cursor; + + return MA_SUCCESS; +} + +static ma_result ma_audio_buffer__data_source_on_get_length(ma_data_source* pDataSource, ma_uint64* pLength) +{ + ma_audio_buffer* pAudioBuffer = (ma_audio_buffer*)pDataSource; + + *pLength = pAudioBuffer->sizeInFrames; + + return MA_SUCCESS; +} + +static ma_result ma_audio_buffer_init_ex(const ma_audio_buffer_config* pConfig, ma_bool32 doCopy, ma_audio_buffer* pAudioBuffer) +{ + if (pAudioBuffer == NULL) { + return MA_INVALID_ARGS; + } + + MA_ZERO_MEMORY(pAudioBuffer, sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData)); /* Safety. Don't overwrite the extra data. */ + + if (pConfig == NULL) { + return MA_INVALID_ARGS; + } + + if (pConfig->sizeInFrames == 0) { + return MA_INVALID_ARGS; /* Not allowing buffer sizes of 0 frames. */ + } + + pAudioBuffer->ds.onRead = ma_audio_buffer__data_source_on_read; + pAudioBuffer->ds.onSeek = ma_audio_buffer__data_source_on_seek; + pAudioBuffer->ds.onMap = ma_audio_buffer__data_source_on_map; + pAudioBuffer->ds.onUnmap = ma_audio_buffer__data_source_on_unmap; + pAudioBuffer->ds.onGetDataFormat = ma_audio_buffer__data_source_on_get_data_format; + pAudioBuffer->ds.onGetCursor = ma_audio_buffer__data_source_on_get_cursor; + pAudioBuffer->ds.onGetLength = ma_audio_buffer__data_source_on_get_length; + pAudioBuffer->format = pConfig->format; + pAudioBuffer->channels = pConfig->channels; + pAudioBuffer->cursor = 0; + pAudioBuffer->sizeInFrames = pConfig->sizeInFrames; + pAudioBuffer->pData = NULL; /* Set properly later. */ + ma_allocation_callbacks_init_copy(&pAudioBuffer->allocationCallbacks, &pConfig->allocationCallbacks); + + if (doCopy) { + ma_uint64 allocationSizeInBytes; + void* pData; + + allocationSizeInBytes = pAudioBuffer->sizeInFrames * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels); + if (allocationSizeInBytes > MA_SIZE_MAX) { + return MA_OUT_OF_MEMORY; /* Too big. */ + } + + pData = ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &pAudioBuffer->allocationCallbacks); /* Safe cast to size_t. */ + if (pData == NULL) { + return MA_OUT_OF_MEMORY; + } + + if (pConfig->pData != NULL) { + ma_copy_pcm_frames(pData, pConfig->pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels); + } else { + ma_silence_pcm_frames(pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels); + } + + pAudioBuffer->pData = pData; + pAudioBuffer->ownsData = MA_TRUE; + } else { + pAudioBuffer->pData = pConfig->pData; + pAudioBuffer->ownsData = MA_FALSE; + } + + return MA_SUCCESS; +} + +static void ma_audio_buffer_uninit_ex(ma_audio_buffer* pAudioBuffer, ma_bool32 doFree) +{ + if (pAudioBuffer == NULL) { + return; + } + + if (pAudioBuffer->ownsData && pAudioBuffer->pData != &pAudioBuffer->_pExtraData[0]) { + ma__free_from_callbacks((void*)pAudioBuffer->pData, &pAudioBuffer->allocationCallbacks); /* Naugty const cast, but OK in this case since we've guarded it with the ownsData check. */ + } + + if (doFree) { + ma_allocation_callbacks allocationCallbacks = pAudioBuffer->allocationCallbacks; + ma__free_from_callbacks(pAudioBuffer, &allocationCallbacks); + } +} + +MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer) +{ + return ma_audio_buffer_init_ex(pConfig, MA_FALSE, pAudioBuffer); +} + +MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer) +{ + return ma_audio_buffer_init_ex(pConfig, MA_TRUE, pAudioBuffer); +} + +MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer) +{ + ma_result result; + ma_audio_buffer* pAudioBuffer; + ma_audio_buffer_config innerConfig; /* We'll be making some changes to the config, so need to make a copy. */ + ma_uint64 allocationSizeInBytes; + + if (ppAudioBuffer == NULL) { + return MA_INVALID_ARGS; + } + + *ppAudioBuffer = NULL; /* Safety. */ + + if (pConfig == NULL) { + return MA_INVALID_ARGS; + } + + innerConfig = *pConfig; + ma_allocation_callbacks_init_copy(&innerConfig.allocationCallbacks, &pConfig->allocationCallbacks); + + allocationSizeInBytes = sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData) + (pConfig->sizeInFrames * ma_get_bytes_per_frame(pConfig->format, pConfig->channels)); + if (allocationSizeInBytes > MA_SIZE_MAX) { + return MA_OUT_OF_MEMORY; /* Too big. */ + } + + pAudioBuffer = (ma_audio_buffer*)ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &innerConfig.allocationCallbacks); /* Safe cast to size_t. */ + if (pAudioBuffer == NULL) { + return MA_OUT_OF_MEMORY; + } + + if (pConfig->pData != NULL) { + ma_copy_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels); + } else { + ma_silence_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->sizeInFrames, pConfig->format, pConfig->channels); + } + + innerConfig.pData = &pAudioBuffer->_pExtraData[0]; + + result = ma_audio_buffer_init_ex(&innerConfig, MA_FALSE, pAudioBuffer); + if (result != MA_SUCCESS) { + ma__free_from_callbacks(pAudioBuffer, &innerConfig.allocationCallbacks); + return result; + } + + *ppAudioBuffer = pAudioBuffer; + + return MA_SUCCESS; +} + +MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer) +{ + ma_audio_buffer_uninit_ex(pAudioBuffer, MA_FALSE); +} + +MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer) +{ + ma_audio_buffer_uninit_ex(pAudioBuffer, MA_TRUE); +} + +MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop) +{ + ma_uint64 totalFramesRead = 0; + + if (pAudioBuffer == NULL) { + return 0; + } + + if (frameCount == 0) { + return 0; + } + + while (totalFramesRead < frameCount) { + ma_uint64 framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor; + ma_uint64 framesRemaining = frameCount - totalFramesRead; + ma_uint64 framesToRead; + + framesToRead = framesRemaining; + if (framesToRead > framesAvailable) { + framesToRead = framesAvailable; + } + + if (pFramesOut != NULL) { + ma_copy_pcm_frames(pFramesOut, ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels)), frameCount, pAudioBuffer->format, pAudioBuffer->channels); + } + + totalFramesRead += framesToRead; + + pAudioBuffer->cursor += framesToRead; + if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) { + if (loop) { + pAudioBuffer->cursor = 0; + } else { + break; /* We've reached the end and we're not looping. Done. */ + } + } + + MA_ASSERT(pAudioBuffer->cursor < pAudioBuffer->sizeInFrames); + } + + return totalFramesRead; +} + +MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex) +{ + if (pAudioBuffer == NULL) { + return MA_INVALID_ARGS; + } + + if (frameIndex > pAudioBuffer->sizeInFrames) { + return MA_INVALID_ARGS; + } + + pAudioBuffer->cursor = (size_t)frameIndex; + + return MA_SUCCESS; +} + +MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount) +{ + ma_uint64 framesAvailable; + ma_uint64 frameCount = 0; + + if (ppFramesOut != NULL) { + *ppFramesOut = NULL; /* Safety. */ + } + + if (pFrameCount != NULL) { + frameCount = *pFrameCount; + *pFrameCount = 0; /* Safety. */ + } + + if (pAudioBuffer == NULL || ppFramesOut == NULL || pFrameCount == NULL) { + return MA_INVALID_ARGS; + } + + framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor; + if (frameCount > framesAvailable) { + frameCount = framesAvailable; + } + + *ppFramesOut = ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels)); + *pFrameCount = frameCount; + + return MA_SUCCESS; +} + +MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount) +{ + ma_uint64 framesAvailable; + + if (pAudioBuffer == NULL) { + return MA_INVALID_ARGS; + } + + framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor; + if (frameCount > framesAvailable) { + return MA_INVALID_ARGS; /* The frame count was too big. This should never happen in an unmapping. Need to make sure the caller is aware of this. */ + } + + pAudioBuffer->cursor += frameCount; + + if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) { + return MA_AT_END; /* Successful. Need to tell the caller that the end has been reached so that it can loop if desired. */ + } else { + return MA_SUCCESS; + } +} + +MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer) +{ + if (pAudioBuffer == NULL) { + return MA_FALSE; + } + + return pAudioBuffer->cursor == pAudioBuffer->sizeInFrames; +} + +MA_API ma_result ma_audio_buffer_get_available_frames(ma_audio_buffer* pAudioBuffer, ma_uint64* pAvailableFrames) +{ + if (pAvailableFrames == NULL) { + return MA_INVALID_ARGS; + } + + *pAvailableFrames = 0; + + if (pAudioBuffer == NULL) { + return MA_INVALID_ARGS; + } + + if (pAudioBuffer->sizeInFrames <= pAudioBuffer->cursor) { + *pAvailableFrames = 0; + } else { + *pAvailableFrames = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor; + } + + return MA_SUCCESS; +} + + + +/************************************************************************************************************************************************************** + +VFS + +**************************************************************************************************************************************************************/ +MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pFile == NULL) { + return MA_INVALID_ARGS; + } + + *pFile = NULL; + + if (pVFS == NULL || pFilePath == NULL || openMode == 0) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onOpen == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onOpen(pVFS, pFilePath, openMode, pFile); +} + +MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pFile == NULL) { + return MA_INVALID_ARGS; + } + + *pFile = NULL; + + if (pVFS == NULL || pFilePath == NULL || openMode == 0) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onOpenW == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onOpenW(pVFS, pFilePath, openMode, pFile); +} + +MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pVFS == NULL || file == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onClose == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onClose(pVFS, file); +} + +MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pBytesRead != NULL) { + *pBytesRead = 0; + } + + if (pVFS == NULL || file == NULL || pDst == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onRead == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onRead(pVFS, file, pDst, sizeInBytes, pBytesRead); +} + +MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pBytesWritten != NULL) { + *pBytesWritten = 0; + } + + if (pVFS == NULL || file == NULL || pSrc == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onWrite == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onWrite(pVFS, file, pSrc, sizeInBytes, pBytesWritten); +} + +MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pVFS == NULL || file == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onSeek == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onSeek(pVFS, file, offset, origin); +} + +MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pCursor == NULL) { + return MA_INVALID_ARGS; + } + + *pCursor = 0; + + if (pVFS == NULL || file == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onTell == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onTell(pVFS, file, pCursor); +} + +MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) +{ + ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; + + if (pInfo == NULL) { + return MA_INVALID_ARGS; + } + + MA_ZERO_OBJECT(pInfo); + + if (pVFS == NULL || file == NULL) { + return MA_INVALID_ARGS; + } + + if (pCallbacks->onInfo == NULL) { + return MA_NOT_IMPLEMENTED; + } + + return pCallbacks->onInfo(pVFS, file, pInfo); +} + + +static ma_result ma_vfs_open_and_read_file_ex(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks, ma_uint32 allocationType) +{ + ma_result result; + ma_vfs_file file; + ma_file_info info; + void* pData; + size_t bytesRead; + + (void)allocationType; + + if (ppData != NULL) { + *ppData = NULL; + } + if (pSize != NULL) { + *pSize = 0; + } + + if (ppData == NULL) { + return MA_INVALID_ARGS; + } + + result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_vfs_info(pVFS, file, &info); + if (result != MA_SUCCESS) { + ma_vfs_close(pVFS, file); + return result; + } + + if (info.sizeInBytes > MA_SIZE_MAX) { + ma_vfs_close(pVFS, file); + return MA_TOO_BIG; + } + + pData = ma__malloc_from_callbacks((size_t)info.sizeInBytes, pAllocationCallbacks); /* Safe cast. */ + if (pData == NULL) { + ma_vfs_close(pVFS, file); + return result; + } + + result = ma_vfs_read(pVFS, file, pData, (size_t)info.sizeInBytes, &bytesRead); /* Safe cast. */ + ma_vfs_close(pVFS, file); + + if (result != MA_SUCCESS) { + ma__free_from_callbacks(pData, pAllocationCallbacks); + return result; + } + + if (pSize != NULL) { + *pSize = bytesRead; + } + + MA_ASSERT(ppData != NULL); + *ppData = pData; + + return MA_SUCCESS; +} + +ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks) +{ + return ma_vfs_open_and_read_file_ex(pVFS, pFilePath, ppData, pSize, pAllocationCallbacks, 0 /*MA_ALLOCATION_TYPE_GENERAL*/); +} + + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) +static void ma_default_vfs__get_open_settings_win32(ma_uint32 openMode, DWORD* pDesiredAccess, DWORD* pShareMode, DWORD* pCreationDisposition) +{ + *pDesiredAccess = 0; + if ((openMode & MA_OPEN_MODE_READ) != 0) { + *pDesiredAccess |= GENERIC_READ; + } + if ((openMode & MA_OPEN_MODE_WRITE) != 0) { + *pDesiredAccess |= GENERIC_WRITE; + } + + *pShareMode = 0; + if ((openMode & MA_OPEN_MODE_READ) != 0) { + *pShareMode |= FILE_SHARE_READ; + } + + if ((openMode & MA_OPEN_MODE_WRITE) != 0) { + *pCreationDisposition = CREATE_ALWAYS; /* Opening in write mode. Truncate. */ + } else { + *pCreationDisposition = OPEN_EXISTING; /* Opening in read mode. File must exist. */ + } +} + +static ma_result ma_default_vfs_open__win32(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + HANDLE hFile; + DWORD dwDesiredAccess; + DWORD dwShareMode; + DWORD dwCreationDisposition; + + (void)pVFS; + + ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition); + + hFile = CreateFileA(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL); + if (hFile == INVALID_HANDLE_VALUE) { + return ma_result_from_GetLastError(GetLastError()); + } + + *pFile = hFile; + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_open_w__win32(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + HANDLE hFile; + DWORD dwDesiredAccess; + DWORD dwShareMode; + DWORD dwCreationDisposition; + + (void)pVFS; + + ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition); + + hFile = CreateFileW(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL); + if (hFile == INVALID_HANDLE_VALUE) { + return ma_result_from_GetLastError(GetLastError()); + } + + *pFile = hFile; + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_close__win32(ma_vfs* pVFS, ma_vfs_file file) +{ + (void)pVFS; + + if (CloseHandle((HANDLE)file) == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + + +static ma_result ma_default_vfs_read__win32(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) +{ + ma_result result = MA_SUCCESS; + size_t totalBytesRead; + + (void)pVFS; + + totalBytesRead = 0; + while (totalBytesRead < sizeInBytes) { + size_t bytesRemaining; + DWORD bytesToRead; + DWORD bytesRead; + BOOL readResult; + + bytesRemaining = sizeInBytes - totalBytesRead; + if (bytesRemaining >= 0xFFFFFFFF) { + bytesToRead = 0xFFFFFFFF; + } else { + bytesToRead = (DWORD)bytesRemaining; + } + + readResult = ReadFile((HANDLE)file, ma_offset_ptr(pDst, totalBytesRead), bytesToRead, &bytesRead, NULL); + if (readResult == 1 && bytesRead == 0) { + break; /* EOF */ + } + + totalBytesRead += bytesRead; + + if (bytesRead < bytesToRead) { + break; /* EOF */ + } + + if (readResult == 0) { + result = ma_result_from_GetLastError(GetLastError()); + break; + } + } + + if (pBytesRead != NULL) { + *pBytesRead = totalBytesRead; + } + + return result; +} + +static ma_result ma_default_vfs_write__win32(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) +{ + ma_result result = MA_SUCCESS; + size_t totalBytesWritten; + + (void)pVFS; + + totalBytesWritten = 0; + while (totalBytesWritten < sizeInBytes) { + size_t bytesRemaining; + DWORD bytesToWrite; + DWORD bytesWritten; + BOOL writeResult; + + bytesRemaining = sizeInBytes - totalBytesWritten; + if (bytesRemaining >= 0xFFFFFFFF) { + bytesToWrite = 0xFFFFFFFF; + } else { + bytesToWrite = (DWORD)bytesRemaining; + } + + writeResult = WriteFile((HANDLE)file, ma_offset_ptr(pSrc, totalBytesWritten), bytesToWrite, &bytesWritten, NULL); + totalBytesWritten += bytesWritten; + + if (writeResult == 0) { + result = ma_result_from_GetLastError(GetLastError()); + break; + } + } + + if (pBytesWritten != NULL) { + *pBytesWritten = totalBytesWritten; + } + + return result; +} + + +static ma_result ma_default_vfs_seek__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) +{ + LARGE_INTEGER liDistanceToMove; + DWORD dwMoveMethod; + BOOL result; + + (void)pVFS; + + liDistanceToMove.QuadPart = offset; + + /* */ if (origin == ma_seek_origin_current) { + dwMoveMethod = FILE_CURRENT; + } else if (origin == ma_seek_origin_end) { + dwMoveMethod = FILE_END; + } else { + dwMoveMethod = FILE_BEGIN; + } + +#if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) + /* No SetFilePointerEx() so restrict to 31 bits. */ + if (origin > 0x7FFFFFFF) { + return MA_OUT_OF_RANGE; + } + + result = SetFilePointer((HANDLE)file, (LONG)liDistanceToMove.QuadPart, NULL, dwMoveMethod); +#else + result = SetFilePointerEx((HANDLE)file, liDistanceToMove, NULL, dwMoveMethod); +#endif + if (result == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_tell__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) +{ + LARGE_INTEGER liZero; + LARGE_INTEGER liTell; + BOOL result; +#if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) + LONG tell; +#endif + + (void)pVFS; + + liZero.QuadPart = 0; + +#if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) + result = SetFilePointer((HANDLE)file, (LONG)liZero.QuadPart, &tell, FILE_CURRENT); + liTell.QuadPart = tell; +#else + result = SetFilePointerEx((HANDLE)file, liZero, &liTell, FILE_CURRENT); +#endif + if (result == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + if (pCursor != NULL) { + *pCursor = liTell.QuadPart; + } + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_info__win32(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) +{ + BY_HANDLE_FILE_INFORMATION fi; + BOOL result; + + (void)pVFS; + + result = GetFileInformationByHandle((HANDLE)file, &fi); + if (result == 0) { + return ma_result_from_GetLastError(GetLastError()); + } + + pInfo->sizeInBytes = ((ma_uint64)fi.nFileSizeHigh << 32) | ((ma_uint64)fi.nFileSizeLow); + + return MA_SUCCESS; +} +#else +static ma_result ma_default_vfs_open__stdio(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + ma_result result; + FILE* pFileStd; + const char* pOpenModeStr; + + MA_ASSERT(pFilePath != NULL); + MA_ASSERT(openMode != 0); + MA_ASSERT(pFile != NULL); + + (void)pVFS; + + if ((openMode & MA_OPEN_MODE_READ) != 0) { + if ((openMode & MA_OPEN_MODE_WRITE) != 0) { + pOpenModeStr = "r+"; + } else { + pOpenModeStr = "rb"; + } + } else { + pOpenModeStr = "wb"; + } + + result = ma_fopen(&pFileStd, pFilePath, pOpenModeStr); + if (result != MA_SUCCESS) { + return result; + } + + *pFile = pFileStd; + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_open_w__stdio(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + ma_result result; + FILE* pFileStd; + const wchar_t* pOpenModeStr; + + MA_ASSERT(pFilePath != NULL); + MA_ASSERT(openMode != 0); + MA_ASSERT(pFile != NULL); + + (void)pVFS; + + if ((openMode & MA_OPEN_MODE_READ) != 0) { + if ((openMode & MA_OPEN_MODE_WRITE) != 0) { + pOpenModeStr = L"r+"; + } else { + pOpenModeStr = L"rb"; + } + } else { + pOpenModeStr = L"wb"; + } + + result = ma_wfopen(&pFileStd, pFilePath, pOpenModeStr, (pVFS != NULL) ? &((ma_default_vfs*)pVFS)->allocationCallbacks : NULL); + if (result != MA_SUCCESS) { + return result; + } + + *pFile = pFileStd; + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_close__stdio(ma_vfs* pVFS, ma_vfs_file file) +{ + MA_ASSERT(file != NULL); + + (void)pVFS; + + fclose((FILE*)file); + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_read__stdio(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) +{ + size_t result; + + MA_ASSERT(file != NULL); + MA_ASSERT(pDst != NULL); + + (void)pVFS; + + result = fread(pDst, 1, sizeInBytes, (FILE*)file); + + if (pBytesRead != NULL) { + *pBytesRead = result; + } + + if (result != sizeInBytes) { + if (feof((FILE*)file)) { + return MA_END_OF_FILE; + } else { + return ma_result_from_errno(ferror((FILE*)file)); + } + } + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_write__stdio(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) +{ + size_t result; + + MA_ASSERT(file != NULL); + MA_ASSERT(pSrc != NULL); + + (void)pVFS; + + result = fwrite(pSrc, 1, sizeInBytes, (FILE*)file); + + if (pBytesWritten != NULL) { + *pBytesWritten = result; + } + + if (result != sizeInBytes) { + return ma_result_from_errno(ferror((FILE*)file)); + } + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_seek__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) +{ + int result; + + MA_ASSERT(file != NULL); + + (void)pVFS; + +#if defined(_WIN32) + #if defined(_MSC_VER) && _MSC_VER > 1200 + result = _fseeki64((FILE*)file, offset, origin); + #else + /* No _fseeki64() so restrict to 31 bits. */ + if (origin > 0x7FFFFFFF) { + return MA_OUT_OF_RANGE; + } + + result = fseek((FILE*)file, (int)offset, origin); + #endif +#else + result = fseek((FILE*)file, (long int)offset, origin); +#endif + if (result != 0) { + return MA_ERROR; + } + + return MA_SUCCESS; +} + +static ma_result ma_default_vfs_tell__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) +{ + ma_int64 result; + + MA_ASSERT(file != NULL); + MA_ASSERT(pCursor != NULL); + + (void)pVFS; + +#if defined(_WIN32) + #if defined(_MSC_VER) && _MSC_VER > 1200 + result = _ftelli64((FILE*)file); + #else + result = ftell((FILE*)file); + #endif +#else + result = ftell((FILE*)file); +#endif + + *pCursor = result; + + return MA_SUCCESS; +} + +#if !defined(_MSC_VER) && !((defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE)) && !defined(MA_BSD) +int fileno(FILE *stream); +#endif + +static ma_result ma_default_vfs_info__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) +{ + int fd; + struct stat info; + + MA_ASSERT(file != NULL); + MA_ASSERT(pInfo != NULL); + + (void)pVFS; + +#if defined(_MSC_VER) + fd = _fileno((FILE*)file); +#else + fd = fileno((FILE*)file); +#endif + + if (fstat(fd, &info) != 0) { + return ma_result_from_errno(errno); + } + + pInfo->sizeInBytes = info.st_size; + + return MA_SUCCESS; +} +#endif + + +static ma_result ma_default_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + if (pFile == NULL) { + return MA_INVALID_ARGS; + } + + *pFile = NULL; + + if (pFilePath == NULL || openMode == 0) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_open__win32(pVFS, pFilePath, openMode, pFile); +#else + return ma_default_vfs_open__stdio(pVFS, pFilePath, openMode, pFile); +#endif +} + +static ma_result ma_default_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + if (pFile == NULL) { + return MA_INVALID_ARGS; + } + + *pFile = NULL; + + if (pFilePath == NULL || openMode == 0) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_open_w__win32(pVFS, pFilePath, openMode, pFile); +#else + return ma_default_vfs_open_w__stdio(pVFS, pFilePath, openMode, pFile); +#endif +} + +static ma_result ma_default_vfs_close(ma_vfs* pVFS, ma_vfs_file file) +{ + if (file == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_close__win32(pVFS, file); +#else + return ma_default_vfs_close__stdio(pVFS, file); +#endif +} + +static ma_result ma_default_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) +{ + if (pBytesRead != NULL) { + *pBytesRead = 0; + } + + if (file == NULL || pDst == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_read__win32(pVFS, file, pDst, sizeInBytes, pBytesRead); +#else + return ma_default_vfs_read__stdio(pVFS, file, pDst, sizeInBytes, pBytesRead); +#endif +} + +static ma_result ma_default_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) +{ + if (pBytesWritten != NULL) { + *pBytesWritten = 0; + } + + if (file == NULL || pSrc == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_write__win32(pVFS, file, pSrc, sizeInBytes, pBytesWritten); +#else + return ma_default_vfs_write__stdio(pVFS, file, pSrc, sizeInBytes, pBytesWritten); +#endif +} + +static ma_result ma_default_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) +{ + if (file == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_seek__win32(pVFS, file, offset, origin); +#else + return ma_default_vfs_seek__stdio(pVFS, file, offset, origin); +#endif +} + +static ma_result ma_default_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) +{ + if (pCursor == NULL) { + return MA_INVALID_ARGS; + } + + *pCursor = 0; + + if (file == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_tell__win32(pVFS, file, pCursor); +#else + return ma_default_vfs_tell__stdio(pVFS, file, pCursor); +#endif +} + +static ma_result ma_default_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) +{ + if (pInfo == NULL) { + return MA_INVALID_ARGS; + } + + MA_ZERO_OBJECT(pInfo); + + if (file == NULL) { + return MA_INVALID_ARGS; + } + +#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) + return ma_default_vfs_info__win32(pVFS, file, pInfo); +#else + return ma_default_vfs_info__stdio(pVFS, file, pInfo); +#endif +} + + +MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks) +{ + if (pVFS == NULL) { + return MA_INVALID_ARGS; + } + + pVFS->cb.onOpen = ma_default_vfs_open; + pVFS->cb.onOpenW = ma_default_vfs_open_w; + pVFS->cb.onClose = ma_default_vfs_close; + pVFS->cb.onRead = ma_default_vfs_read; + pVFS->cb.onWrite = ma_default_vfs_write; + pVFS->cb.onSeek = ma_default_vfs_seek; + pVFS->cb.onTell = ma_default_vfs_tell; + pVFS->cb.onInfo = ma_default_vfs_info; + ma_allocation_callbacks_init_copy(&pVFS->allocationCallbacks, pAllocationCallbacks); + + return MA_SUCCESS; +} + + +MA_API ma_result ma_vfs_or_default_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + if (pVFS != NULL) { + return ma_vfs_open(pVFS, pFilePath, openMode, pFile); + } else { + return ma_default_vfs_open(pVFS, pFilePath, openMode, pFile); + } +} + +MA_API ma_result ma_vfs_or_default_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) +{ + if (pVFS != NULL) { + return ma_vfs_open_w(pVFS, pFilePath, openMode, pFile); + } else { + return ma_default_vfs_open_w(pVFS, pFilePath, openMode, pFile); + } +} + +MA_API ma_result ma_vfs_or_default_close(ma_vfs* pVFS, ma_vfs_file file) +{ + if (pVFS != NULL) { + return ma_vfs_close(pVFS, file); + } else { + return ma_default_vfs_close(pVFS, file); + } +} + +MA_API ma_result ma_vfs_or_default_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) +{ + if (pVFS != NULL) { + return ma_vfs_read(pVFS, file, pDst, sizeInBytes, pBytesRead); + } else { + return ma_default_vfs_read(pVFS, file, pDst, sizeInBytes, pBytesRead); + } +} + +MA_API ma_result ma_vfs_or_default_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) +{ + if (pVFS != NULL) { + return ma_vfs_write(pVFS, file, pSrc, sizeInBytes, pBytesWritten); + } else { + return ma_default_vfs_write(pVFS, file, pSrc, sizeInBytes, pBytesWritten); + } +} + +MA_API ma_result ma_vfs_or_default_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) +{ + if (pVFS != NULL) { + return ma_vfs_seek(pVFS, file, offset, origin); + } else { + return ma_default_vfs_seek(pVFS, file, offset, origin); + } +} + +MA_API ma_result ma_vfs_or_default_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) +{ + if (pVFS != NULL) { + return ma_vfs_tell(pVFS, file, pCursor); + } else { + return ma_default_vfs_tell(pVFS, file, pCursor); + } +} + +MA_API ma_result ma_vfs_or_default_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) +{ + if (pVFS != NULL) { + return ma_vfs_info(pVFS, file, pInfo); + } else { + return ma_default_vfs_info(pVFS, file, pInfo); + } +} + + + +/************************************************************************************************************************************************************** + +Decoding and Encoding Headers. These are auto-generated from a tool. + +**************************************************************************************************************************************************************/ +#if !defined(MA_NO_WAV) && (!defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)) +/* dr_wav_h begin */ +#ifndef dr_wav_h +#define dr_wav_h +#ifdef __cplusplus +extern "C" { +#endif +#define DRWAV_STRINGIFY(x) #x +#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x) +#define DRWAV_VERSION_MAJOR 0 +#define DRWAV_VERSION_MINOR 12 +#define DRWAV_VERSION_REVISION 16 +#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION) +#include +typedef signed char drwav_int8; +typedef unsigned char drwav_uint8; +typedef signed short drwav_int16; +typedef unsigned short drwav_uint16; +typedef signed int drwav_int32; +typedef unsigned int drwav_uint32; +#if defined(_MSC_VER) + typedef signed __int64 drwav_int64; + typedef unsigned __int64 drwav_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif + #endif + typedef signed long long drwav_int64; + typedef unsigned long long drwav_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop + #endif +#endif +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + typedef drwav_uint64 drwav_uintptr; +#else + typedef drwav_uint32 drwav_uintptr; +#endif +typedef drwav_uint8 drwav_bool8; +typedef drwav_uint32 drwav_bool32; +#define DRWAV_TRUE 1 +#define DRWAV_FALSE 0 +#if !defined(DRWAV_API) + #if defined(DRWAV_DLL) + #if defined(_WIN32) + #define DRWAV_DLL_IMPORT __declspec(dllimport) + #define DRWAV_DLL_EXPORT __declspec(dllexport) + #define DRWAV_DLL_PRIVATE static + #else + #if defined(__GNUC__) && __GNUC__ >= 4 + #define DRWAV_DLL_IMPORT __attribute__((visibility("default"))) + #define DRWAV_DLL_EXPORT __attribute__((visibility("default"))) + #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden"))) + #else + #define DRWAV_DLL_IMPORT + #define DRWAV_DLL_EXPORT + #define DRWAV_DLL_PRIVATE static + #endif + #endif + #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION) + #define DRWAV_API DRWAV_DLL_EXPORT + #else + #define DRWAV_API DRWAV_DLL_IMPORT + #endif + #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE + #else + #define DRWAV_API extern + #define DRWAV_PRIVATE static + #endif +#endif +typedef drwav_int32 drwav_result; +#define DRWAV_SUCCESS 0 +#define DRWAV_ERROR -1 +#define DRWAV_INVALID_ARGS -2 +#define DRWAV_INVALID_OPERATION -3 +#define DRWAV_OUT_OF_MEMORY -4 +#define DRWAV_OUT_OF_RANGE -5 +#define DRWAV_ACCESS_DENIED -6 +#define DRWAV_DOES_NOT_EXIST -7 +#define DRWAV_ALREADY_EXISTS -8 +#define DRWAV_TOO_MANY_OPEN_FILES -9 +#define DRWAV_INVALID_FILE -10 +#define DRWAV_TOO_BIG -11 +#define DRWAV_PATH_TOO_LONG -12 +#define DRWAV_NAME_TOO_LONG -13 +#define DRWAV_NOT_DIRECTORY -14 +#define DRWAV_IS_DIRECTORY -15 +#define DRWAV_DIRECTORY_NOT_EMPTY -16 +#define DRWAV_END_OF_FILE -17 +#define DRWAV_NO_SPACE -18 +#define DRWAV_BUSY -19 +#define DRWAV_IO_ERROR -20 +#define DRWAV_INTERRUPT -21 +#define DRWAV_UNAVAILABLE -22 +#define DRWAV_ALREADY_IN_USE -23 +#define DRWAV_BAD_ADDRESS -24 +#define DRWAV_BAD_SEEK -25 +#define DRWAV_BAD_PIPE -26 +#define DRWAV_DEADLOCK -27 +#define DRWAV_TOO_MANY_LINKS -28 +#define DRWAV_NOT_IMPLEMENTED -29 +#define DRWAV_NO_MESSAGE -30 +#define DRWAV_BAD_MESSAGE -31 +#define DRWAV_NO_DATA_AVAILABLE -32 +#define DRWAV_INVALID_DATA -33 +#define DRWAV_TIMEOUT -34 +#define DRWAV_NO_NETWORK -35 +#define DRWAV_NOT_UNIQUE -36 +#define DRWAV_NOT_SOCKET -37 +#define DRWAV_NO_ADDRESS -38 +#define DRWAV_BAD_PROTOCOL -39 +#define DRWAV_PROTOCOL_UNAVAILABLE -40 +#define DRWAV_PROTOCOL_NOT_SUPPORTED -41 +#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42 +#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43 +#define DRWAV_SOCKET_NOT_SUPPORTED -44 +#define DRWAV_CONNECTION_RESET -45 +#define DRWAV_ALREADY_CONNECTED -46 +#define DRWAV_NOT_CONNECTED -47 +#define DRWAV_CONNECTION_REFUSED -48 +#define DRWAV_NO_HOST -49 +#define DRWAV_IN_PROGRESS -50 +#define DRWAV_CANCELLED -51 +#define DRWAV_MEMORY_ALREADY_MAPPED -52 +#define DRWAV_AT_END -53 +#define DR_WAVE_FORMAT_PCM 0x1 +#define DR_WAVE_FORMAT_ADPCM 0x2 +#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3 +#define DR_WAVE_FORMAT_ALAW 0x6 +#define DR_WAVE_FORMAT_MULAW 0x7 +#define DR_WAVE_FORMAT_DVI_ADPCM 0x11 +#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE +#ifndef DRWAV_MAX_SMPL_LOOPS +#define DRWAV_MAX_SMPL_LOOPS 1 +#endif +#define DRWAV_SEQUENTIAL 0x00000001 +DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision); +DRWAV_API const char* drwav_version_string(void); +typedef enum +{ + drwav_seek_origin_start, + drwav_seek_origin_current +} drwav_seek_origin; +typedef enum +{ + drwav_container_riff, + drwav_container_w64, + drwav_container_rf64 +} drwav_container; +typedef struct +{ + union + { + drwav_uint8 fourcc[4]; + drwav_uint8 guid[16]; + } id; + drwav_uint64 sizeInBytes; + unsigned int paddingSize; +} drwav_chunk_header; +typedef struct +{ + drwav_uint16 formatTag; + drwav_uint16 channels; + drwav_uint32 sampleRate; + drwav_uint32 avgBytesPerSec; + drwav_uint16 blockAlign; + drwav_uint16 bitsPerSample; + drwav_uint16 extendedSize; + drwav_uint16 validBitsPerSample; + drwav_uint32 channelMask; + drwav_uint8 subFormat[16]; +} drwav_fmt; +DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT); +typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); +typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite); +typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin); +typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT); +typedef struct +{ + void* pUserData; + void* (* onMalloc)(size_t sz, void* pUserData); + void* (* onRealloc)(void* p, size_t sz, void* pUserData); + void (* onFree)(void* p, void* pUserData); +} drwav_allocation_callbacks; +typedef struct +{ + const drwav_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drwav__memory_stream; +typedef struct +{ + void** ppData; + size_t* pDataSize; + size_t dataSize; + size_t dataCapacity; + size_t currentWritePos; +} drwav__memory_stream_write; +typedef struct +{ + drwav_container container; + drwav_uint32 format; + drwav_uint32 channels; + drwav_uint32 sampleRate; + drwav_uint32 bitsPerSample; +} drwav_data_format; +typedef struct +{ + drwav_uint32 cuePointId; + drwav_uint32 type; + drwav_uint32 start; + drwav_uint32 end; + drwav_uint32 fraction; + drwav_uint32 playCount; +} drwav_smpl_loop; + typedef struct +{ + drwav_uint32 manufacturer; + drwav_uint32 product; + drwav_uint32 samplePeriod; + drwav_uint32 midiUnityNotes; + drwav_uint32 midiPitchFraction; + drwav_uint32 smpteFormat; + drwav_uint32 smpteOffset; + drwav_uint32 numSampleLoops; + drwav_uint32 samplerData; + drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS]; +} drwav_smpl; +typedef struct +{ + drwav_read_proc onRead; + drwav_write_proc onWrite; + drwav_seek_proc onSeek; + void* pUserData; + drwav_allocation_callbacks allocationCallbacks; + drwav_container container; + drwav_fmt fmt; + drwav_uint32 sampleRate; + drwav_uint16 channels; + drwav_uint16 bitsPerSample; + drwav_uint16 translatedFormatTag; + drwav_uint64 totalPCMFrameCount; + drwav_uint64 dataChunkDataSize; + drwav_uint64 dataChunkDataPos; + drwav_uint64 bytesRemaining; + drwav_uint64 dataChunkDataSizeTargetWrite; + drwav_bool32 isSequentialWrite; + drwav_smpl smpl; + drwav__memory_stream memoryStream; + drwav__memory_stream_write memoryStreamWrite; + struct + { + drwav_uint64 iCurrentPCMFrame; + } compressed; + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_uint16 predictor[2]; + drwav_int32 delta[2]; + drwav_int32 cachedFrames[4]; + drwav_uint32 cachedFrameCount; + drwav_int32 prevFrames[2][2]; + } msadpcm; + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_int32 predictor[2]; + drwav_int32 stepIndex[2]; + drwav_int32 cachedFrames[16]; + drwav_uint32 cachedFrameCount; + } ima; +} drwav; +DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); +DRWAV_API drwav_result drwav_uninit(drwav* pWav); +DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); +DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex); +DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData); +DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); +DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); +DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); +#ifndef DR_WAV_NO_CONVERSION_API +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); +DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount); +DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount); +DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount); +DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); +DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount); +DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount); +DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount); +DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); +DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount); +DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount); +DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount); +DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); +DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); +#endif +#ifndef DR_WAV_NO_STDIO +DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif +DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_WAV_NO_CONVERSION_API +DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_WAV_NO_STDIO +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif +DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif +DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data); +DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data); +DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data); +DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data); +DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data); +DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data); +DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]); +DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b); +#ifdef __cplusplus +} +#endif +#endif +/* dr_wav_h end */ +#endif /* MA_NO_WAV */ + +#if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING) +/* dr_flac_h begin */ +#ifndef dr_flac_h +#define dr_flac_h +#ifdef __cplusplus +extern "C" { +#endif +#define DRFLAC_STRINGIFY(x) #x +#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x) +#define DRFLAC_VERSION_MAJOR 0 +#define DRFLAC_VERSION_MINOR 12 +#define DRFLAC_VERSION_REVISION 24 +#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION) +#include +typedef signed char drflac_int8; +typedef unsigned char drflac_uint8; +typedef signed short drflac_int16; +typedef unsigned short drflac_uint16; +typedef signed int drflac_int32; +typedef unsigned int drflac_uint32; +#if defined(_MSC_VER) + typedef signed __int64 drflac_int64; + typedef unsigned __int64 drflac_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif + #endif + typedef signed long long drflac_int64; + typedef unsigned long long drflac_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop + #endif +#endif +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + typedef drflac_uint64 drflac_uintptr; +#else + typedef drflac_uint32 drflac_uintptr; +#endif +typedef drflac_uint8 drflac_bool8; +typedef drflac_uint32 drflac_bool32; +#define DRFLAC_TRUE 1 +#define DRFLAC_FALSE 0 +#if !defined(DRFLAC_API) + #if defined(DRFLAC_DLL) + #if defined(_WIN32) + #define DRFLAC_DLL_IMPORT __declspec(dllimport) + #define DRFLAC_DLL_EXPORT __declspec(dllexport) + #define DRFLAC_DLL_PRIVATE static + #else + #if defined(__GNUC__) && __GNUC__ >= 4 + #define DRFLAC_DLL_IMPORT __attribute__((visibility("default"))) + #define DRFLAC_DLL_EXPORT __attribute__((visibility("default"))) + #define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden"))) + #else + #define DRFLAC_DLL_IMPORT + #define DRFLAC_DLL_EXPORT + #define DRFLAC_DLL_PRIVATE static + #endif + #endif + #if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION) + #define DRFLAC_API DRFLAC_DLL_EXPORT + #else + #define DRFLAC_API DRFLAC_DLL_IMPORT + #endif + #define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE + #else + #define DRFLAC_API extern + #define DRFLAC_PRIVATE static + #endif +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1700 + #define DRFLAC_DEPRECATED __declspec(deprecated) +#elif (defined(__GNUC__) && __GNUC__ >= 4) + #define DRFLAC_DEPRECATED __attribute__((deprecated)) +#elif defined(__has_feature) + #if __has_feature(attribute_deprecated) + #define DRFLAC_DEPRECATED __attribute__((deprecated)) + #else + #define DRFLAC_DEPRECATED + #endif +#else + #define DRFLAC_DEPRECATED +#endif +DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision); +DRFLAC_API const char* drflac_version_string(void); +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif +#if defined(_WIN64) || defined(_LP64) || defined(__LP64__) +#define DRFLAC_64BIT +#endif +#ifdef DRFLAC_64BIT +typedef drflac_uint64 drflac_cache_t; +#else +typedef drflac_uint32 drflac_cache_t; +#endif +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 +typedef enum +{ + drflac_container_native, + drflac_container_ogg, + drflac_container_unknown +} drflac_container; +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; +#pragma pack(2) +typedef struct +{ + drflac_uint64 firstPCMFrame; + drflac_uint64 flacFrameOffset; + drflac_uint16 pcmFrameCount; +} drflac_seekpoint; +#pragma pack() +typedef struct +{ + drflac_uint16 minBlockSizeInPCMFrames; + drflac_uint16 maxBlockSizeInPCMFrames; + drflac_uint32 minFrameSizeInPCMFrames; + drflac_uint32 maxFrameSizeInPCMFrames; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalPCMFrameCount; + drflac_uint8 md5[16]; +} drflac_streaminfo; +typedef struct +{ + drflac_uint32 type; + const void* pRawData; + drflac_uint32 rawDataSize; + union + { + drflac_streaminfo streaminfo; + struct + { + int unused; + } padding; + struct + { + drflac_uint32 id; + const void* pData; + drflac_uint32 dataSize; + } application; + struct + { + drflac_uint32 seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + struct + { + drflac_uint32 vendorLength; + const char* vendor; + drflac_uint32 commentCount; + const void* pComments; + } vorbis_comment; + struct + { + char catalog[128]; + drflac_uint64 leadInSampleCount; + drflac_bool32 isCD; + drflac_uint8 trackCount; + const void* pTrackData; + } cuesheet; + struct + { + drflac_uint32 type; + drflac_uint32 mimeLength; + const char* mime; + drflac_uint32 descriptionLength; + const char* description; + drflac_uint32 width; + drflac_uint32 height; + drflac_uint32 colorDepth; + drflac_uint32 indexColorCount; + drflac_uint32 pictureDataSize; + const drflac_uint8* pPictureData; + } picture; + } data; +} drflac_metadata; +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); +typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); +typedef struct +{ + void* pUserData; + void* (* onMalloc)(size_t sz, void* pUserData); + void* (* onRealloc)(void* p, size_t sz, void* pUserData); + void (* onFree)(void* p, void* pUserData); +} drflac_allocation_callbacks; +typedef struct +{ + const drflac_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + void* pUserData; + size_t unalignedByteCount; + drflac_cache_t unalignedCache; + drflac_uint32 nextL2Line; + drflac_uint32 consumedBits; + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + drflac_uint16 crc16; + drflac_cache_t crc16Cache; + drflac_uint32 crc16CacheIgnoredBytes; +} drflac_bs; +typedef struct +{ + drflac_uint8 subframeType; + drflac_uint8 wastedBitsPerSample; + drflac_uint8 lpcOrder; + drflac_int32* pSamplesS32; +} drflac_subframe; +typedef struct +{ + drflac_uint64 pcmFrameNumber; + drflac_uint32 flacFrameNumber; + drflac_uint32 sampleRate; + drflac_uint16 blockSizeInPCMFrames; + drflac_uint8 channelAssignment; + drflac_uint8 bitsPerSample; + drflac_uint8 crc8; +} drflac_frame_header; +typedef struct +{ + drflac_frame_header header; + drflac_uint32 pcmFramesRemaining; + drflac_subframe subframes[8]; +} drflac_frame; +typedef struct +{ + drflac_meta_proc onMeta; + void* pUserDataMD; + drflac_allocation_callbacks allocationCallbacks; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint16 maxBlockSizeInPCMFrames; + drflac_uint64 totalPCMFrameCount; + drflac_container container; + drflac_uint32 seekpointCount; + drflac_frame currentFLACFrame; + drflac_uint64 currentPCMFrame; + drflac_uint64 firstFLACFramePosInBytes; + drflac__memory_stream memoryStream; + drflac_int32* pDecodedSamples; + drflac_seekpoint* pSeekpoints; + void* _oggbs; + drflac_bool32 _noSeekTableSeek : 1; + drflac_bool32 _noBinarySearchSeek : 1; + drflac_bool32 _noBruteForceSeek : 1; + drflac_bs bs; + drflac_uint8 pExtraData[1]; +} drflac; +DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API void drflac_close(drflac* pFlac); +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut); +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut); +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut); +DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex); +#ifndef DR_FLAC_NO_STDIO +DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +#endif +DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_FLAC_NO_STDIO +DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +#endif +DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks); +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; +DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments); +DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_cuesheet_track_iterator; +#pragma pack(4) +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 index; + drflac_uint8 reserved[3]; +} drflac_cuesheet_track_index; +#pragma pack() +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 trackNumber; + char ISRC[12]; + drflac_bool8 isAudio; + drflac_bool8 preEmphasis; + drflac_uint8 indexCount; + const drflac_cuesheet_track_index* pIndexPoints; +} drflac_cuesheet_track; +DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData); +DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack); +#ifdef __cplusplus +} +#endif +#endif +/* dr_flac_h end */ +#endif /* MA_NO_FLAC */ + +#if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING) +/* dr_mp3_h begin */ +#ifndef dr_mp3_h +#define dr_mp3_h +#ifdef __cplusplus +extern "C" { +#endif +#define DRMP3_STRINGIFY(x) #x +#define DRMP3_XSTRINGIFY(x) DRMP3_STRINGIFY(x) +#define DRMP3_VERSION_MAJOR 0 +#define DRMP3_VERSION_MINOR 6 +#define DRMP3_VERSION_REVISION 23 +#define DRMP3_VERSION_STRING DRMP3_XSTRINGIFY(DRMP3_VERSION_MAJOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_MINOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_REVISION) +#include +typedef signed char drmp3_int8; +typedef unsigned char drmp3_uint8; +typedef signed short drmp3_int16; +typedef unsigned short drmp3_uint16; +typedef signed int drmp3_int32; +typedef unsigned int drmp3_uint32; +#if defined(_MSC_VER) + typedef signed __int64 drmp3_int64; + typedef unsigned __int64 drmp3_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif + #endif + typedef signed long long drmp3_int64; + typedef unsigned long long drmp3_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop + #endif +#endif +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + typedef drmp3_uint64 drmp3_uintptr; +#else + typedef drmp3_uint32 drmp3_uintptr; +#endif +typedef drmp3_uint8 drmp3_bool8; +typedef drmp3_uint32 drmp3_bool32; +#define DRMP3_TRUE 1 +#define DRMP3_FALSE 0 +#if !defined(DRMP3_API) + #if defined(DRMP3_DLL) + #if defined(_WIN32) + #define DRMP3_DLL_IMPORT __declspec(dllimport) + #define DRMP3_DLL_EXPORT __declspec(dllexport) + #define DRMP3_DLL_PRIVATE static + #else + #if defined(__GNUC__) && __GNUC__ >= 4 + #define DRMP3_DLL_IMPORT __attribute__((visibility("default"))) + #define DRMP3_DLL_EXPORT __attribute__((visibility("default"))) + #define DRMP3_DLL_PRIVATE __attribute__((visibility("hidden"))) + #else + #define DRMP3_DLL_IMPORT + #define DRMP3_DLL_EXPORT + #define DRMP3_DLL_PRIVATE static + #endif + #endif + #if defined(DR_MP3_IMPLEMENTATION) || defined(DRMP3_IMPLEMENTATION) + #define DRMP3_API DRMP3_DLL_EXPORT + #else + #define DRMP3_API DRMP3_DLL_IMPORT + #endif + #define DRMP3_PRIVATE DRMP3_DLL_PRIVATE + #else + #define DRMP3_API extern + #define DRMP3_PRIVATE static + #endif +#endif +typedef drmp3_int32 drmp3_result; +#define DRMP3_SUCCESS 0 +#define DRMP3_ERROR -1 +#define DRMP3_INVALID_ARGS -2 +#define DRMP3_INVALID_OPERATION -3 +#define DRMP3_OUT_OF_MEMORY -4 +#define DRMP3_OUT_OF_RANGE -5 +#define DRMP3_ACCESS_DENIED -6 +#define DRMP3_DOES_NOT_EXIST -7 +#define DRMP3_ALREADY_EXISTS -8 +#define DRMP3_TOO_MANY_OPEN_FILES -9 +#define DRMP3_INVALID_FILE -10 +#define DRMP3_TOO_BIG -11 +#define DRMP3_PATH_TOO_LONG -12 +#define DRMP3_NAME_TOO_LONG -13 +#define DRMP3_NOT_DIRECTORY -14 +#define DRMP3_IS_DIRECTORY -15 +#define DRMP3_DIRECTORY_NOT_EMPTY -16 +#define DRMP3_END_OF_FILE -17 +#define DRMP3_NO_SPACE -18 +#define DRMP3_BUSY -19 +#define DRMP3_IO_ERROR -20 +#define DRMP3_INTERRUPT -21 +#define DRMP3_UNAVAILABLE -22 +#define DRMP3_ALREADY_IN_USE -23 +#define DRMP3_BAD_ADDRESS -24 +#define DRMP3_BAD_SEEK -25 +#define DRMP3_BAD_PIPE -26 +#define DRMP3_DEADLOCK -27 +#define DRMP3_TOO_MANY_LINKS -28 +#define DRMP3_NOT_IMPLEMENTED -29 +#define DRMP3_NO_MESSAGE -30 +#define DRMP3_BAD_MESSAGE -31 +#define DRMP3_NO_DATA_AVAILABLE -32 +#define DRMP3_INVALID_DATA -33 +#define DRMP3_TIMEOUT -34 +#define DRMP3_NO_NETWORK -35 +#define DRMP3_NOT_UNIQUE -36 +#define DRMP3_NOT_SOCKET -37 +#define DRMP3_NO_ADDRESS -38 +#define DRMP3_BAD_PROTOCOL -39 +#define DRMP3_PROTOCOL_UNAVAILABLE -40 +#define DRMP3_PROTOCOL_NOT_SUPPORTED -41 +#define DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED -42 +#define DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED -43 +#define DRMP3_SOCKET_NOT_SUPPORTED -44 +#define DRMP3_CONNECTION_RESET -45 +#define DRMP3_ALREADY_CONNECTED -46 +#define DRMP3_NOT_CONNECTED -47 +#define DRMP3_CONNECTION_REFUSED -48 +#define DRMP3_NO_HOST -49 +#define DRMP3_IN_PROGRESS -50 +#define DRMP3_CANCELLED -51 +#define DRMP3_MEMORY_ALREADY_MAPPED -52 +#define DRMP3_AT_END -53 +#define DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME 1152 +#define DRMP3_MAX_SAMPLES_PER_FRAME (DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME*2) +#ifdef _MSC_VER + #define DRMP3_INLINE __forceinline +#elif defined(__GNUC__) + #if defined(__STRICT_ANSI__) + #define DRMP3_INLINE __inline__ __attribute__((always_inline)) + #else + #define DRMP3_INLINE inline __attribute__((always_inline)) + #endif +#elif defined(__WATCOMC__) + #define DRMP3_INLINE __inline +#else + #define DRMP3_INLINE +#endif +DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision); +DRMP3_API const char* drmp3_version_string(void); +typedef struct +{ + int frame_bytes, channels, hz, layer, bitrate_kbps; +} drmp3dec_frame_info; +typedef struct +{ + float mdct_overlap[2][9*32], qmf_state[15*2*32]; + int reserv, free_format_bytes; + drmp3_uint8 header[4], reserv_buf[511]; +} drmp3dec; +DRMP3_API void drmp3dec_init(drmp3dec *dec); +DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info); +DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples); +#ifndef DRMP3_DEFAULT_CHANNELS +#define DRMP3_DEFAULT_CHANNELS 2 +#endif +#ifndef DRMP3_DEFAULT_SAMPLE_RATE +#define DRMP3_DEFAULT_SAMPLE_RATE 44100 +#endif +typedef enum +{ + drmp3_seek_origin_start, + drmp3_seek_origin_current +} drmp3_seek_origin; +typedef struct +{ + drmp3_uint64 seekPosInBytes; + drmp3_uint64 pcmFrameIndex; + drmp3_uint16 mp3FramesToDiscard; + drmp3_uint16 pcmFramesToDiscard; +} drmp3_seek_point; +typedef size_t (* drmp3_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); +typedef drmp3_bool32 (* drmp3_seek_proc)(void* pUserData, int offset, drmp3_seek_origin origin); +typedef struct +{ + void* pUserData; + void* (* onMalloc)(size_t sz, void* pUserData); + void* (* onRealloc)(void* p, size_t sz, void* pUserData); + void (* onFree)(void* p, void* pUserData); +} drmp3_allocation_callbacks; +typedef struct +{ + drmp3_uint32 channels; + drmp3_uint32 sampleRate; +} drmp3_config; +typedef struct +{ + drmp3dec decoder; + drmp3dec_frame_info frameInfo; + drmp3_uint32 channels; + drmp3_uint32 sampleRate; + drmp3_read_proc onRead; + drmp3_seek_proc onSeek; + void* pUserData; + drmp3_allocation_callbacks allocationCallbacks; + drmp3_uint32 mp3FrameChannels; + drmp3_uint32 mp3FrameSampleRate; + drmp3_uint32 pcmFramesConsumedInMP3Frame; + drmp3_uint32 pcmFramesRemainingInMP3Frame; + drmp3_uint8 pcmFrames[sizeof(float)*DRMP3_MAX_SAMPLES_PER_FRAME]; + drmp3_uint64 currentPCMFrame; + drmp3_uint64 streamCursor; + drmp3_seek_point* pSeekPoints; + drmp3_uint32 seekPointCount; + size_t dataSize; + size_t dataCapacity; + size_t dataConsumed; + drmp3_uint8* pData; + drmp3_bool32 atEnd : 1; + struct + { + const drmp3_uint8* pData; + size_t dataSize; + size_t currentReadPos; + } memory; +} drmp3; +DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_MP3_NO_STDIO +DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks); +#endif +DRMP3_API void drmp3_uninit(drmp3* pMP3); +DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut); +DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut); +DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex); +DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3); +DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3); +DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount); +DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints); +DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints); +DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_MP3_NO_STDIO +DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); +#endif +DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks); +DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks); +#ifdef __cplusplus +} +#endif +#endif +/* dr_mp3_h end */ +#endif /* MA_NO_MP3 */ + + /************************************************************************************************************************************************************** Decoding @@ -39354,7 +45519,7 @@ static size_t ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size MA_ASSERT(pBufferOut != NULL); bytesRead = pDecoder->onRead(pDecoder, pBufferOut, bytesToRead); - pDecoder->readPointer += bytesRead; + pDecoder->readPointerInBytes += bytesRead; return bytesRead; } @@ -39368,9 +45533,9 @@ static ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_ wasSuccessful = pDecoder->onSeek(pDecoder, byteOffset, origin); if (wasSuccessful) { if (origin == ma_seek_origin_start) { - pDecoder->readPointer = (ma_uint64)byteOffset; + pDecoder->readPointerInBytes = (ma_uint64)byteOffset; } else { - pDecoder->readPointer += byteOffset; + pDecoder->readPointerInBytes += byteOffset; } } @@ -39382,8 +45547,8 @@ MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint3 { ma_decoder_config config; MA_ZERO_OBJECT(&config); - config.format = outputFormat; - config.channels = outputChannels; + config.format = outputFormat; + config.channels = ma_min(outputChannels, ma_countof(config.channelMap)); config.sampleRate = outputSampleRate; config.resampling.algorithm = ma_resample_algorithm_linear; config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER); @@ -39411,6 +45576,18 @@ static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_ ma_data_converter_config converterConfig; MA_ASSERT(pDecoder != NULL); + MA_ASSERT(pConfig != NULL); + + /* Make sure we're not asking for too many channels. */ + if (pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + + /* The internal channels should have already been validated at a higher level, but we'll do it again explicitly here for safety. */ + if (pDecoder->internalChannels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + /* Output format. */ if (pConfig->format == ma_format_unknown) { @@ -39437,9 +45614,9 @@ static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_ MA_COPY_MEMORY(pDecoder->outputChannelMap, pConfig->channelMap, sizeof(pConfig->channelMap)); } - + converterConfig = ma_data_converter_config_init( - pDecoder->internalFormat, pDecoder->outputFormat, + pDecoder->internalFormat, pDecoder->outputFormat, pDecoder->internalChannels, pDecoder->outputChannels, pDecoder->internalSampleRate, pDecoder->outputSampleRate ); @@ -39695,13 +45872,20 @@ static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig /* dr_flac supports reading as s32, s16 and f32. Try to do a one-to-one mapping if possible, but fall back to s32 if not. s32 is the "native" FLAC format - since it's the only one that's truly lossless. + since it's the only one that's truly lossless. If the internal bits per sample is <= 16 we will decode to ma_format_s16 to keep it more efficient. */ - pDecoder->internalFormat = ma_format_s32; - if (pConfig->format == ma_format_s16) { - pDecoder->internalFormat = ma_format_s16; - } else if (pConfig->format == ma_format_f32) { - pDecoder->internalFormat = ma_format_f32; + if (pConfig->format == ma_format_unknown) { + if (pFlac->bitsPerSample <= 16) { + pDecoder->internalFormat = ma_format_s16; + } else { + pDecoder->internalFormat = ma_format_s32; + } + } else { + if (pConfig->format == ma_format_s16 || pConfig->format == ma_format_f32) { + pDecoder->internalFormat = pConfig->format; + } else { + pDecoder->internalFormat = ma_format_s32; /* s32 as the baseline to ensure no loss of precision for 24-bit encoded files. */ + } } pDecoder->internalChannels = pFlac->channels; @@ -39712,6 +45896,121 @@ static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig } #endif /* dr_flac_h */ +/* MP3 */ +#ifdef dr_mp3_h +#define MA_HAS_MP3 + +static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + ma_decoder* pDecoder = (ma_decoder*)pUserData; + MA_ASSERT(pDecoder != NULL); + + return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead); +} + +static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin) +{ + ma_decoder* pDecoder = (ma_decoder*)pUserData; + MA_ASSERT(pDecoder != NULL); + + return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current); +} + +static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount) +{ + drmp3* pMP3; + + MA_ASSERT(pDecoder != NULL); + MA_ASSERT(pFramesOut != NULL); + + pMP3 = (drmp3*)pDecoder->pInternalDecoder; + MA_ASSERT(pMP3 != NULL); + +#if defined(DR_MP3_FLOAT_OUTPUT) + MA_ASSERT(pDecoder->internalFormat == ma_format_f32); + return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut); +#else + MA_ASSERT(pDecoder->internalFormat == ma_format_s16); + return drmp3_read_pcm_frames_s16(pMP3, frameCount, (drmp3_int16*)pFramesOut); +#endif +} + +static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex) +{ + drmp3* pMP3; + drmp3_bool32 result; + + pMP3 = (drmp3*)pDecoder->pInternalDecoder; + MA_ASSERT(pMP3 != NULL); + + result = drmp3_seek_to_pcm_frame(pMP3, frameIndex); + if (result) { + return MA_SUCCESS; + } else { + return MA_ERROR; + } +} + +static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder) +{ + drmp3_uninit((drmp3*)pDecoder->pInternalDecoder); + ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks); + return MA_SUCCESS; +} + +static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder) +{ + return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder); +} + +static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + drmp3* pMP3; + drmp3_allocation_callbacks allocationCallbacks; + + MA_ASSERT(pConfig != NULL); + MA_ASSERT(pDecoder != NULL); + + pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks); + if (pMP3 == NULL) { + return MA_OUT_OF_MEMORY; + } + + allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData; + allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc; + allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc; + allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree; + + /* + Try opening the decoder first. We always use whatever dr_mp3 reports for channel count and sample rate. The format is determined by + the presence of DR_MP3_FLOAT_OUTPUT. + */ + if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &allocationCallbacks)) { + ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks); + return MA_ERROR; + } + + /* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */ + pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3; + pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3; + pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3; + pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3; + pDecoder->pInternalDecoder = pMP3; + + /* Internal format. */ +#if defined(DR_MP3_FLOAT_OUTPUT) + pDecoder->internalFormat = ma_format_f32; +#else + pDecoder->internalFormat = ma_format_s16; +#endif + pDecoder->internalChannels = pMP3->channels; + pDecoder->internalSampleRate = pMP3->sampleRate; + ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap); + + return MA_SUCCESS; +} +#endif /* dr_mp3_h */ + /* Vorbis */ #ifdef STB_VORBIS_INCLUDE_STB_VORBIS_H #define MA_HAS_VORBIS @@ -39743,19 +46042,24 @@ static ma_uint64 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, m totalFramesRead = 0; while (frameCount > 0) { /* Read from the in-memory buffer first. */ - while (pVorbis->framesRemaining > 0 && frameCount > 0) { - ma_uint32 iChannel; - for (iChannel = 0; iChannel < pDecoder->internalChannels; ++iChannel) { - pFramesOutF[0] = pVorbis->ppPacketData[iChannel][pVorbis->framesConsumed]; - pFramesOutF += 1; - } + ma_uint32 framesToReadFromCache = (ma_uint32)ma_min(pVorbis->framesRemaining, frameCount); /* Safe cast because pVorbis->framesRemaining is 32-bit. */ - pVorbis->framesConsumed += 1; - pVorbis->framesRemaining -= 1; - frameCount -= 1; - totalFramesRead += 1; + if (pFramesOut != NULL) { + ma_uint64 iFrame; + for (iFrame = 0; iFrame < framesToReadFromCache; iFrame += 1) { + ma_uint32 iChannel; + for (iChannel = 0; iChannel < pDecoder->internalChannels; ++iChannel) { + pFramesOutF[iChannel] = pVorbis->ppPacketData[iChannel][pVorbis->framesConsumed+iFrame]; + } + pFramesOutF += pDecoder->internalChannels; + } } + pVorbis->framesConsumed += framesToReadFromCache; + pVorbis->framesRemaining -= framesToReadFromCache; + frameCount -= framesToReadFromCache; + totalFramesRead += framesToReadFromCache; + if (frameCount == 0) { break; } @@ -39828,6 +46132,8 @@ static ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, This is terribly inefficient because stb_vorbis does not have a good seeking solution with it's push API. Currently this just performs a full decode right from the start of the stream. Later on I'll need to write a layer that goes through all of the Ogg pages until we find the one containing the sample we need. Then we know exactly where to seek for stb_vorbis. + + TODO: Use seeking logic documented for stb_vorbis_flush_pushdata(). */ if (!ma_decoder_seek_bytes(pDecoder, 0, ma_seek_origin_start)) { return MA_ERROR; @@ -40005,121 +46311,6 @@ static ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConf } #endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */ -/* MP3 */ -#ifdef dr_mp3_h -#define MA_HAS_MP3 - -static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead) -{ - ma_decoder* pDecoder = (ma_decoder*)pUserData; - MA_ASSERT(pDecoder != NULL); - - return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead); -} - -static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin) -{ - ma_decoder* pDecoder = (ma_decoder*)pUserData; - MA_ASSERT(pDecoder != NULL); - - return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current); -} - -static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount) -{ - drmp3* pMP3; - - MA_ASSERT(pDecoder != NULL); - MA_ASSERT(pFramesOut != NULL); - - pMP3 = (drmp3*)pDecoder->pInternalDecoder; - MA_ASSERT(pMP3 != NULL); - -#if defined(DR_MP3_FLOAT_OUTPUT) - MA_ASSERT(pDecoder->internalFormat == ma_format_f32); - return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut); -#else - MA_ASSERT(pDecoder->internalFormat == ma_format_s16); - return drmp3_read_pcm_frames_s16(pMP3, frameCount, (drmp3_int16*)pFramesOut); -#endif -} - -static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex) -{ - drmp3* pMP3; - drmp3_bool32 result; - - pMP3 = (drmp3*)pDecoder->pInternalDecoder; - MA_ASSERT(pMP3 != NULL); - - result = drmp3_seek_to_pcm_frame(pMP3, frameIndex); - if (result) { - return MA_SUCCESS; - } else { - return MA_ERROR; - } -} - -static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder) -{ - drmp3_uninit((drmp3*)pDecoder->pInternalDecoder); - ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks); - return MA_SUCCESS; -} - -static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder) -{ - return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder); -} - -static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) -{ - drmp3* pMP3; - drmp3_allocation_callbacks allocationCallbacks; - - MA_ASSERT(pConfig != NULL); - MA_ASSERT(pDecoder != NULL); - - pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks); - if (pMP3 == NULL) { - return MA_OUT_OF_MEMORY; - } - - allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData; - allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc; - allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc; - allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree; - - /* - Try opening the decoder first. We always use whatever dr_mp3 reports for channel count and sample rate. The format is determined by - the presence of DR_MP3_FLOAT_OUTPUT. - */ - if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &allocationCallbacks)) { - ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks); - return MA_ERROR; - } - - /* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */ - pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3; - pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3; - pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3; - pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3; - pDecoder->pInternalDecoder = pMP3; - - /* Internal format. */ -#if defined(DR_MP3_FLOAT_OUTPUT) - pDecoder->internalFormat = ma_format_f32; -#else - pDecoder->internalFormat = ma_format_s16; -#endif - pDecoder->internalChannels = pMP3->channels; - pDecoder->internalSampleRate = pMP3->sampleRate; - ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap); - - return MA_SUCCESS; -} -#endif /* dr_mp3_h */ - /* Raw */ static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount) { @@ -40127,9 +46318,7 @@ static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecode ma_uint64 totalFramesRead; void* pRunningFramesOut; - - MA_ASSERT(pDecoder != NULL); - MA_ASSERT(pFramesOut != NULL); + MA_ASSERT(pDecoder != NULL); /* For raw decoding we just read directly from the decoder's callbacks. */ bpf = ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels); @@ -40140,14 +46329,41 @@ static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecode while (totalFramesRead < frameCount) { ma_uint64 framesReadThisIteration; ma_uint64 framesToReadThisIteration = (frameCount - totalFramesRead); - if (framesToReadThisIteration > MA_SIZE_MAX) { - framesToReadThisIteration = MA_SIZE_MAX; + if (framesToReadThisIteration > 0x7FFFFFFF/bpf) { + framesToReadThisIteration = 0x7FFFFFFF/bpf; } - framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */ + if (pFramesOut != NULL) { + framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */ + pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf); + } else { + /* We'll first try seeking. If this fails it means the end was reached and we'll to do a read-and-discard slow path to get the exact amount. */ + if (ma_decoder_seek_bytes(pDecoder, (int)framesToReadThisIteration, ma_seek_origin_current)) { + framesReadThisIteration = framesToReadThisIteration; + } else { + /* Slow path. Need to fall back to a read-and-discard. This is required so we can get the exact number of remaining. */ + ma_uint8 buffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; + ma_uint32 bufferCap = sizeof(buffer) / bpf; - totalFramesRead += framesReadThisIteration; - pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf); + framesReadThisIteration = 0; + while (framesReadThisIteration < framesToReadThisIteration) { + ma_uint64 framesReadNow; + ma_uint64 framesToReadNow = framesToReadThisIteration - framesReadThisIteration; + if (framesToReadNow > bufferCap) { + framesToReadNow = bufferCap; + } + + framesReadNow = ma_decoder_read_bytes(pDecoder, buffer, (size_t)(framesToReadNow * bpf)) / bpf; /* Safe cast. */ + framesReadThisIteration += framesReadNow; + + if (framesReadNow < framesToReadNow) { + break; /* The end has been reached. */ + } + } + } + } + + totalFramesRead += framesReadThisIteration; if (framesReadThisIteration < framesToReadThisIteration) { break; /* Done. */ @@ -40246,6 +46462,56 @@ static ma_result ma_decoder__init_allocation_callbacks(const ma_decoder_config* } } +static ma_result ma_decoder__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) +{ + ma_uint64 framesRead = ma_decoder_read_pcm_frames((ma_decoder*)pDataSource, pFramesOut, frameCount); + + if (pFramesRead != NULL) { + *pFramesRead = framesRead; + } + + if (framesRead < frameCount) { + return MA_AT_END; + } + + return MA_SUCCESS; +} + +static ma_result ma_decoder__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) +{ + return ma_decoder_seek_to_pcm_frame((ma_decoder*)pDataSource, frameIndex); +} + +static ma_result ma_decoder__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) +{ + ma_decoder* pDecoder = (ma_decoder*)pDataSource; + + *pFormat = pDecoder->outputFormat; + *pChannels = pDecoder->outputChannels; + *pSampleRate = pDecoder->outputSampleRate; + + return MA_SUCCESS; +} + +static ma_result ma_decoder__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pLength) +{ + ma_decoder* pDecoder = (ma_decoder*)pDataSource; + + return ma_decoder_get_cursor_in_pcm_frames(pDecoder, pLength); +} + +static ma_result ma_decoder__data_source_on_get_length(ma_data_source* pDataSource, ma_uint64* pLength) +{ + ma_decoder* pDecoder = (ma_decoder*)pDataSource; + + *pLength = ma_decoder_get_length_in_pcm_frames(pDecoder); + if (*pLength == 0) { + return MA_NOT_IMPLEMENTED; + } + + return MA_SUCCESS; +} + static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; @@ -40262,8 +46528,14 @@ static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_see return MA_INVALID_ARGS; } - pDecoder->onRead = onRead; - pDecoder->onSeek = onSeek; + pDecoder->ds.onRead = ma_decoder__data_source_on_read; + pDecoder->ds.onSeek = ma_decoder__data_source_on_seek; + pDecoder->ds.onGetDataFormat = ma_decoder__data_source_on_get_data_format; + pDecoder->ds.onGetCursor = ma_decoder__data_source_on_get_cursor; + pDecoder->ds.onGetLength = ma_decoder__data_source_on_get_length; + + pDecoder->onRead = onRead; + pDecoder->onSeek = onSeek; pDecoder->pUserData = pUserData; result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder); @@ -40276,10 +46548,20 @@ static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_see static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result; + ma_result result = MA_SUCCESS; - result = ma_decoder__init_data_converter(pDecoder, pConfig); + /* Basic validation in case the internal decoder supports different limits to miniaudio. */ + if (pDecoder->internalChannels < MA_MIN_CHANNELS || pDecoder->internalChannels > MA_MAX_CHANNELS) { + result = MA_INVALID_DATA; + } + + if (result == MA_SUCCESS) { + result = ma_decoder__init_data_converter(pDecoder, pConfig); + } + + /* If we failed post initialization we need to uninitialize the decoder before returning to prevent a memory leak. */ if (result != MA_SUCCESS) { + ma_decoder_uninit(pDecoder); return result; } @@ -40288,6 +46570,7 @@ static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decod MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { +#ifdef MA_HAS_WAV ma_decoder_config config; ma_result result; @@ -40298,44 +46581,25 @@ MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_see return result; } -#ifdef MA_HAS_WAV result = ma_decoder_init_wav__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)onRead; + (void)onSeek; + (void)pUserData; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_decoder_config config; - ma_result result; - - config = ma_decoder_config_init_copy(pConfig); - - result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - #ifdef MA_HAS_FLAC - result = ma_decoder_init_flac__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder__postinit(&config, pDecoder); -} - -MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) -{ ma_decoder_config config; ma_result result; @@ -40346,20 +46610,25 @@ MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_ return result; } -#ifdef MA_HAS_VORBIS - result = ma_decoder_init_vorbis__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif + result = ma_decoder_init_flac__internal(&config, pDecoder); if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)onRead; + (void)onSeek; + (void)pUserData; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { +#ifdef MA_HAS_MP3 ma_decoder_config config; ma_result result; @@ -40370,16 +46639,49 @@ MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_see return result; } -#ifdef MA_HAS_MP3 result = ma_decoder_init_mp3__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)onRead; + (void)onSeek; + (void)pUserData; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_VORBIS + ma_decoder_config config; + ma_result result; + + config = ma_decoder_config_init_copy(pConfig); + + result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_vorbis__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + return ma_decoder__postinit(&config, pDecoder); +#else + (void)onRead; + (void)onSeek; + (void)pUserData; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder) @@ -40434,17 +46736,17 @@ static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decod } } #endif -#ifdef MA_HAS_VORBIS +#ifdef MA_HAS_MP3 if (result != MA_SUCCESS) { - result = ma_decoder_init_vorbis__internal(pConfig, pDecoder); + result = ma_decoder_init_mp3__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } #endif -#ifdef MA_HAS_MP3 +#ifdef MA_HAS_VORBIS if (result != MA_SUCCESS) { - result = ma_decoder_init_mp3__internal(pConfig, pDecoder); + result = ma_decoder_init_vorbis__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } @@ -40478,16 +46780,16 @@ static size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, { size_t bytesRemaining; - MA_ASSERT(pDecoder->memory.dataSize >= pDecoder->memory.currentReadPos); + MA_ASSERT(pDecoder->backend.memory.dataSize >= pDecoder->backend.memory.currentReadPos); - bytesRemaining = pDecoder->memory.dataSize - pDecoder->memory.currentReadPos; + bytesRemaining = pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos; if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (bytesToRead > 0) { - MA_COPY_MEMORY(pBufferOut, pDecoder->memory.pData + pDecoder->memory.currentReadPos, bytesToRead); - pDecoder->memory.currentReadPos += bytesToRead; + MA_COPY_MEMORY(pBufferOut, pDecoder->backend.memory.pData + pDecoder->backend.memory.currentReadPos, bytesToRead); + pDecoder->backend.memory.currentReadPos += bytesToRead; } return bytesToRead; @@ -40497,22 +46799,22 @@ static ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset { if (origin == ma_seek_origin_current) { if (byteOffset > 0) { - if (pDecoder->memory.currentReadPos + byteOffset > pDecoder->memory.dataSize) { - byteOffset = (int)(pDecoder->memory.dataSize - pDecoder->memory.currentReadPos); /* Trying to seek too far forward. */ + if (pDecoder->backend.memory.currentReadPos + byteOffset > pDecoder->backend.memory.dataSize) { + byteOffset = (int)(pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos); /* Trying to seek too far forward. */ } } else { - if (pDecoder->memory.currentReadPos < (size_t)-byteOffset) { - byteOffset = -(int)pDecoder->memory.currentReadPos; /* Trying to seek too far backwards. */ + if (pDecoder->backend.memory.currentReadPos < (size_t)-byteOffset) { + byteOffset = -(int)pDecoder->backend.memory.currentReadPos; /* Trying to seek too far backwards. */ } } /* This will never underflow thanks to the clamps above. */ - pDecoder->memory.currentReadPos += byteOffset; + pDecoder->backend.memory.currentReadPos += byteOffset; } else { - if ((ma_uint32)byteOffset <= pDecoder->memory.dataSize) { - pDecoder->memory.currentReadPos = byteOffset; + if ((ma_uint32)byteOffset <= pDecoder->backend.memory.dataSize) { + pDecoder->backend.memory.currentReadPos = byteOffset; } else { - pDecoder->memory.currentReadPos = pDecoder->memory.dataSize; /* Trying to seek too far forward. */ + pDecoder->backend.memory.currentReadPos = pDecoder->backend.memory.dataSize; /* Trying to seek too far forward. */ } } @@ -40530,9 +46832,9 @@ static ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize, return MA_INVALID_ARGS; } - pDecoder->memory.pData = (const ma_uint8*)pData; - pDecoder->memory.dataSize = dataSize; - pDecoder->memory.currentReadPos = 0; + pDecoder->backend.memory.pData = (const ma_uint8*)pData; + pDecoder->backend.memory.dataSize = dataSize; + pDecoder->backend.memory.currentReadPos = 0; (void)pConfig; return MA_SUCCESS; @@ -40555,6 +46857,7 @@ MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, cons MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { +#ifdef MA_HAS_WAV ma_decoder_config config; ma_result result; @@ -40565,44 +46868,24 @@ MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, return result; } -#ifdef MA_HAS_WAV result = ma_decoder_init_wav__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)pData; + (void)dataSize; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_decoder_config config; - ma_result result; - - config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */ - - result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - #ifdef MA_HAS_FLAC - result = ma_decoder_init_flac__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder__postinit(&config, pDecoder); -} - -MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) -{ ma_decoder_config config; ma_result result; @@ -40613,20 +46896,24 @@ MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSiz return result; } -#ifdef MA_HAS_VORBIS - result = ma_decoder_init_vorbis__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif + result = ma_decoder_init_flac__internal(&config, pDecoder); if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)pData; + (void)dataSize; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { +#ifdef MA_HAS_MP3 ma_decoder_config config; ma_result result; @@ -40637,16 +46924,47 @@ MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, return result; } -#ifdef MA_HAS_MP3 result = ma_decoder_init_mp3__internal(&config, pDecoder); -#else - result = MA_NO_BACKEND; -#endif if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(&config, pDecoder); +#else + (void)pData; + (void)dataSize; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_VORBIS + ma_decoder_config config; + ma_result result; + + config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */ + + result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_vorbis__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + return ma_decoder__postinit(&config, pDecoder); +#else + (void)pData; + (void)dataSize; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif } MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder) @@ -40669,6 +46987,16 @@ MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, return ma_decoder__postinit(&config, pDecoder); } + +#if defined(MA_HAS_WAV) || \ + defined(MA_HAS_MP3) || \ + defined(MA_HAS_FLAC) || \ + defined(MA_HAS_VORBIS) || \ + defined(MA_HAS_OPUS) +#define MA_HAS_PATH_API +#endif + +#if defined(MA_HAS_PATH_API) static const char* ma_path_file_name(const char* path) { const char* fileName; @@ -40806,7 +47134,7 @@ static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* e ext1 = extension; ext2 = ma_path_extension_w(path); -#if defined(_MSC_VER) || defined(__DMC__) +#if defined(_MSC_VER) || defined(__WATCOMC__) || defined(__DMC__) return _wcsicmp(ext1, ext2) == 0; #else /* @@ -40835,242 +47163,494 @@ static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* e } #endif } +#endif /* MA_HAS_PATH_API */ -static size_t ma_decoder__on_read_stdio(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead) + +static size_t ma_decoder__on_read_vfs(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead) { - return fread(pBufferOut, 1, bytesToRead, (FILE*)pDecoder->pUserData); + size_t bytesRead; + + MA_ASSERT(pDecoder != NULL); + MA_ASSERT(pBufferOut != NULL); + + ma_vfs_or_default_read(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, pBufferOut, bytesToRead, &bytesRead); + + return bytesRead; } -static ma_bool32 ma_decoder__on_seek_stdio(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin) -{ - return fseek((FILE*)pDecoder->pUserData, byteOffset, (origin == ma_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; -} - -static ma_result ma_decoder__preinit_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +static ma_bool32 ma_decoder__on_seek_vfs(ma_decoder* pDecoder, int offset, ma_seek_origin origin) { ma_result result; - FILE* pFile; - if (pDecoder == NULL) { - return MA_INVALID_ARGS; + MA_ASSERT(pDecoder != NULL); + + result = ma_vfs_or_default_seek(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, offset, origin); + if (result != MA_SUCCESS) { + return MA_FALSE; } - MA_ZERO_OBJECT(pDecoder); + return MA_TRUE; +} + +static ma_result ma_decoder__preinit_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + ma_result result; + ma_vfs_file file; + + result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder); + if (result != MA_SUCCESS) { + return result; + } if (pFilePath == NULL || pFilePath[0] == '\0') { return MA_INVALID_ARGS; } - result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder); + result = ma_vfs_or_default_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); if (result != MA_SUCCESS) { return result; } - result = ma_fopen(&pFile, pFilePath, "rb"); - if (pFile == NULL) { - return result; - } - - /* We need to manually set the user data so the calls to ma_decoder__on_seek_stdio() succeed. */ - pDecoder->pUserData = pFile; + pDecoder->backend.vfs.pVFS = pVFS; + pDecoder->backend.vfs.file = file; return MA_SUCCESS; } -static ma_result ma_decoder__preinit_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; - FILE* pFile; + ma_decoder_config config; - if (pDecoder == NULL) { - return MA_INVALID_ARGS; - } - - MA_ZERO_OBJECT(pDecoder); - - if (pFilePath == NULL || pFilePath[0] == '\0') { - return MA_INVALID_ARGS; - } - - result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder); + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); if (result != MA_SUCCESS) { return result; } - result = ma_wfopen(&pFile, pFilePath, L"rb", &pDecoder->allocationCallbacks); - if (pFile == NULL) { + result = MA_NO_BACKEND; + +#ifdef MA_HAS_WAV + if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "wav")) { + result = ma_decoder_init_wav__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif +#ifdef MA_HAS_FLAC + if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "flac")) { + result = ma_decoder_init_flac__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif +#ifdef MA_HAS_MP3 + if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "mp3")) { + result = ma_decoder_init_mp3__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif + + /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */ + if (result != MA_SUCCESS) { + result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder); + } else { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); return result; } - /* We need to manually set the user data so the calls to ma_decoder__on_seek_stdio() succeed. */ - pDecoder->pUserData = pFile; + return MA_SUCCESS; +} +MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_WAV + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_wav__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_FLAC + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_flac__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_MP3 + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_mp3__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_VORBIS + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_vorbis__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + + + +static ma_result ma_decoder__preinit_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + ma_result result; + ma_vfs_file file; + + result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + if (pFilePath == NULL || pFilePath[0] == '\0') { + return MA_INVALID_ARGS; + } + + result = ma_vfs_or_default_open_w(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); + if (result != MA_SUCCESS) { + return result; + } + + pDecoder->backend.vfs.pVFS = pVFS; + pDecoder->backend.vfs.file = file; + return MA_SUCCESS; } +MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = MA_NO_BACKEND; + +#ifdef MA_HAS_WAV + if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"wav")) { + result = ma_decoder_init_wav__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif +#ifdef MA_HAS_FLAC + if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"flac")) { + result = ma_decoder_init_flac__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif +#ifdef MA_HAS_MP3 + if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"mp3")) { + result = ma_decoder_init_mp3__internal(&config, pDecoder); + if (result != MA_SUCCESS) { + ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); + } + } +#endif + + /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */ + if (result != MA_SUCCESS) { + result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder); + } else { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + return result; + } + + return MA_SUCCESS; +} + +MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_WAV + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_wav__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_FLAC + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_flac__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_MP3 + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_mp3__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + +MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ +#ifdef MA_HAS_VORBIS + ma_result result; + ma_decoder_config config; + + config = ma_decoder_config_init_copy(pConfig); + result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); + if (result != MA_SUCCESS) { + return result; + } + + result = ma_decoder_init_vorbis__internal(&config, pDecoder); + if (result == MA_SUCCESS) { + result = ma_decoder__postinit(&config, pDecoder); + } + + if (result != MA_SUCCESS) { + ma_vfs_or_default_close(pVFS, pDecoder->backend.vfs.file); + } + + return result; +#else + (void)pVFS; + (void)pFilePath; + (void)pConfig; + (void)pDecoder; + return MA_NO_BACKEND; +#endif +} + + + MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); /* This sets pDecoder->pUserData to a FILE*. */ - if (result != MA_SUCCESS) { - return result; - } - - /* WAV */ - if (ma_path_extension_equal(pFilePath, "wav")) { - result = ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* FLAC */ - if (ma_path_extension_equal(pFilePath, "flac")) { - result = ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* MP3 */ - if (ma_path_extension_equal(pFilePath, "mp3")) { - result = ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* Trial and error. */ - return ma_decoder_init(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_wav(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); -} - -MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) -{ - ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_vorbis(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_flac(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_mp3(NULL, pFilePath, pConfig, pDecoder); } +MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + return ma_decoder_init_vfs_vorbis(NULL, pFilePath, pConfig, pDecoder); +} + + MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); /* This sets pDecoder->pUserData to a FILE*. */ - if (result != MA_SUCCESS) { - return result; - } - - /* WAV */ - if (ma_path_extension_equal_w(pFilePath, L"wav")) { - result = ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* FLAC */ - if (ma_path_extension_equal_w(pFilePath, L"flac")) { - result = ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* MP3 */ - if (ma_path_extension_equal_w(pFilePath, L"mp3")) { - result = ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); - if (result == MA_SUCCESS) { - return MA_SUCCESS; - } - - ma_decoder__on_seek_stdio(pDecoder, 0, ma_seek_origin_start); - } - - /* Trial and error. */ - return ma_decoder_init(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_w(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_wav(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_wav_w(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_flac(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); -} - -MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) -{ - ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } - - return ma_decoder_init_vorbis(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); + return ma_decoder_init_vfs_flac_w(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { - ma_result result = ma_decoder__preinit_file_w(pFilePath, pConfig, pDecoder); - if (result != MA_SUCCESS) { - return result; - } + return ma_decoder_init_vfs_mp3_w(NULL, pFilePath, pConfig, pDecoder); +} - return ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder); +MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) +{ + return ma_decoder_init_vfs_vorbis_w(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder) @@ -41083,9 +47663,8 @@ MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder) pDecoder->onUninit(pDecoder); } - /* If we have a file handle, close it. */ - if (pDecoder->onRead == ma_decoder__on_read_stdio) { - fclose((FILE*)pDecoder->pUserData); + if (pDecoder->onRead == ma_decoder__on_read_vfs) { + ma_vfs_or_default_close(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file); } ma_data_converter_uninit(&pDecoder->converter); @@ -41093,6 +47672,23 @@ MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder) return MA_SUCCESS; } +MA_API ma_result ma_decoder_get_cursor_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pCursor) +{ + if (pCursor == NULL) { + return MA_INVALID_ARGS; + } + + *pCursor = 0; + + if (pDecoder == NULL) { + return MA_INVALID_ARGS; + } + + *pCursor = pDecoder->readPointerInPCMFrames; + + return MA_SUCCESS; +} + MA_API ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder) { if (pDecoder == NULL) { @@ -41117,7 +47713,7 @@ MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesO ma_uint64 totalFramesReadOut; ma_uint64 totalFramesReadIn; void* pRunningFramesOut; - + if (pDecoder == NULL) { return 0; } @@ -41128,74 +47724,130 @@ MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesO /* Fast path. */ if (pDecoder->converter.isPassthrough) { - return pDecoder->onReadPCMFrames(pDecoder, pFramesOut, frameCount); - } - - /* Getting here means we need to do data conversion. */ - totalFramesReadOut = 0; - totalFramesReadIn = 0; - pRunningFramesOut = pFramesOut; - - while (totalFramesReadOut < frameCount) { - ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In internal format. */ - ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels); - ma_uint64 framesToReadThisIterationIn; - ma_uint64 framesReadThisIterationIn; - ma_uint64 framesToReadThisIterationOut; - ma_uint64 framesReadThisIterationOut; - ma_uint64 requiredInputFrameCount; - - framesToReadThisIterationOut = (frameCount - totalFramesReadOut); - framesToReadThisIterationIn = framesToReadThisIterationOut; - if (framesToReadThisIterationIn > intermediaryBufferCap) { - framesToReadThisIterationIn = intermediaryBufferCap; - } - - requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDecoder->converter, framesToReadThisIterationOut); - if (framesToReadThisIterationIn > requiredInputFrameCount) { - framesToReadThisIterationIn = requiredInputFrameCount; - } - - if (requiredInputFrameCount > 0) { - framesReadThisIterationIn = pDecoder->onReadPCMFrames(pDecoder, pIntermediaryBuffer, framesToReadThisIterationIn); - totalFramesReadIn += framesReadThisIterationIn; - } - + totalFramesReadOut = pDecoder->onReadPCMFrames(pDecoder, pFramesOut, frameCount); + } else { /* - At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any - input frames, we still want to try processing frames because there may some output frames generated from cached input data. + Getting here means we need to do data conversion. If we're seeking forward and are _not_ doing resampling we can run this in a fast path. If we're doing resampling we + need to run through each sample because we need to ensure it's internal cache is updated. */ - framesReadThisIterationOut = framesToReadThisIterationOut; - result = ma_data_converter_process_pcm_frames(&pDecoder->converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut); - if (result != MA_SUCCESS) { - break; - } + if (pFramesOut == NULL && pDecoder->converter.hasResampler == MA_FALSE) { + totalFramesReadOut = pDecoder->onReadPCMFrames(pDecoder, NULL, frameCount); /* All decoder backends must support passing in NULL for the output buffer. */ + } else { + /* Slow path. Need to run everything through the data converter. */ + totalFramesReadOut = 0; + totalFramesReadIn = 0; + pRunningFramesOut = pFramesOut; - totalFramesReadOut += framesReadThisIterationOut; - pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels)); + while (totalFramesReadOut < frameCount) { + ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In internal format. */ + ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels); + ma_uint64 framesToReadThisIterationIn; + ma_uint64 framesReadThisIterationIn; + ma_uint64 framesToReadThisIterationOut; + ma_uint64 framesReadThisIterationOut; + ma_uint64 requiredInputFrameCount; - if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) { - break; /* We're done. */ + framesToReadThisIterationOut = (frameCount - totalFramesReadOut); + framesToReadThisIterationIn = framesToReadThisIterationOut; + if (framesToReadThisIterationIn > intermediaryBufferCap) { + framesToReadThisIterationIn = intermediaryBufferCap; + } + + requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDecoder->converter, framesToReadThisIterationOut); + if (framesToReadThisIterationIn > requiredInputFrameCount) { + framesToReadThisIterationIn = requiredInputFrameCount; + } + + if (requiredInputFrameCount > 0) { + framesReadThisIterationIn = pDecoder->onReadPCMFrames(pDecoder, pIntermediaryBuffer, framesToReadThisIterationIn); + totalFramesReadIn += framesReadThisIterationIn; + } else { + framesReadThisIterationIn = 0; + } + + /* + At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any + input frames, we still want to try processing frames because there may some output frames generated from cached input data. + */ + framesReadThisIterationOut = framesToReadThisIterationOut; + result = ma_data_converter_process_pcm_frames(&pDecoder->converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut); + if (result != MA_SUCCESS) { + break; + } + + totalFramesReadOut += framesReadThisIterationOut; + + if (pRunningFramesOut != NULL) { + pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels)); + } + + if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) { + break; /* We're done. */ + } + } } } + pDecoder->readPointerInPCMFrames += totalFramesReadOut; + return totalFramesReadOut; } MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex) { if (pDecoder == NULL) { - return 0; + return MA_INVALID_ARGS; } if (pDecoder->onSeekToPCMFrame) { - return pDecoder->onSeekToPCMFrame(pDecoder, frameIndex); + ma_result result; + ma_uint64 internalFrameIndex; + if (pDecoder->internalSampleRate == pDecoder->outputSampleRate) { + internalFrameIndex = frameIndex; + } else { + internalFrameIndex = ma_calculate_frame_count_after_resampling(pDecoder->internalSampleRate, pDecoder->outputSampleRate, frameIndex); + } + + result = pDecoder->onSeekToPCMFrame(pDecoder, internalFrameIndex); + if (result == MA_SUCCESS) { + pDecoder->readPointerInPCMFrames = frameIndex; + } + + return result; } /* Should never get here, but if we do it means onSeekToPCMFrame was not set by the backend. */ return MA_INVALID_ARGS; } +MA_API ma_result ma_decoder_get_available_frames(ma_decoder* pDecoder, ma_uint64* pAvailableFrames) +{ + ma_uint64 totalFrameCount; + + if (pAvailableFrames == NULL) { + return MA_INVALID_ARGS; + } + + *pAvailableFrames = 0; + + if (pDecoder == NULL) { + return MA_INVALID_ARGS; + } + + totalFrameCount = ma_decoder_get_length_in_pcm_frames(pDecoder); + if (totalFrameCount == 0) { + return MA_NOT_IMPLEMENTED; + } + + if (totalFrameCount <= pDecoder->readPointerInPCMFrames) { + *pAvailableFrames = 0; + } else { + *pAvailableFrames = totalFrameCount - pDecoder->readPointerInPCMFrames; + } + + return MA_SUCCESS; /* No frames available. */ +} + static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_config* pConfigOut, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { @@ -41205,7 +47857,7 @@ static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_dec void* pPCMFramesOut; MA_ASSERT(pDecoder != NULL); - + totalFrameCount = 0; bpf = ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels); @@ -41252,7 +47904,7 @@ static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_dec } } - + if (pConfigOut != NULL) { pConfigOut->format = pDecoder->outputFormat; pConfigOut->channels = pDecoder->outputChannels; @@ -41274,11 +47926,11 @@ static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_dec return MA_SUCCESS; } -MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) +MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { + ma_result result; ma_decoder_config config; ma_decoder decoder; - ma_result result; if (pFrameCountOut != NULL) { *pFrameCountOut = 0; @@ -41287,18 +47939,21 @@ MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfi *ppPCMFramesOut = NULL; } - if (pFilePath == NULL) { - return MA_INVALID_ARGS; - } - config = ma_decoder_config_init_copy(pConfig); - - result = ma_decoder_init_file(pFilePath, &config, &decoder); + + result = ma_decoder_init_vfs(pVFS, pFilePath, &config, &decoder); if (result != MA_SUCCESS) { return result; } - return ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut); + result = ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut); + + return result; +} + +MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) +{ + return ma_decode_from_vfs(NULL, pFilePath, pConfig, pFrameCountOut, ppPCMFramesOut); } MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) @@ -41319,7 +47974,7 @@ MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder } config = ma_decoder_config_init_copy(pConfig); - + result = ma_decoder_init_memory(pData, dataSize, &config, &decoder); if (result != MA_SUCCESS) { return result; @@ -41376,7 +48031,7 @@ static ma_result ma_encoder__on_init_wav(ma_encoder* pEncoder) allocationCallbacks.onMalloc = pEncoder->config.allocationCallbacks.onMalloc; allocationCallbacks.onRealloc = pEncoder->config.allocationCallbacks.onRealloc; allocationCallbacks.onFree = pEncoder->config.allocationCallbacks.onFree; - + if (!drwav_init_write(pWav, &wavFormat, ma_encoder__internal_on_write_wav, ma_encoder__internal_on_seek_wav, pEncoder, &allocationCallbacks)) { return MA_ERROR; } @@ -41597,6 +48252,7 @@ MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* p Generation **************************************************************************************************************************************************************/ +#ifndef MA_NO_GENERATION MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency) { ma_waveform_config config; @@ -41612,6 +48268,56 @@ MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 ch return config; } +static ma_result ma_waveform__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) +{ + ma_uint64 framesRead = ma_waveform_read_pcm_frames((ma_waveform*)pDataSource, pFramesOut, frameCount); + + if (pFramesRead != NULL) { + *pFramesRead = framesRead; + } + + if (framesRead < frameCount) { + return MA_AT_END; + } + + return MA_SUCCESS; +} + +static ma_result ma_waveform__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) +{ + return ma_waveform_seek_to_pcm_frame((ma_waveform*)pDataSource, frameIndex); +} + +static ma_result ma_waveform__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) +{ + ma_waveform* pWaveform = (ma_waveform*)pDataSource; + + *pFormat = pWaveform->config.format; + *pChannels = pWaveform->config.channels; + *pSampleRate = pWaveform->config.sampleRate; + + return MA_SUCCESS; +} + +static ma_result ma_waveform__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) +{ + ma_waveform* pWaveform = (ma_waveform*)pDataSource; + + *pCursor = (ma_uint64)(pWaveform->time / pWaveform->advance); + + return MA_SUCCESS; +} + +static double ma_waveform__calculate_advance(ma_uint32 sampleRate, double frequency) +{ + return (1.0 / (sampleRate / frequency)); +} + +static void ma_waveform__update_advance(ma_waveform* pWaveform) +{ + pWaveform->advance = ma_waveform__calculate_advance(pWaveform->config.sampleRate, pWaveform->config.frequency); +} + MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform) { if (pWaveform == NULL) { @@ -41619,9 +48325,14 @@ MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform } MA_ZERO_OBJECT(pWaveform); - pWaveform->config = *pConfig; - pWaveform->advance = 1.0 / pWaveform->config.sampleRate; - pWaveform->time = 0; + pWaveform->ds.onRead = ma_waveform__data_source_on_read; + pWaveform->ds.onSeek = ma_waveform__data_source_on_seek; + pWaveform->ds.onGetDataFormat = ma_waveform__data_source_on_get_data_format; + pWaveform->ds.onGetCursor = ma_waveform__data_source_on_get_cursor; + pWaveform->ds.onGetLength = NULL; /* Intentionally set to NULL since there's no notion of a length in waveforms. */ + pWaveform->config = *pConfig; + pWaveform->advance = ma_waveform__calculate_advance(pWaveform->config.sampleRate, pWaveform->config.frequency); + pWaveform->time = 0; return MA_SUCCESS; } @@ -41643,6 +48354,18 @@ MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double freque } pWaveform->config.frequency = frequency; + ma_waveform__update_advance(pWaveform); + + return MA_SUCCESS; +} + +MA_API ma_result ma_waveform_set_type(ma_waveform* pWaveform, ma_waveform_type type) +{ + if (pWaveform == NULL) { + return MA_INVALID_ARGS; + } + + pWaveform->config.type = type; return MA_SUCCESS; } @@ -41652,26 +48375,27 @@ MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 s return MA_INVALID_ARGS; } - pWaveform->advance = 1.0 / sampleRate; + pWaveform->config.sampleRate = sampleRate; + ma_waveform__update_advance(pWaveform); + return MA_SUCCESS; } -static float ma_waveform_sine_f32(double time, double frequency, double amplitude) +static float ma_waveform_sine_f32(double time, double amplitude) { - return (float)(ma_sin(MA_TAU_D * time * frequency) * amplitude); + return (float)(ma_sin(MA_TAU_D * time) * amplitude); } -static ma_int16 ma_waveform_sine_s16(double time, double frequency, double amplitude) +static ma_int16 ma_waveform_sine_s16(double time, double amplitude) { - return ma_pcm_sample_f32_to_s16(ma_waveform_sine_f32(time, frequency, amplitude)); + return ma_pcm_sample_f32_to_s16(ma_waveform_sine_f32(time, amplitude)); } -static float ma_waveform_square_f32(double time, double frequency, double amplitude) +static float ma_waveform_square_f32(double time, double amplitude) { - double t = time * frequency; - double f = t - (ma_int64)t; + double f = time - (ma_int64)time; double r; - + if (f < 0.5) { r = amplitude; } else { @@ -41681,15 +48405,14 @@ static float ma_waveform_square_f32(double time, double frequency, double amplit return (float)r; } -static ma_int16 ma_waveform_square_s16(double time, double frequency, double amplitude) +static ma_int16 ma_waveform_square_s16(double time, double amplitude) { - return ma_pcm_sample_f32_to_s16(ma_waveform_square_f32(time, frequency, amplitude)); + return ma_pcm_sample_f32_to_s16(ma_waveform_square_f32(time, amplitude)); } -static float ma_waveform_triangle_f32(double time, double frequency, double amplitude) +static float ma_waveform_triangle_f32(double time, double amplitude) { - double t = time * frequency; - double f = t - (ma_int64)t; + double f = time - (ma_int64)time; double r; r = 2 * ma_abs(2 * (f - 0.5)) - 1; @@ -41697,15 +48420,14 @@ static float ma_waveform_triangle_f32(double time, double frequency, double ampl return (float)(r * amplitude); } -static ma_int16 ma_waveform_triangle_s16(double time, double frequency, double amplitude) +static ma_int16 ma_waveform_triangle_s16(double time, double amplitude) { - return ma_pcm_sample_f32_to_s16(ma_waveform_triangle_f32(time, frequency, amplitude)); + return ma_pcm_sample_f32_to_s16(ma_waveform_triangle_f32(time, amplitude)); } -static float ma_waveform_sawtooth_f32(double time, double frequency, double amplitude) +static float ma_waveform_sawtooth_f32(double time, double amplitude) { - double t = time * frequency; - double f = t - (ma_int64)t; + double f = time - (ma_int64)time; double r; r = 2 * (f - 0.5); @@ -41713,9 +48435,9 @@ static float ma_waveform_sawtooth_f32(double time, double frequency, double ampl return (float)(r * amplitude); } -static ma_int16 ma_waveform_sawtooth_s16(double time, double frequency, double amplitude) +static ma_int16 ma_waveform_sawtooth_s16(double time, double amplitude) { - return ma_pcm_sample_f32_to_s16(ma_waveform_sawtooth_f32(time, frequency, amplitude)); + return ma_pcm_sample_f32_to_s16(ma_waveform_sawtooth_f32(time, amplitude)); } static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount) @@ -41731,7 +48453,7 @@ static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFra if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41741,7 +48463,7 @@ static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFra } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_int16 s = ma_waveform_sine_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + ma_int16 s = ma_waveform_sine_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41750,7 +48472,7 @@ static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFra } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41773,7 +48495,7 @@ static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pF if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41783,7 +48505,7 @@ static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pF } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_int16 s = ma_waveform_square_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + ma_int16 s = ma_waveform_square_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41792,7 +48514,7 @@ static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pF } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41815,7 +48537,7 @@ static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41825,7 +48547,7 @@ static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_int16 s = ma_waveform_triangle_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + ma_int16 s = ma_waveform_triangle_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41834,7 +48556,7 @@ static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41857,7 +48579,7 @@ static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41867,7 +48589,7 @@ static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - ma_int16 s = ma_waveform_sawtooth_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + ma_int16 s = ma_waveform_sawtooth_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41876,7 +48598,7 @@ static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { - float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude); + float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { @@ -41924,6 +48646,17 @@ MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFram return frameCount; } +MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex) +{ + if (pWaveform == NULL) { + return MA_INVALID_ARGS; + } + + pWaveform->time = pWaveform->advance * (ma_int64)frameIndex; /* Casting for VC6. Won't be an issue in practice. */ + + return MA_SUCCESS; +} + MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude) { @@ -41943,6 +48676,41 @@ MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels return config; } + +static ma_result ma_noise__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) +{ + ma_uint64 framesRead = ma_noise_read_pcm_frames((ma_noise*)pDataSource, pFramesOut, frameCount); + + if (pFramesRead != NULL) { + *pFramesRead = framesRead; + } + + if (framesRead < frameCount) { + return MA_AT_END; + } + + return MA_SUCCESS; +} + +static ma_result ma_noise__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) +{ + /* No-op. Just pretend to be successful. */ + (void)pDataSource; + (void)frameIndex; + return MA_SUCCESS; +} + +static ma_result ma_noise__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) +{ + ma_noise* pNoise = (ma_noise*)pDataSource; + + *pFormat = pNoise->config.format; + *pChannels = pNoise->config.channels; + *pSampleRate = 0; /* There is no notion of sample rate with noise generation. */ + + return MA_SUCCESS; +} + MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise) { if (pNoise == NULL) { @@ -41955,7 +48723,16 @@ MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise) return MA_INVALID_ARGS; } - pNoise->config = *pConfig; + if (pConfig->channels < MA_MIN_CHANNELS || pConfig->channels > MA_MAX_CHANNELS) { + return MA_INVALID_ARGS; + } + + pNoise->ds.onRead = ma_noise__data_source_on_read; + pNoise->ds.onSeek = ma_noise__data_source_on_seek; /* <-- No-op for noise. */ + pNoise->ds.onGetDataFormat = ma_noise__data_source_on_get_data_format; + pNoise->ds.onGetCursor = NULL; /* No notion of a cursor for noise. */ + pNoise->ds.onGetLength = NULL; /* No notion of a length for noise. */ + pNoise->config = *pConfig; ma_lcg_seed(&pNoise->lcg, pConfig->seed); if (pNoise->config.type == ma_noise_type_pink) { @@ -41976,6 +48753,37 @@ MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise) return MA_SUCCESS; } +MA_API ma_result ma_noise_set_amplitude(ma_noise* pNoise, double amplitude) +{ + if (pNoise == NULL) { + return MA_INVALID_ARGS; + } + + pNoise->config.amplitude = amplitude; + return MA_SUCCESS; +} + +MA_API ma_result ma_noise_set_seed(ma_noise* pNoise, ma_int32 seed) +{ + if (pNoise == NULL) { + return MA_INVALID_ARGS; + } + + pNoise->lcg.state = seed; + return MA_SUCCESS; +} + + +MA_API ma_result ma_noise_set_type(ma_noise* pNoise, ma_noise_type type) +{ + if (pNoise == NULL) { + return MA_INVALID_ARGS; + } + + pNoise->config.type = type; + return MA_SUCCESS; +} + static MA_INLINE float ma_noise_f32_white(ma_noise* pNoise) { return (float)(ma_lcg_rand_f64(&pNoise->lcg) * pNoise->config.amplitude); @@ -42026,7 +48834,7 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, voi } else { ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); ma_uint32 bpf = bps * pNoise->config.channels; - + if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_white(pNoise); @@ -42143,7 +48951,7 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void } else { ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); ma_uint32 bpf = bps * pNoise->config.channels; - + if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_pink(pNoise, 0); @@ -42168,7 +48976,7 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void static MA_INLINE float ma_noise_f32_brownian(ma_noise* pNoise, ma_uint32 iChannel) { double result; - + result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.brownian.accumulation[iChannel]); result /= 1.005; /* Don't escape the -1..1 range on average. */ @@ -42223,7 +49031,7 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise, } else { ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); ma_uint32 bpf = bps * pNoise->config.channels; - + if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_brownian(pNoise, 0); @@ -42250,6 +49058,11 @@ MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma return 0; } + /* The output buffer is allowed to be NULL. Since we aren't tracking cursors or anything we can just do nothing and pretend to be successful. */ + if (pFramesOut == NULL) { + return frameCount; + } + if (pNoise->config.type == ma_noise_type_white) { return ma_noise_read_pcm_frames__white(pNoise, pFramesOut, frameCount); } @@ -42266,24 +49079,15426 @@ MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma MA_ASSERT(MA_FALSE); return 0; } +#endif /* MA_NO_GENERATION */ + + + +/************************************************************************************************************************************************************** +*************************************************************************************************************************************************************** + +Auto Generated +============== +All code below is auto-generated from a tool. This mostly consists of decoding backend implementations such as dr_wav, dr_flac, etc. If you find a bug in the +code below please report the bug to the respective repository for the relevant project (probably dr_libs). + +*************************************************************************************************************************************************************** +**************************************************************************************************************************************************************/ +#if !defined(MA_NO_WAV) && (!defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)) +#if !defined(DR_WAV_IMPLEMENTATION) && !defined(DRWAV_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ +/* dr_wav_c begin */ +#ifndef dr_wav_c +#define dr_wav_c +#include +#include +#include +#ifndef DR_WAV_NO_STDIO +#include +#include +#endif +#ifndef DRWAV_ASSERT +#include +#define DRWAV_ASSERT(expression) assert(expression) +#endif +#ifndef DRWAV_MALLOC +#define DRWAV_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRWAV_REALLOC +#define DRWAV_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRWAV_FREE +#define DRWAV_FREE(p) free((p)) +#endif +#ifndef DRWAV_COPY_MEMORY +#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRWAV_ZERO_MEMORY +#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif +#ifndef DRWAV_ZERO_OBJECT +#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p)) +#endif +#define drwav_countof(x) (sizeof(x) / sizeof(x[0])) +#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drwav_min(a, b) (((a) < (b)) ? (a) : (b)) +#define drwav_max(a, b) (((a) > (b)) ? (a) : (b)) +#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x)))) +#define DRWAV_MAX_SIMD_VECTOR_SIZE 64 +#if defined(__x86_64__) || defined(_M_X64) + #define DRWAV_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRWAV_X86 +#elif defined(__arm__) || defined(_M_ARM) + #define DRWAV_ARM +#endif +#ifdef _MSC_VER + #define DRWAV_INLINE __forceinline +#elif defined(__GNUC__) + #if defined(__STRICT_ANSI__) + #define DRWAV_INLINE __inline__ __attribute__((always_inline)) + #else + #define DRWAV_INLINE inline __attribute__((always_inline)) + #endif +#elif defined(__WATCOMC__) + #define DRWAV_INLINE __inline +#else + #define DRWAV_INLINE +#endif +#if defined(SIZE_MAX) + #define DRWAV_SIZE_MAX SIZE_MAX +#else + #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) + #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRWAV_SIZE_MAX 0xFFFFFFFF + #endif +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #define DRWAV_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_bswap16) + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRWAV_HAS_BYTESWAP64_INTRINSIC + #endif + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #define DRWAV_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #endif +#endif +DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision) +{ + if (pMajor) { + *pMajor = DRWAV_VERSION_MAJOR; + } + if (pMinor) { + *pMinor = DRWAV_VERSION_MINOR; + } + if (pRevision) { + *pRevision = DRWAV_VERSION_REVISION; + } +} +DRWAV_API const char* drwav_version_string(void) +{ + return DRWAV_VERSION_STRING; +} +#ifndef DRWAV_MAX_SAMPLE_RATE +#define DRWAV_MAX_SAMPLE_RATE 384000 +#endif +#ifndef DRWAV_MAX_CHANNELS +#define DRWAV_MAX_CHANNELS 256 +#endif +#ifndef DRWAV_MAX_BITS_PER_SAMPLE +#define DRWAV_MAX_BITS_PER_SAMPLE 64 +#endif +static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; +static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; +static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; +static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; +static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; +static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; +static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) +{ + int i; + for (i = 0; i < 16; i += 1) { + if (a[i] != b[i]) { + return DRWAV_FALSE; + } + } + return DRWAV_TRUE; +} +static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b) +{ + return + a[0] == b[0] && + a[1] == b[1] && + a[2] == b[2] && + a[3] == b[3]; +} +static DRWAV_INLINE int drwav__is_little_endian(void) +{ +#if defined(DRWAV_X86) || defined(DRWAV_X64) + return DRWAV_TRUE; +#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN + return DRWAV_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} +static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data) +{ + return (data[0] << 0) | (data[1] << 8); +} +static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data) +{ + return (short)drwav__bytes_to_u16(data); +} +static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data) +{ + return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24); +} +static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data) +{ + return (drwav_int32)drwav__bytes_to_u32(data); +} +static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data) +{ + return + ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) | + ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56); +} +static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data) +{ + return (drwav_int64)drwav__bytes_to_u64(data); +} +static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid) +{ + int i; + for (i = 0; i < 16; ++i) { + guid[i] = data[i]; + } +} +static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n) +{ +#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} +static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n) +{ +#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT) + drwav_uint32 r; + __asm__ __volatile__ ( + #if defined(DRWAV_64BIT) + "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) + #else + "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) + #endif + ); + return r; + #else + return __builtin_bswap32(n); + #endif + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} +static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n) +{ +#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) | + ((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) | + ((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) | + ((n & ((drwav_uint64)0x000000FF << 32)) >> 8) | + ((n & ((drwav_uint64)0xFF000000 )) << 8) | + ((n & ((drwav_uint64)0x00FF0000 )) << 24) | + ((n & ((drwav_uint64)0x0000FF00 )) << 40) | + ((n & ((drwav_uint64)0x000000FF )) << 56); +#endif +} +static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n) +{ + return (drwav_int16)drwav__bswap16((drwav_uint16)n); +} +static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]); + } +} +static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p) +{ + drwav_uint8 t; + t = p[0]; + p[0] = p[2]; + p[2] = t; +} +static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + drwav_uint8* pSample = pSamples + (iSample*3); + drwav__bswap_s24(pSample); + } +} +static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n) +{ + return (drwav_int32)drwav__bswap32((drwav_uint32)n); +} +static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]); + } +} +static DRWAV_INLINE float drwav__bswap_f32(float n) +{ + union { + drwav_uint32 i; + float f; + } x; + x.f = n; + x.i = drwav__bswap32(x.i); + return x.f; +} +static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]); + } +} +static DRWAV_INLINE double drwav__bswap_f64(double n) +{ + union { + drwav_uint64 i; + double f; + } x; + x.f = n; + x.i = drwav__bswap64(x.i); + return x.f; +} +static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]); + } +} +static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) +{ + switch (bytesPerSample) + { + case 2: + { + drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); + } break; + case 3: + { + drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount); + } break; + case 4: + { + drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount); + } break; + default: + { + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} +static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) +{ + switch (bytesPerSample) + { + #if 0 + case 2: + { + drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount); + } break; + #endif + case 4: + { + drwav__bswap_samples_f32((float*)pSamples, sampleCount); + } break; + case 8: + { + drwav__bswap_samples_f64((double*)pSamples, sampleCount); + } break; + default: + { + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} +static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format) +{ + switch (format) + { + case DR_WAVE_FORMAT_PCM: + { + drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample); + } break; + case DR_WAVE_FORMAT_IEEE_FLOAT: + { + drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample); + } break; + case DR_WAVE_FORMAT_ALAW: + case DR_WAVE_FORMAT_MULAW: + { + drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); + } break; + case DR_WAVE_FORMAT_ADPCM: + case DR_WAVE_FORMAT_DVI_ADPCM: + default: + { + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} +static void* drwav__malloc_default(size_t sz, void* pUserData) +{ + (void)pUserData; + return DRWAV_MALLOC(sz); +} +static void* drwav__realloc_default(void* p, size_t sz, void* pUserData) +{ + (void)pUserData; + return DRWAV_REALLOC(p, sz); +} +static void drwav__free_default(void* p, void* pUserData) +{ + (void)pUserData; + DRWAV_FREE(p); +} +static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onMalloc != NULL) { + return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); + } + return NULL; +} +static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { + void* p2; + p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); + if (p2 == NULL) { + return NULL; + } + if (p != NULL) { + DRWAV_COPY_MEMORY(p2, p, szOld); + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } + return p2; + } + return NULL; +} +static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (p == NULL || pAllocationCallbacks == NULL) { + return; + } + if (pAllocationCallbacks->onFree != NULL) { + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } +} +static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + return *pAllocationCallbacks; + } else { + drwav_allocation_callbacks allocationCallbacks; + allocationCallbacks.pUserData = NULL; + allocationCallbacks.onMalloc = drwav__malloc_default; + allocationCallbacks.onRealloc = drwav__realloc_default; + allocationCallbacks.onFree = drwav__free_default; + return allocationCallbacks; + } +} +static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag) +{ + return + formatTag == DR_WAVE_FORMAT_ADPCM || + formatTag == DR_WAVE_FORMAT_DVI_ADPCM; +} +static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize) +{ + return (unsigned int)(chunkSize % 2); +} +static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize) +{ + return (unsigned int)(chunkSize % 8); +} +static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); +static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut) +{ + if (container == drwav_container_riff || container == drwav_container_rf64) { + drwav_uint8 sizeInBytes[4]; + if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) { + return DRWAV_AT_END; + } + if (onRead(pUserData, sizeInBytes, 4) != 4) { + return DRWAV_INVALID_FILE; + } + pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes); + pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes); + *pRunningBytesReadOut += 8; + } else { + drwav_uint8 sizeInBytes[8]; + if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) { + return DRWAV_AT_END; + } + if (onRead(pUserData, sizeInBytes, 8) != 8) { + return DRWAV_INVALID_FILE; + } + pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24; + pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes); + *pRunningBytesReadOut += 24; + } + return DRWAV_SUCCESS; +} +static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) +{ + drwav_uint64 bytesRemainingToSeek = offset; + while (bytesRemainingToSeek > 0) { + if (bytesRemainingToSeek > 0x7FFFFFFF) { + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek -= 0x7FFFFFFF; + } else { + if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek = 0; + } + } + return DRWAV_TRUE; +} +static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) +{ + if (offset <= 0x7FFFFFFF) { + return onSeek(pUserData, (int)offset, drwav_seek_origin_start); + } + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) { + return DRWAV_FALSE; + } + offset -= 0x7FFFFFFF; + for (;;) { + if (offset <= 0x7FFFFFFF) { + return onSeek(pUserData, (int)offset, drwav_seek_origin_current); + } + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + offset -= 0x7FFFFFFF; + } +} +static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut) +{ + drwav_chunk_header header; + drwav_uint8 fmt[16]; + if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + while (((container == drwav_container_riff || container == drwav_container_rf64) && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) { + if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize; + if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + } + if (container == drwav_container_riff || container == drwav_container_rf64) { + if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) { + return DRWAV_FALSE; + } + } else { + if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) { + return DRWAV_FALSE; + } + } + if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += sizeof(fmt); + fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0); + fmtOut->channels = drwav__bytes_to_u16(fmt + 2); + fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4); + fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8); + fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12); + fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14); + fmtOut->extendedSize = 0; + fmtOut->validBitsPerSample = 0; + fmtOut->channelMask = 0; + memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat)); + if (header.sizeInBytes > 16) { + drwav_uint8 fmt_cbSize[2]; + int bytesReadSoFar = 0; + if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += sizeof(fmt_cbSize); + bytesReadSoFar = 18; + fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize); + if (fmtOut->extendedSize > 0) { + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + if (fmtOut->extendedSize != 22) { + return DRWAV_FALSE; + } + } + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + drwav_uint8 fmtext[22]; + if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) { + return DRWAV_FALSE; + } + fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0); + fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2); + drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat); + } else { + if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + } + *pRunningBytesReadOut += fmtOut->extendedSize; + bytesReadSoFar += fmtOut->extendedSize; + } + if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar); + } + if (header.paddingSize > 0) { + if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.paddingSize; + } + return DRWAV_TRUE; +} +static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor) +{ + size_t bytesRead; + DRWAV_ASSERT(onRead != NULL); + DRWAV_ASSERT(pCursor != NULL); + bytesRead = onRead(pUserData, pBufferOut, bytesToRead); + *pCursor += bytesRead; + return bytesRead; +} +#if 0 +static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor) +{ + DRWAV_ASSERT(onSeek != NULL); + DRWAV_ASSERT(pCursor != NULL); + if (!onSeek(pUserData, offset, origin)) { + return DRWAV_FALSE; + } + if (origin == drwav_seek_origin_start) { + *pCursor = offset; + } else { + *pCursor += offset; + } + return DRWAV_TRUE; +} +#endif +static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav) +{ + if ((pWav->bitsPerSample & 0x7) == 0) { + return (pWav->bitsPerSample * pWav->fmt.channels) >> 3; + } else { + return pWav->fmt.blockAlign; + } +} +DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT) +{ + if (pFMT == NULL) { + return 0; + } + if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) { + return pFMT->formatTag; + } else { + return drwav__bytes_to_u16(pFMT->subFormat); + } +} +static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pWav == NULL || onRead == NULL || onSeek == NULL) { + return DRWAV_FALSE; + } + DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); + pWav->onRead = onRead; + pWav->onSeek = onSeek; + pWav->pUserData = pReadSeekUserData; + pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); + if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { + return DRWAV_FALSE; + } + return DRWAV_TRUE; +} +static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags) +{ + drwav_uint64 cursor; + drwav_bool32 sequential; + drwav_uint8 riff[4]; + drwav_fmt fmt; + unsigned short translatedFormatTag; + drwav_bool32 foundDataChunk; + drwav_uint64 dataChunkSize = 0; + drwav_uint64 sampleCountFromFactChunk = 0; + drwav_uint64 chunkSize; + cursor = 0; + sequential = (flags & DRWAV_SEQUENTIAL) != 0; + if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) { + return DRWAV_FALSE; + } + if (drwav__fourcc_equal(riff, "RIFF")) { + pWav->container = drwav_container_riff; + } else if (drwav__fourcc_equal(riff, "riff")) { + int i; + drwav_uint8 riff2[12]; + pWav->container = drwav_container_w64; + if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) { + return DRWAV_FALSE; + } + for (i = 0; i < 12; ++i) { + if (riff2[i] != drwavGUID_W64_RIFF[i+4]) { + return DRWAV_FALSE; + } + } + } else if (drwav__fourcc_equal(riff, "RF64")) { + pWav->container = drwav_container_rf64; + } else { + return DRWAV_FALSE; + } + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + drwav_uint8 chunkSizeBytes[4]; + drwav_uint8 wave[4]; + if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { + return DRWAV_FALSE; + } + if (pWav->container == drwav_container_riff) { + if (drwav__bytes_to_u32(chunkSizeBytes) < 36) { + return DRWAV_FALSE; + } + } else { + if (drwav__bytes_to_u32(chunkSizeBytes) != 0xFFFFFFFF) { + return DRWAV_FALSE; + } + } + if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { + return DRWAV_FALSE; + } + if (!drwav__fourcc_equal(wave, "WAVE")) { + return DRWAV_FALSE; + } + } else { + drwav_uint8 chunkSizeBytes[8]; + drwav_uint8 wave[16]; + if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { + return DRWAV_FALSE; + } + if (drwav__bytes_to_u64(chunkSizeBytes) < 80) { + return DRWAV_FALSE; + } + if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { + return DRWAV_FALSE; + } + if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) { + return DRWAV_FALSE; + } + } + if (pWav->container == drwav_container_rf64) { + drwav_uint8 sizeBytes[8]; + drwav_uint64 bytesRemainingInChunk; + drwav_chunk_header header; + drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); + if (result != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + if (!drwav__fourcc_equal(header.id.fourcc, "ds64")) { + return DRWAV_FALSE; + } + bytesRemainingInChunk = header.sizeInBytes + header.paddingSize; + if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + cursor += 8; + if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + dataChunkSize = drwav__bytes_to_u64(sizeBytes); + if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + sampleCountFromFactChunk = drwav__bytes_to_u64(sizeBytes); + if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) { + return DRWAV_FALSE; + } + cursor += bytesRemainingInChunk; + } + if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) { + return DRWAV_FALSE; + } + if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) || + (fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) || + (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) || + fmt.blockAlign == 0) { + return DRWAV_FALSE; + } + translatedFormatTag = fmt.formatTag; + if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0); + } + foundDataChunk = DRWAV_FALSE; + for (;;) + { + drwav_chunk_header header; + drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); + if (result != DRWAV_SUCCESS) { + if (!foundDataChunk) { + return DRWAV_FALSE; + } else { + break; + } + } + if (!sequential && onChunk != NULL) { + drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt); + if (callbackBytesRead > 0) { + if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) { + return DRWAV_FALSE; + } + } + } + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + chunkSize = header.sizeInBytes; + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + if (drwav__fourcc_equal(header.id.fourcc, "data")) { + foundDataChunk = DRWAV_TRUE; + if (pWav->container != drwav_container_rf64) { + dataChunkSize = chunkSize; + } + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) { + foundDataChunk = DRWAV_TRUE; + dataChunkSize = chunkSize; + } + } + if (foundDataChunk && sequential) { + break; + } + if (pWav->container == drwav_container_riff) { + if (drwav__fourcc_equal(header.id.fourcc, "fact")) { + drwav_uint32 sampleCount; + if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) { + return DRWAV_FALSE; + } + chunkSize -= 4; + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + sampleCountFromFactChunk = sampleCount; + } else { + sampleCountFromFactChunk = 0; + } + } + } else if (pWav->container == drwav_container_w64) { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) { + if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) { + return DRWAV_FALSE; + } + chunkSize -= 8; + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + } + } else if (pWav->container == drwav_container_rf64) { + } + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + if (drwav__fourcc_equal(header.id.fourcc, "smpl")) { + drwav_uint8 smplHeaderData[36]; + if (chunkSize >= sizeof(smplHeaderData)) { + drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor); + chunkSize -= bytesJustRead; + if (bytesJustRead == sizeof(smplHeaderData)) { + drwav_uint32 iLoop; + pWav->smpl.manufacturer = drwav__bytes_to_u32(smplHeaderData+0); + pWav->smpl.product = drwav__bytes_to_u32(smplHeaderData+4); + pWav->smpl.samplePeriod = drwav__bytes_to_u32(smplHeaderData+8); + pWav->smpl.midiUnityNotes = drwav__bytes_to_u32(smplHeaderData+12); + pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16); + pWav->smpl.smpteFormat = drwav__bytes_to_u32(smplHeaderData+20); + pWav->smpl.smpteOffset = drwav__bytes_to_u32(smplHeaderData+24); + pWav->smpl.numSampleLoops = drwav__bytes_to_u32(smplHeaderData+28); + pWav->smpl.samplerData = drwav__bytes_to_u32(smplHeaderData+32); + for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) { + drwav_uint8 smplLoopData[24]; + bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor); + chunkSize -= bytesJustRead; + if (bytesJustRead == sizeof(smplLoopData)) { + pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0); + pWav->smpl.loops[iLoop].type = drwav__bytes_to_u32(smplLoopData+4); + pWav->smpl.loops[iLoop].start = drwav__bytes_to_u32(smplLoopData+8); + pWav->smpl.loops[iLoop].end = drwav__bytes_to_u32(smplLoopData+12); + pWav->smpl.loops[iLoop].fraction = drwav__bytes_to_u32(smplLoopData+16); + pWav->smpl.loops[iLoop].playCount = drwav__bytes_to_u32(smplLoopData+20); + } else { + break; + } + } + } + } else { + } + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) { + } + } + chunkSize += header.paddingSize; + if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) { + break; + } + cursor += chunkSize; + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + } + if (!foundDataChunk) { + return DRWAV_FALSE; + } + if (!sequential) { + if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) { + return DRWAV_FALSE; + } + cursor = pWav->dataChunkDataPos; + } + pWav->fmt = fmt; + pWav->sampleRate = fmt.sampleRate; + pWav->channels = fmt.channels; + pWav->bitsPerSample = fmt.bitsPerSample; + pWav->bytesRemaining = dataChunkSize; + pWav->translatedFormatTag = translatedFormatTag; + pWav->dataChunkDataSize = dataChunkSize; + if (sampleCountFromFactChunk != 0) { + pWav->totalPCMFrameCount = sampleCountFromFactChunk; + } else { + pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav); + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 totalBlockHeaderSizeInBytes; + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + if ((blockCount * fmt.blockAlign) < dataChunkSize) { + blockCount += 1; + } + totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels); + pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 totalBlockHeaderSizeInBytes; + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + if ((blockCount * fmt.blockAlign) < dataChunkSize) { + blockCount += 1; + } + totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels); + pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; + pWav->totalPCMFrameCount += blockCount; + } + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + if (pWav->channels > 2) { + return DRWAV_FALSE; + } + } +#ifdef DR_WAV_LIBSNDFILE_COMPAT + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels; + } +#endif + return DRWAV_TRUE; +} +DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); +} +static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + drwav_uint64 chunkSize = 4 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); + if (chunkSize > 0xFFFFFFFFUL) { + chunkSize = 0xFFFFFFFFUL; + } + return (drwav_uint32)chunkSize; +} +static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + if (dataChunkSize <= 0xFFFFFFFFUL) { + return (drwav_uint32)dataChunkSize; + } else { + return 0xFFFFFFFFUL; + } +} +static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize); + return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize; +} +static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + return 24 + dataChunkSize; +} +static drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize) +{ + drwav_uint64 chunkSize = 4 + 36 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); + if (chunkSize > 0xFFFFFFFFUL) { + chunkSize = 0xFFFFFFFFUL; + } + return chunkSize; +} +static drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize) +{ + return dataChunkSize; +} +static size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + return pWav->onWrite(pWav->pUserData, pData, dataSize); +} +static size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + if (!drwav__is_little_endian()) { + value = drwav__bswap16(value); + } + return drwav__write(pWav, &value, 2); +} +static size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + if (!drwav__is_little_endian()) { + value = drwav__bswap32(value); + } + return drwav__write(pWav, &value, 4); +} +static size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + if (!drwav__is_little_endian()) { + value = drwav__bswap64(value); + } + return drwav__write(pWav, &value, 8); +} +static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pWav == NULL || onWrite == NULL) { + return DRWAV_FALSE; + } + if (!isSequential && onSeek == NULL) { + return DRWAV_FALSE; + } + if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) { + return DRWAV_FALSE; + } + if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) { + return DRWAV_FALSE; + } + DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); + pWav->onWrite = onWrite; + pWav->onSeek = onSeek; + pWav->pUserData = pUserData; + pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); + if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { + return DRWAV_FALSE; + } + pWav->fmt.formatTag = (drwav_uint16)pFormat->format; + pWav->fmt.channels = (drwav_uint16)pFormat->channels; + pWav->fmt.sampleRate = pFormat->sampleRate; + pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8); + pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8); + pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->fmt.extendedSize = 0; + pWav->isSequentialWrite = isSequential; + return DRWAV_TRUE; +} +static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + size_t runningPos = 0; + drwav_uint64 initialDataChunkSize = 0; + drwav_uint64 chunkSizeFMT; + if (pWav->isSequentialWrite) { + initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8; + if (pFormat->container == drwav_container_riff) { + if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) { + return DRWAV_FALSE; + } + } + } + pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize; + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize; + runningPos += drwav__write(pWav, "RIFF", 4); + runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF); + runningPos += drwav__write(pWav, "WAVE", 4); + } else if (pFormat->container == drwav_container_w64) { + drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; + runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF); + runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16); + } else if (pFormat->container == drwav_container_rf64) { + runningPos += drwav__write(pWav, "RF64", 4); + runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); + runningPos += drwav__write(pWav, "WAVE", 4); + } + if (pFormat->container == drwav_container_rf64) { + drwav_uint32 initialds64ChunkSize = 28; + drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize; + runningPos += drwav__write(pWav, "ds64", 4); + runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize); + runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize); + runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize); + runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount); + runningPos += drwav__write_u32ne_to_le(pWav, 0); + } + if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) { + chunkSizeFMT = 16; + runningPos += drwav__write(pWav, "fmt ", 4); + runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT); + } else if (pFormat->container == drwav_container_w64) { + chunkSizeFMT = 40; + runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT); + } + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels); + runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate); + runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample); + pWav->dataChunkDataPos = runningPos; + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize; + runningPos += drwav__write(pWav, "data", 4); + runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA); + } else if (pFormat->container == drwav_container_w64) { + drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; + runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA); + } else if (pFormat->container == drwav_container_rf64) { + runningPos += drwav__write(pWav, "data", 4); + runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); + } + (void)runningPos; + pWav->container = pFormat->container; + pWav->channels = (drwav_uint16)pFormat->channels; + pWav->sampleRate = pFormat->sampleRate; + pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->translatedFormatTag = (drwav_uint16)pFormat->format; + return DRWAV_TRUE; +} +DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + return drwav_init_write__internal(pWav, pFormat, 0); +} +DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + return drwav_init_write__internal(pWav, pFormat, totalSampleCount); +} +DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks); +} +DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0); + drwav_uint64 riffChunkSizeBytes; + drwav_uint64 fileSizeBytes = 0; + if (pFormat->container == drwav_container_riff) { + riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes); + fileSizeBytes = (8 + riffChunkSizeBytes); + } else if (pFormat->container == drwav_container_w64) { + riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes); + fileSizeBytes = riffChunkSizeBytes; + } else if (pFormat->container == drwav_container_rf64) { + riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes); + fileSizeBytes = (8 + riffChunkSizeBytes); + } + return fileSizeBytes; +} +#ifndef DR_WAV_NO_STDIO +#include +static drwav_result drwav_result_from_errno(int e) +{ + switch (e) + { + case 0: return DRWAV_SUCCESS; + #ifdef EPERM + case EPERM: return DRWAV_INVALID_OPERATION; + #endif + #ifdef ENOENT + case ENOENT: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef ESRCH + case ESRCH: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef EINTR + case EINTR: return DRWAV_INTERRUPT; + #endif + #ifdef EIO + case EIO: return DRWAV_IO_ERROR; + #endif + #ifdef ENXIO + case ENXIO: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef E2BIG + case E2BIG: return DRWAV_INVALID_ARGS; + #endif + #ifdef ENOEXEC + case ENOEXEC: return DRWAV_INVALID_FILE; + #endif + #ifdef EBADF + case EBADF: return DRWAV_INVALID_FILE; + #endif + #ifdef ECHILD + case ECHILD: return DRWAV_ERROR; + #endif + #ifdef EAGAIN + case EAGAIN: return DRWAV_UNAVAILABLE; + #endif + #ifdef ENOMEM + case ENOMEM: return DRWAV_OUT_OF_MEMORY; + #endif + #ifdef EACCES + case EACCES: return DRWAV_ACCESS_DENIED; + #endif + #ifdef EFAULT + case EFAULT: return DRWAV_BAD_ADDRESS; + #endif + #ifdef ENOTBLK + case ENOTBLK: return DRWAV_ERROR; + #endif + #ifdef EBUSY + case EBUSY: return DRWAV_BUSY; + #endif + #ifdef EEXIST + case EEXIST: return DRWAV_ALREADY_EXISTS; + #endif + #ifdef EXDEV + case EXDEV: return DRWAV_ERROR; + #endif + #ifdef ENODEV + case ENODEV: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef ENOTDIR + case ENOTDIR: return DRWAV_NOT_DIRECTORY; + #endif + #ifdef EISDIR + case EISDIR: return DRWAV_IS_DIRECTORY; + #endif + #ifdef EINVAL + case EINVAL: return DRWAV_INVALID_ARGS; + #endif + #ifdef ENFILE + case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES; + #endif + #ifdef EMFILE + case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES; + #endif + #ifdef ENOTTY + case ENOTTY: return DRWAV_INVALID_OPERATION; + #endif + #ifdef ETXTBSY + case ETXTBSY: return DRWAV_BUSY; + #endif + #ifdef EFBIG + case EFBIG: return DRWAV_TOO_BIG; + #endif + #ifdef ENOSPC + case ENOSPC: return DRWAV_NO_SPACE; + #endif + #ifdef ESPIPE + case ESPIPE: return DRWAV_BAD_SEEK; + #endif + #ifdef EROFS + case EROFS: return DRWAV_ACCESS_DENIED; + #endif + #ifdef EMLINK + case EMLINK: return DRWAV_TOO_MANY_LINKS; + #endif + #ifdef EPIPE + case EPIPE: return DRWAV_BAD_PIPE; + #endif + #ifdef EDOM + case EDOM: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef ERANGE + case ERANGE: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef EDEADLK + case EDEADLK: return DRWAV_DEADLOCK; + #endif + #ifdef ENAMETOOLONG + case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG; + #endif + #ifdef ENOLCK + case ENOLCK: return DRWAV_ERROR; + #endif + #ifdef ENOSYS + case ENOSYS: return DRWAV_NOT_IMPLEMENTED; + #endif + #ifdef ENOTEMPTY + case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY; + #endif + #ifdef ELOOP + case ELOOP: return DRWAV_TOO_MANY_LINKS; + #endif + #ifdef ENOMSG + case ENOMSG: return DRWAV_NO_MESSAGE; + #endif + #ifdef EIDRM + case EIDRM: return DRWAV_ERROR; + #endif + #ifdef ECHRNG + case ECHRNG: return DRWAV_ERROR; + #endif + #ifdef EL2NSYNC + case EL2NSYNC: return DRWAV_ERROR; + #endif + #ifdef EL3HLT + case EL3HLT: return DRWAV_ERROR; + #endif + #ifdef EL3RST + case EL3RST: return DRWAV_ERROR; + #endif + #ifdef ELNRNG + case ELNRNG: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef EUNATCH + case EUNATCH: return DRWAV_ERROR; + #endif + #ifdef ENOCSI + case ENOCSI: return DRWAV_ERROR; + #endif + #ifdef EL2HLT + case EL2HLT: return DRWAV_ERROR; + #endif + #ifdef EBADE + case EBADE: return DRWAV_ERROR; + #endif + #ifdef EBADR + case EBADR: return DRWAV_ERROR; + #endif + #ifdef EXFULL + case EXFULL: return DRWAV_ERROR; + #endif + #ifdef ENOANO + case ENOANO: return DRWAV_ERROR; + #endif + #ifdef EBADRQC + case EBADRQC: return DRWAV_ERROR; + #endif + #ifdef EBADSLT + case EBADSLT: return DRWAV_ERROR; + #endif + #ifdef EBFONT + case EBFONT: return DRWAV_INVALID_FILE; + #endif + #ifdef ENOSTR + case ENOSTR: return DRWAV_ERROR; + #endif + #ifdef ENODATA + case ENODATA: return DRWAV_NO_DATA_AVAILABLE; + #endif + #ifdef ETIME + case ETIME: return DRWAV_TIMEOUT; + #endif + #ifdef ENOSR + case ENOSR: return DRWAV_NO_DATA_AVAILABLE; + #endif + #ifdef ENONET + case ENONET: return DRWAV_NO_NETWORK; + #endif + #ifdef ENOPKG + case ENOPKG: return DRWAV_ERROR; + #endif + #ifdef EREMOTE + case EREMOTE: return DRWAV_ERROR; + #endif + #ifdef ENOLINK + case ENOLINK: return DRWAV_ERROR; + #endif + #ifdef EADV + case EADV: return DRWAV_ERROR; + #endif + #ifdef ESRMNT + case ESRMNT: return DRWAV_ERROR; + #endif + #ifdef ECOMM + case ECOMM: return DRWAV_ERROR; + #endif + #ifdef EPROTO + case EPROTO: return DRWAV_ERROR; + #endif + #ifdef EMULTIHOP + case EMULTIHOP: return DRWAV_ERROR; + #endif + #ifdef EDOTDOT + case EDOTDOT: return DRWAV_ERROR; + #endif + #ifdef EBADMSG + case EBADMSG: return DRWAV_BAD_MESSAGE; + #endif + #ifdef EOVERFLOW + case EOVERFLOW: return DRWAV_TOO_BIG; + #endif + #ifdef ENOTUNIQ + case ENOTUNIQ: return DRWAV_NOT_UNIQUE; + #endif + #ifdef EBADFD + case EBADFD: return DRWAV_ERROR; + #endif + #ifdef EREMCHG + case EREMCHG: return DRWAV_ERROR; + #endif + #ifdef ELIBACC + case ELIBACC: return DRWAV_ACCESS_DENIED; + #endif + #ifdef ELIBBAD + case ELIBBAD: return DRWAV_INVALID_FILE; + #endif + #ifdef ELIBSCN + case ELIBSCN: return DRWAV_INVALID_FILE; + #endif + #ifdef ELIBMAX + case ELIBMAX: return DRWAV_ERROR; + #endif + #ifdef ELIBEXEC + case ELIBEXEC: return DRWAV_ERROR; + #endif + #ifdef EILSEQ + case EILSEQ: return DRWAV_INVALID_DATA; + #endif + #ifdef ERESTART + case ERESTART: return DRWAV_ERROR; + #endif + #ifdef ESTRPIPE + case ESTRPIPE: return DRWAV_ERROR; + #endif + #ifdef EUSERS + case EUSERS: return DRWAV_ERROR; + #endif + #ifdef ENOTSOCK + case ENOTSOCK: return DRWAV_NOT_SOCKET; + #endif + #ifdef EDESTADDRREQ + case EDESTADDRREQ: return DRWAV_NO_ADDRESS; + #endif + #ifdef EMSGSIZE + case EMSGSIZE: return DRWAV_TOO_BIG; + #endif + #ifdef EPROTOTYPE + case EPROTOTYPE: return DRWAV_BAD_PROTOCOL; + #endif + #ifdef ENOPROTOOPT + case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE; + #endif + #ifdef EPROTONOSUPPORT + case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED; + #endif + #ifdef ESOCKTNOSUPPORT + case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED; + #endif + #ifdef EOPNOTSUPP + case EOPNOTSUPP: return DRWAV_INVALID_OPERATION; + #endif + #ifdef EPFNOSUPPORT + case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EAFNOSUPPORT + case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EADDRINUSE + case EADDRINUSE: return DRWAV_ALREADY_IN_USE; + #endif + #ifdef EADDRNOTAVAIL + case EADDRNOTAVAIL: return DRWAV_ERROR; + #endif + #ifdef ENETDOWN + case ENETDOWN: return DRWAV_NO_NETWORK; + #endif + #ifdef ENETUNREACH + case ENETUNREACH: return DRWAV_NO_NETWORK; + #endif + #ifdef ENETRESET + case ENETRESET: return DRWAV_NO_NETWORK; + #endif + #ifdef ECONNABORTED + case ECONNABORTED: return DRWAV_NO_NETWORK; + #endif + #ifdef ECONNRESET + case ECONNRESET: return DRWAV_CONNECTION_RESET; + #endif + #ifdef ENOBUFS + case ENOBUFS: return DRWAV_NO_SPACE; + #endif + #ifdef EISCONN + case EISCONN: return DRWAV_ALREADY_CONNECTED; + #endif + #ifdef ENOTCONN + case ENOTCONN: return DRWAV_NOT_CONNECTED; + #endif + #ifdef ESHUTDOWN + case ESHUTDOWN: return DRWAV_ERROR; + #endif + #ifdef ETOOMANYREFS + case ETOOMANYREFS: return DRWAV_ERROR; + #endif + #ifdef ETIMEDOUT + case ETIMEDOUT: return DRWAV_TIMEOUT; + #endif + #ifdef ECONNREFUSED + case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED; + #endif + #ifdef EHOSTDOWN + case EHOSTDOWN: return DRWAV_NO_HOST; + #endif + #ifdef EHOSTUNREACH + case EHOSTUNREACH: return DRWAV_NO_HOST; + #endif + #ifdef EALREADY + case EALREADY: return DRWAV_IN_PROGRESS; + #endif + #ifdef EINPROGRESS + case EINPROGRESS: return DRWAV_IN_PROGRESS; + #endif + #ifdef ESTALE + case ESTALE: return DRWAV_INVALID_FILE; + #endif + #ifdef EUCLEAN + case EUCLEAN: return DRWAV_ERROR; + #endif + #ifdef ENOTNAM + case ENOTNAM: return DRWAV_ERROR; + #endif + #ifdef ENAVAIL + case ENAVAIL: return DRWAV_ERROR; + #endif + #ifdef EISNAM + case EISNAM: return DRWAV_ERROR; + #endif + #ifdef EREMOTEIO + case EREMOTEIO: return DRWAV_IO_ERROR; + #endif + #ifdef EDQUOT + case EDQUOT: return DRWAV_NO_SPACE; + #endif + #ifdef ENOMEDIUM + case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef EMEDIUMTYPE + case EMEDIUMTYPE: return DRWAV_ERROR; + #endif + #ifdef ECANCELED + case ECANCELED: return DRWAV_CANCELLED; + #endif + #ifdef ENOKEY + case ENOKEY: return DRWAV_ERROR; + #endif + #ifdef EKEYEXPIRED + case EKEYEXPIRED: return DRWAV_ERROR; + #endif + #ifdef EKEYREVOKED + case EKEYREVOKED: return DRWAV_ERROR; + #endif + #ifdef EKEYREJECTED + case EKEYREJECTED: return DRWAV_ERROR; + #endif + #ifdef EOWNERDEAD + case EOWNERDEAD: return DRWAV_ERROR; + #endif + #ifdef ENOTRECOVERABLE + case ENOTRECOVERABLE: return DRWAV_ERROR; + #endif + #ifdef ERFKILL + case ERFKILL: return DRWAV_ERROR; + #endif + #ifdef EHWPOISON + case EHWPOISON: return DRWAV_ERROR; + #endif + default: return DRWAV_ERROR; + } +} +static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) +{ +#if _MSC_VER && _MSC_VER >= 1400 + errno_t err; +#endif + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRWAV_INVALID_ARGS; + } +#if _MSC_VER && _MSC_VER >= 1400 + err = fopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drwav_result_from_errno(err); + } +#else +#if defined(_WIN32) || defined(__APPLE__) + *ppFile = fopen(pFilePath, pOpenMode); +#else + #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) + *ppFile = fopen64(pFilePath, pOpenMode); + #else + *ppFile = fopen(pFilePath, pOpenMode); + #endif +#endif + if (*ppFile == NULL) { + drwav_result result = drwav_result_from_errno(errno); + if (result == DRWAV_SUCCESS) { + result = DRWAV_ERROR; + } + return result; + } +#endif + return DRWAV_SUCCESS; +} +#if defined(_WIN32) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) + #define DRWAV_HAS_WFOPEN + #endif +#endif +static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRWAV_INVALID_ARGS; + } +#if defined(DRWAV_HAS_WFOPEN) + { + #if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drwav_result_from_errno(err); + } + #else + *ppFile = _wfopen(pFilePath, pOpenMode); + if (*ppFile == NULL) { + return drwav_result_from_errno(errno); + } + #endif + (void)pAllocationCallbacks; + } +#else + { + mbstate_t mbs; + size_t lenMB; + const wchar_t* pFilePathTemp = pFilePath; + char* pFilePathMB = NULL; + char pOpenModeMB[32] = {0}; + DRWAV_ZERO_OBJECT(&mbs); + lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); + if (lenMB == (size_t)-1) { + return drwav_result_from_errno(errno); + } + pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); + if (pFilePathMB == NULL) { + return DRWAV_OUT_OF_MEMORY; + } + pFilePathTemp = pFilePath; + DRWAV_ZERO_OBJECT(&mbs); + wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); + { + size_t i = 0; + for (;;) { + if (pOpenMode[i] == 0) { + pOpenModeMB[i] = '\0'; + break; + } + pOpenModeMB[i] = (char)pOpenMode[i]; + i += 1; + } + } + *ppFile = fopen(pFilePathMB, pOpenModeMB); + drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks); + } + if (*ppFile == NULL) { + return DRWAV_ERROR; + } +#endif + return DRWAV_SUCCESS; +} +static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); +} +static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite) +{ + return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData); +} +static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin) +{ + return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} +DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); +} +static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav_bool32 result; + result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + return DRWAV_TRUE; +} +DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks); +} +static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav_bool32 result; + result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + result = drwav_init_write__internal(pWav, pFormat, totalSampleCount); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + return DRWAV_TRUE; +} +static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); +} +static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} +#endif +static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + drwav* pWav = (drwav*)pUserData; + size_t bytesRemaining; + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos); + bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + if (bytesToRead > 0) { + DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead); + pWav->memoryStream.currentReadPos += bytesToRead; + } + return bytesToRead; +} +static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav* pWav = (drwav*)pUserData; + DRWAV_ASSERT(pWav != NULL); + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) { + return DRWAV_FALSE; + } + } else { + if (pWav->memoryStream.currentReadPos < (size_t)-offset) { + return DRWAV_FALSE; + } + } + pWav->memoryStream.currentReadPos += offset; + } else { + if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) { + pWav->memoryStream.currentReadPos = offset; + } else { + return DRWAV_FALSE; + } + } + return DRWAV_TRUE; +} +static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite) +{ + drwav* pWav = (drwav*)pUserData; + size_t bytesRemaining; + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos); + bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos; + if (bytesRemaining < bytesToWrite) { + void* pNewData; + size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2; + if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) { + newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite; + } + pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks); + if (pNewData == NULL) { + return 0; + } + *pWav->memoryStreamWrite.ppData = pNewData; + pWav->memoryStreamWrite.dataCapacity = newDataCapacity; + } + DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite); + pWav->memoryStreamWrite.currentWritePos += bytesToWrite; + if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) { + pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos; + } + *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize; + return bytesToWrite; +} +static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav* pWav = (drwav*)pUserData; + DRWAV_ASSERT(pWav != NULL); + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) { + offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos); + } + } else { + if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) { + offset = -(int)pWav->memoryStreamWrite.currentWritePos; + } + } + pWav->memoryStreamWrite.currentWritePos += offset; + } else { + if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) { + pWav->memoryStreamWrite.currentWritePos = offset; + } else { + pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize; + } + } + return DRWAV_TRUE; +} +DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (data == NULL || dataSize == 0) { + return DRWAV_FALSE; + } + if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + pWav->memoryStream.data = (const drwav_uint8*)data; + pWav->memoryStream.dataSize = dataSize; + pWav->memoryStream.currentReadPos = 0; + return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); +} +static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (ppData == NULL || pDataSize == NULL) { + return DRWAV_FALSE; + } + *ppData = NULL; + *pDataSize = 0; + if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + pWav->memoryStreamWrite.ppData = ppData; + pWav->memoryStreamWrite.pDataSize = pDataSize; + pWav->memoryStreamWrite.dataSize = 0; + pWav->memoryStreamWrite.dataCapacity = 0; + pWav->memoryStreamWrite.currentWritePos = 0; + return drwav_init_write__internal(pWav, pFormat, totalSampleCount); +} +DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} +DRWAV_API drwav_result drwav_uninit(drwav* pWav) +{ + drwav_result result = DRWAV_SUCCESS; + if (pWav == NULL) { + return DRWAV_INVALID_ARGS; + } + if (pWav->onWrite != NULL) { + drwav_uint32 paddingSize = 0; + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize); + } else { + paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize); + } + if (paddingSize > 0) { + drwav_uint64 paddingData = 0; + drwav__write(pWav, &paddingData, paddingSize); + } + if (pWav->onSeek && !pWav->isSequentialWrite) { + if (pWav->container == drwav_container_riff) { + if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) { + drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize); + drwav__write_u32ne_to_le(pWav, riffChunkSize); + } + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) { + drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize); + drwav__write_u32ne_to_le(pWav, dataChunkSize); + } + } else if (pWav->container == drwav_container_w64) { + if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) { + drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, riffChunkSize); + } + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) { + drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, dataChunkSize); + } + } else if (pWav->container == drwav_container_rf64) { + int ds64BodyPos = 12 + 8; + if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) { + drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, riffChunkSize); + } + if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) { + drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, dataChunkSize); + } + } + } + if (pWav->isSequentialWrite) { + if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) { + result = DRWAV_INVALID_FILE; + } + } + } +#ifndef DR_WAV_NO_STDIO + if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) { + fclose((FILE*)pWav->pUserData); + } +#endif + return result; +} +DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut) +{ + size_t bytesRead; + if (pWav == NULL || bytesToRead == 0) { + return 0; + } + if (bytesToRead > pWav->bytesRemaining) { + bytesToRead = (size_t)pWav->bytesRemaining; + } + if (pBufferOut != NULL) { + bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead); + } else { + bytesRead = 0; + while (bytesRead < bytesToRead) { + size_t bytesToSeek = (bytesToRead - bytesRead); + if (bytesToSeek > 0x7FFFFFFF) { + bytesToSeek = 0x7FFFFFFF; + } + if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) { + break; + } + bytesRead += bytesToSeek; + } + while (bytesRead < bytesToRead) { + drwav_uint8 buffer[4096]; + size_t bytesSeeked; + size_t bytesToSeek = (bytesToRead - bytesRead); + if (bytesToSeek > sizeof(buffer)) { + bytesToSeek = sizeof(buffer); + } + bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek); + bytesRead += bytesSeeked; + if (bytesSeeked < bytesToSeek) { + break; + } + } + } + pWav->bytesRemaining -= bytesRead; + return bytesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + drwav_uint32 bytesPerFrame; + drwav_uint64 bytesToRead; + if (pWav == NULL || framesToRead == 0) { + return 0; + } + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + return 0; + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + bytesToRead = framesToRead * bytesPerFrame; + if (bytesToRead > DRWAV_SIZE_MAX) { + bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; + } + if (bytesToRead == 0) { + return 0; + } + return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL) { + drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag); + } + return framesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + if (drwav__is_little_endian()) { + return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); + } else { + return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut); + } +} +DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav) +{ + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; + } + if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) { + return DRWAV_FALSE; + } + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + pWav->compressed.iCurrentPCMFrame = 0; + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + DRWAV_ZERO_OBJECT(&pWav->msadpcm); + } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + DRWAV_ZERO_OBJECT(&pWav->ima); + } else { + DRWAV_ASSERT(DRWAV_FALSE); + } + } + pWav->bytesRemaining = pWav->dataChunkDataSize; + return DRWAV_TRUE; +} +DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex) +{ + if (pWav == NULL || pWav->onSeek == NULL) { + return DRWAV_FALSE; + } + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; + } + if (pWav->totalPCMFrameCount == 0) { + return DRWAV_TRUE; + } + if (targetFrameIndex >= pWav->totalPCMFrameCount) { + targetFrameIndex = pWav->totalPCMFrameCount - 1; + } + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) { + if (!drwav_seek_to_first_pcm_frame(pWav)) { + return DRWAV_FALSE; + } + } + if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) { + drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame; + drwav_int16 devnull[2048]; + while (offsetInFrames > 0) { + drwav_uint64 framesRead = 0; + drwav_uint64 framesToRead = offsetInFrames; + if (framesToRead > drwav_countof(devnull)/pWav->channels) { + framesToRead = drwav_countof(devnull)/pWav->channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull); + } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull); + } else { + DRWAV_ASSERT(DRWAV_FALSE); + } + if (framesRead != framesToRead) { + return DRWAV_FALSE; + } + offsetInFrames -= framesRead; + } + } + } else { + drwav_uint64 totalSizeInBytes; + drwav_uint64 currentBytePos; + drwav_uint64 targetBytePos; + drwav_uint64 offset; + totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav); + DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining); + currentBytePos = totalSizeInBytes - pWav->bytesRemaining; + targetBytePos = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav); + if (currentBytePos < targetBytePos) { + offset = (targetBytePos - currentBytePos); + } else { + if (!drwav_seek_to_first_pcm_frame(pWav)) { + return DRWAV_FALSE; + } + offset = targetBytePos; + } + while (offset > 0) { + int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset); + if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + pWav->bytesRemaining -= offset32; + offset -= offset32; + } + } + return DRWAV_TRUE; +} +DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData) +{ + size_t bytesWritten; + if (pWav == NULL || bytesToWrite == 0 || pData == NULL) { + return 0; + } + bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite); + pWav->dataChunkDataSize += bytesWritten; + return bytesWritten; +} +DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + drwav_uint64 bytesToWrite; + drwav_uint64 bytesWritten; + const drwav_uint8* pRunningData; + if (pWav == NULL || framesToWrite == 0 || pData == NULL) { + return 0; + } + bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); + if (bytesToWrite > DRWAV_SIZE_MAX) { + return 0; + } + bytesWritten = 0; + pRunningData = (const drwav_uint8*)pData; + while (bytesToWrite > 0) { + size_t bytesJustWritten; + drwav_uint64 bytesToWriteThisIteration; + bytesToWriteThisIteration = bytesToWrite; + DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); + bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData); + if (bytesJustWritten == 0) { + break; + } + bytesToWrite -= bytesJustWritten; + bytesWritten += bytesJustWritten; + pRunningData += bytesJustWritten; + } + return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; +} +DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + drwav_uint64 bytesToWrite; + drwav_uint64 bytesWritten; + drwav_uint32 bytesPerSample; + const drwav_uint8* pRunningData; + if (pWav == NULL || framesToWrite == 0 || pData == NULL) { + return 0; + } + bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); + if (bytesToWrite > DRWAV_SIZE_MAX) { + return 0; + } + bytesWritten = 0; + pRunningData = (const drwav_uint8*)pData; + bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels; + while (bytesToWrite > 0) { + drwav_uint8 temp[4096]; + drwav_uint32 sampleCount; + size_t bytesJustWritten; + drwav_uint64 bytesToWriteThisIteration; + bytesToWriteThisIteration = bytesToWrite; + DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); + sampleCount = sizeof(temp)/bytesPerSample; + if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) { + bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample; + } + DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration); + drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag); + bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp); + if (bytesJustWritten == 0) { + break; + } + bytesToWrite -= bytesJustWritten; + bytesWritten += bytesJustWritten; + pRunningData += bytesJustWritten; + } + return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; +} +DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + if (drwav__is_little_endian()) { + return drwav_write_pcm_frames_le(pWav, framesToWrite, pData); + } else { + return drwav_write_pcm_frames_be(pWav, framesToWrite, pData); + } +} +static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(framesToRead > 0); + while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + drwav_uint8 header[7]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1); + pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3); + pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5); + pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0]; + pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.cachedFrameCount = 2; + } else { + drwav_uint8 header[14]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.predictor[1] = header[1]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2); + pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4); + pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6); + pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8); + pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10); + pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12); + pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0]; + pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0]; + pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1]; + pWav->msadpcm.cachedFrameCount = 2; + } + } + while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pBufferOut != NULL) { + drwav_uint32 iSample = 0; + for (iSample = 0; iSample < pWav->channels; iSample += 1) { + pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample]; + } + pBufferOut += pWav->channels; + } + framesToRead -= 1; + totalFramesRead += 1; + pWav->compressed.iCurrentPCMFrame += 1; + pWav->msadpcm.cachedFrameCount -= 1; + } + if (framesToRead == 0) { + return totalFramesRead; + } + if (pWav->msadpcm.cachedFrameCount == 0) { + if (pWav->msadpcm.bytesRemainingInBlock == 0) { + continue; + } else { + static drwav_int32 adaptationTable[] = { + 230, 230, 230, 230, 307, 409, 512, 614, + 768, 614, 512, 409, 307, 230, 230, 230 + }; + static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 }; + static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 }; + drwav_uint8 nibbles; + drwav_int32 nibble0; + drwav_int32 nibble1; + if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock -= 1; + nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; } + nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; } + if (pWav->channels == 1) { + drwav_int32 newSample0; + drwav_int32 newSample1; + newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample0; + newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[0]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample1; + pWav->msadpcm.cachedFrames[2] = newSample0; + pWav->msadpcm.cachedFrames[3] = newSample1; + pWav->msadpcm.cachedFrameCount = 2; + } else { + drwav_int32 newSample0; + drwav_int32 newSample1; + newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample0; + newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[1]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8; + if (pWav->msadpcm.delta[1] < 16) { + pWav->msadpcm.delta[1] = 16; + } + pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1]; + pWav->msadpcm.prevFrames[1][1] = newSample1; + pWav->msadpcm.cachedFrames[2] = newSample0; + pWav->msadpcm.cachedFrames[3] = newSample1; + pWav->msadpcm.cachedFrameCount = 1; + } + } + } + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_uint32 iChannel; + static drwav_int32 indexTable[16] = { + -1, -1, -1, -1, 2, 4, 6, 8, + -1, -1, -1, -1, 2, 4, 6, 8 + }; + static drwav_int32 stepTable[89] = { + 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, + 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, + 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, + 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, + 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, + 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, + 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, + 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, + 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 + }; + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(framesToRead > 0); + while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + drwav_uint8 header[4]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + if (header[2] >= drwav_countof(stepTable)) { + pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); + pWav->ima.bytesRemainingInBlock = 0; + return totalFramesRead; + } + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0]; + pWav->ima.cachedFrameCount = 1; + } else { + drwav_uint8 header[8]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) { + pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); + pWav->ima.bytesRemainingInBlock = 0; + return totalFramesRead; + } + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4); + pWav->ima.stepIndex[1] = header[6]; + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0]; + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1]; + pWav->ima.cachedFrameCount = 1; + } + } + while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pBufferOut != NULL) { + drwav_uint32 iSample; + for (iSample = 0; iSample < pWav->channels; iSample += 1) { + pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample]; + } + pBufferOut += pWav->channels; + } + framesToRead -= 1; + totalFramesRead += 1; + pWav->compressed.iCurrentPCMFrame += 1; + pWav->ima.cachedFrameCount -= 1; + } + if (framesToRead == 0) { + return totalFramesRead; + } + if (pWav->ima.cachedFrameCount == 0) { + if (pWav->ima.bytesRemainingInBlock == 0) { + continue; + } else { + pWav->ima.cachedFrameCount = 8; + for (iChannel = 0; iChannel < pWav->channels; ++iChannel) { + drwav_uint32 iByte; + drwav_uint8 nibbles[4]; + if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) { + pWav->ima.cachedFrameCount = 0; + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock -= 4; + for (iByte = 0; iByte < 4; ++iByte) { + drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0); + drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4); + drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]]; + drwav_int32 predictor = pWav->ima.predictor[iChannel]; + drwav_int32 diff = step >> 3; + if (nibble0 & 1) diff += step >> 2; + if (nibble0 & 2) diff += step >> 1; + if (nibble0 & 4) diff += step; + if (nibble0 & 8) diff = -diff; + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor; + step = stepTable[pWav->ima.stepIndex[iChannel]]; + predictor = pWav->ima.predictor[iChannel]; + diff = step >> 3; + if (nibble1 & 1) diff += step >> 2; + if (nibble1 & 2) diff += step >> 1; + if (nibble1 & 4) diff += step; + if (nibble1 & 8) diff = -diff; + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor; + } + } + } + } + } + return totalFramesRead; +} +#ifndef DR_WAV_NO_CONVERSION_API +static unsigned short g_drwavAlawTable[256] = { + 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580, + 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0, + 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600, + 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00, + 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58, + 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58, + 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960, + 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0, + 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80, + 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40, + 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00, + 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500, + 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8, + 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8, + 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0, + 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350 +}; +static unsigned short g_drwavMulawTable[256] = { + 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84, + 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84, + 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004, + 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844, + 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64, + 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74, + 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C, + 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000, + 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C, + 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C, + 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC, + 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC, + 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C, + 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C, + 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084, + 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000 +}; +static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavAlawTable[sampleIn]; +} +static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavMulawTable[sampleIn]; +} +static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + if (bytesPerSample == 1) { + drwav_u8_to_s16(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 2) { + for (i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int16*)pIn)[i]; + } + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s16(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount); + return; + } + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + for (i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + pIn += j; + *pOut++ = (drwav_int16)((drwav_int64)sample >> 48); + } +} +static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} +static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint32 bytesPerFrame; + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut); + } + return 0; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x << 8; + r = r - 32768; + pOut[i] = (short)r; + } +} +DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8; + r = x >> 8; + pOut[i] = (short)r; + } +} +DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x >> 16; + pOut[i] = (short)r; + } +} +DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + float x = pIn[i]; + float c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5f); + r = r - 32768; + pOut[i] = (short)r; + } +} +DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + double x = pIn[i]; + double c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5); + r = r - 32768; + pOut[i] = (short)r; + } +} +DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + for (i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__alaw_to_s16(pIn[i]); + } +} +DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + for (i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__mulaw_to_s16(pIn[i]); + } +} +static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + if (bytesPerSample == 1) { + drwav_u8_to_f32(pOut, pIn, sampleCount); + return; + } + if (bytesPerSample == 2) { + drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_f32(pOut, pIn, sampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount); + return; + } + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); + return; + } + for (i = 0; i < sampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + pIn += j; + *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0); + } +} +static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + unsigned int i; + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((const float*)pIn)[i]; + } + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount); + return; + } else { + DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); + return; + } +} +static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut); + } + return 0; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } +#ifdef DR_WAV_LIBSNDFILE_COMPAT + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (pIn[i] / 256.0f) * 2 - 1; + } +#else + for (i = 0; i < sampleCount; ++i) { + float x = pIn[i]; + x = x * 0.00784313725490196078f; + x = x - 1; + *pOut++ = x; + } +#endif +} +DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] * 0.000030517578125f; + } +} +DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + double x; + drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) << 8); + drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16); + drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24); + x = (double)((drwav_int32)(a | b | c) >> 8); + *pOut++ = (float)(x * 0.00000011920928955078125); + } +} +DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (float)(pIn[i] / 2147483648.0); + } +} +DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (float)pIn[i]; + } +} +DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f; + } +} +DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f; + } +} +static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + if (bytesPerSample == 1) { + drwav_u8_to_s32(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 2) { + drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s32(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + for (i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int32*)pIn)[i]; + } + return; + } + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + for (i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + pIn += j; + *pOut++ = (drwav_int32)((drwav_int64)sample >> 32); + } +} +static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} +static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + totalFramesRead = 0; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + return totalFramesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut); + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut); + } + return 0; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); + } + return framesRead; +} +DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((int)pIn[i] - 128) << 24; + } +} +DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] << 16; + } +} +DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + unsigned int s0 = pIn[i*3 + 0]; + unsigned int s1 = pIn[i*3 + 1]; + unsigned int s2 = pIn[i*3 + 2]; + drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24)); + *pOut++ = sample32; + } +} +DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} +DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} +DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16; + } +} +DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + for (i= 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16; + } +} +static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + drwav_int16* pSampleData; + drwav_uint64 framesRead; + DRWAV_ASSERT(pWav != NULL); + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; + } + pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; + } + framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; + } + drwav_uninit(pWav); + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + return pSampleData; +} +static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + float* pSampleData; + drwav_uint64 framesRead; + DRWAV_ASSERT(pWav != NULL); + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; + } + pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; + } + framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; + } + drwav_uninit(pWav); + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + return pSampleData; +} +static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + drwav_int32* pSampleData; + drwav_uint64 framesRead; + DRWAV_ASSERT(pWav != NULL); + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; + } + pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; + } + framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; + } + drwav_uninit(pWav); + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + return pSampleData; +} +DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +#ifndef DR_WAV_NO_STDIO +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +#endif +DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +#endif +DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + drwav__free_from_callbacks(p, pAllocationCallbacks); + } else { + drwav__free_default(p, NULL); + } +} +DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data) +{ + return drwav__bytes_to_u16(data); +} +DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data) +{ + return drwav__bytes_to_s16(data); +} +DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data) +{ + return drwav__bytes_to_u32(data); +} +DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data) +{ + return drwav__bytes_to_s32(data); +} +DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data) +{ + return drwav__bytes_to_u64(data); +} +DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data) +{ + return drwav__bytes_to_s64(data); +} +DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) +{ + return drwav__guid_equal(a, b); +} +DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b) +{ + return drwav__fourcc_equal(a, b); +} +#endif +/* dr_wav_c end */ +#endif /* DRWAV_IMPLEMENTATION */ +#endif /* MA_NO_WAV */ + +#if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING) +#if !defined(DR_FLAC_IMPLEMENTATION) && !defined(DRFLAC_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ +/* dr_flac_c begin */ +#ifndef dr_flac_c +#define dr_flac_c +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #if __GNUC__ >= 7 + #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" + #endif +#endif +#ifdef __linux__ + #ifndef _BSD_SOURCE + #define _BSD_SOURCE + #endif + #ifndef __USE_BSD + #define __USE_BSD + #endif + #include +#endif +#include +#include +#ifdef _MSC_VER + #define DRFLAC_INLINE __forceinline +#elif defined(__GNUC__) + #if defined(__STRICT_ANSI__) + #define DRFLAC_INLINE __inline__ __attribute__((always_inline)) + #else + #define DRFLAC_INLINE inline __attribute__((always_inline)) + #endif +#elif defined(__WATCOMC__) + #define DRFLAC_INLINE __inline +#else + #define DRFLAC_INLINE +#endif +#if defined(__x86_64__) || defined(_M_X64) + #define DRFLAC_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRFLAC_X86 +#elif defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64) + #define DRFLAC_ARM +#endif +#if !defined(DR_FLAC_NO_SIMD) + #if defined(DRFLAC_X64) || defined(DRFLAC_X86) + #if defined(_MSC_VER) && !defined(__clang__) + #if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2) + #define DRFLAC_SUPPORT_SSE2 + #endif + #if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41) + #define DRFLAC_SUPPORT_SSE41 + #endif + #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) + #if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2) + #define DRFLAC_SUPPORT_SSE2 + #endif + #if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41) + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) + #if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include() + #define DRFLAC_SUPPORT_SSE2 + #endif + #if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include() + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + #if defined(DRFLAC_SUPPORT_SSE41) + #include + #elif defined(DRFLAC_SUPPORT_SSE2) + #include + #endif + #endif + #if defined(DRFLAC_ARM) + #if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) + #define DRFLAC_SUPPORT_NEON + #endif + #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) + #if !defined(DRFLAC_SUPPORT_NEON) && !defined(DRFLAC_NO_NEON) && __has_include() + #define DRFLAC_SUPPORT_NEON + #endif + #endif + #if defined(DRFLAC_SUPPORT_NEON) + #include + #endif + #endif +#endif +#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #if defined(_MSC_VER) && !defined(__clang__) + #if _MSC_VER >= 1400 + #include + static void drflac__cpuid(int info[4], int fid) + { + __cpuid(info, fid); + } + #else + #define DRFLAC_NO_CPUID + #endif + #else + #if defined(__GNUC__) || defined(__clang__) + static void drflac__cpuid(int info[4], int fid) + { + #if defined(DRFLAC_X86) && defined(__PIC__) + __asm__ __volatile__ ( + "xchg{l} {%%}ebx, %k1;" + "cpuid;" + "xchg{l} {%%}ebx, %k1;" + : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #else + __asm__ __volatile__ ( + "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #endif + } + #else + #define DRFLAC_NO_CPUID + #endif + #endif +#else + #define DRFLAC_NO_CPUID +#endif +static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2) + #if defined(DRFLAC_X64) + return DRFLAC_TRUE; + #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__) + return DRFLAC_TRUE; + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[3] & (1 << 26)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; + #endif +#else + return DRFLAC_FALSE; +#endif +} +static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void) +{ +#if defined(DRFLAC_SUPPORT_SSE41) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41) + #if defined(DRFLAC_X64) + return DRFLAC_TRUE; + #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE4_1__) + return DRFLAC_TRUE; + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[2] & (1 << 19)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; + #endif +#else + return DRFLAC_FALSE; +#endif +} +#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) && !defined(__clang__) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) + #define DRFLAC_HAS_LZCNT_INTRINSIC + #endif + #endif +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && !defined(__clang__) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_bswap16) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif +#endif +#ifndef DRFLAC_ASSERT +#include +#define DRFLAC_ASSERT(expression) assert(expression) +#endif +#ifndef DRFLAC_MALLOC +#define DRFLAC_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRFLAC_REALLOC +#define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRFLAC_FREE +#define DRFLAC_FREE(p) free((p)) +#endif +#ifndef DRFLAC_COPY_MEMORY +#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRFLAC_ZERO_MEMORY +#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif +#ifndef DRFLAC_ZERO_OBJECT +#define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p))) +#endif +#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 +typedef drflac_int32 drflac_result; +#define DRFLAC_SUCCESS 0 +#define DRFLAC_ERROR -1 +#define DRFLAC_INVALID_ARGS -2 +#define DRFLAC_INVALID_OPERATION -3 +#define DRFLAC_OUT_OF_MEMORY -4 +#define DRFLAC_OUT_OF_RANGE -5 +#define DRFLAC_ACCESS_DENIED -6 +#define DRFLAC_DOES_NOT_EXIST -7 +#define DRFLAC_ALREADY_EXISTS -8 +#define DRFLAC_TOO_MANY_OPEN_FILES -9 +#define DRFLAC_INVALID_FILE -10 +#define DRFLAC_TOO_BIG -11 +#define DRFLAC_PATH_TOO_LONG -12 +#define DRFLAC_NAME_TOO_LONG -13 +#define DRFLAC_NOT_DIRECTORY -14 +#define DRFLAC_IS_DIRECTORY -15 +#define DRFLAC_DIRECTORY_NOT_EMPTY -16 +#define DRFLAC_END_OF_FILE -17 +#define DRFLAC_NO_SPACE -18 +#define DRFLAC_BUSY -19 +#define DRFLAC_IO_ERROR -20 +#define DRFLAC_INTERRUPT -21 +#define DRFLAC_UNAVAILABLE -22 +#define DRFLAC_ALREADY_IN_USE -23 +#define DRFLAC_BAD_ADDRESS -24 +#define DRFLAC_BAD_SEEK -25 +#define DRFLAC_BAD_PIPE -26 +#define DRFLAC_DEADLOCK -27 +#define DRFLAC_TOO_MANY_LINKS -28 +#define DRFLAC_NOT_IMPLEMENTED -29 +#define DRFLAC_NO_MESSAGE -30 +#define DRFLAC_BAD_MESSAGE -31 +#define DRFLAC_NO_DATA_AVAILABLE -32 +#define DRFLAC_INVALID_DATA -33 +#define DRFLAC_TIMEOUT -34 +#define DRFLAC_NO_NETWORK -35 +#define DRFLAC_NOT_UNIQUE -36 +#define DRFLAC_NOT_SOCKET -37 +#define DRFLAC_NO_ADDRESS -38 +#define DRFLAC_BAD_PROTOCOL -39 +#define DRFLAC_PROTOCOL_UNAVAILABLE -40 +#define DRFLAC_PROTOCOL_NOT_SUPPORTED -41 +#define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42 +#define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43 +#define DRFLAC_SOCKET_NOT_SUPPORTED -44 +#define DRFLAC_CONNECTION_RESET -45 +#define DRFLAC_ALREADY_CONNECTED -46 +#define DRFLAC_NOT_CONNECTED -47 +#define DRFLAC_CONNECTION_REFUSED -48 +#define DRFLAC_NO_HOST -49 +#define DRFLAC_IN_PROGRESS -50 +#define DRFLAC_CANCELLED -51 +#define DRFLAC_MEMORY_ALREADY_MAPPED -52 +#define DRFLAC_AT_END -53 +#define DRFLAC_CRC_MISMATCH -128 +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 +#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision) +{ + if (pMajor) { + *pMajor = DRFLAC_VERSION_MAJOR; + } + if (pMinor) { + *pMinor = DRFLAC_VERSION_MINOR; + } + if (pRevision) { + *pRevision = DRFLAC_VERSION_REVISION; + } +} +DRFLAC_API const char* drflac_version_string(void) +{ + return DRFLAC_VERSION_STRING; +} +#if defined(__has_feature) + #if __has_feature(thread_sanitizer) + #define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread"))) + #else + #define DRFLAC_NO_THREAD_SANITIZE + #endif +#else + #define DRFLAC_NO_THREAD_SANITIZE +#endif +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) +static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; +#endif +#ifndef DRFLAC_NO_CPUID +static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE; +static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE; +DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) +{ + static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE; + if (!isCPUCapsInitialized) { +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) + int info[4] = {0}; + drflac__cpuid(info, 0x80000001); + drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; +#endif + drflac__gIsSSE2Supported = drflac_has_sse2(); + drflac__gIsSSE41Supported = drflac_has_sse41(); + isCPUCapsInitialized = DRFLAC_TRUE; + } +} +#else +static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE; +static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void) +{ +#if defined(DRFLAC_SUPPORT_NEON) + #if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON) + #if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) + return DRFLAC_TRUE; + #else + return DRFLAC_FALSE; + #endif + #else + return DRFLAC_FALSE; + #endif +#else + return DRFLAC_FALSE; +#endif +} +DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) +{ + drflac__gIsNEONSupported = drflac__has_neon(); +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) + drflac__gIsLZCNTSupported = DRFLAC_TRUE; +#endif +} +#endif +static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void) +{ +#if defined(DRFLAC_X86) || defined(DRFLAC_X64) + return DRFLAC_TRUE; +#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN + return DRFLAC_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} +static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} +static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + #if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT) + drflac_uint32 r; + __asm__ __volatile__ ( + #if defined(DRFLAC_64BIT) + "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) + #else + "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) + #endif + ); + return r; + #else + return __builtin_bswap32(n); + #endif + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} +static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & ((drflac_uint64)0xFF000000 << 32)) >> 56) | + ((n & ((drflac_uint64)0x00FF0000 << 32)) >> 40) | + ((n & ((drflac_uint64)0x0000FF00 << 32)) >> 24) | + ((n & ((drflac_uint64)0x000000FF << 32)) >> 8) | + ((n & ((drflac_uint64)0xFF000000 )) << 8) | + ((n & ((drflac_uint64)0x00FF0000 )) << 24) | + ((n & ((drflac_uint64)0x0000FF00 )) << 40) | + ((n & ((drflac_uint64)0x000000FF )) << 56); +#endif +} +static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + return n; +} +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + return n; +} +static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + return n; +} +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) +{ + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + return n; +} +static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) +{ + drflac_uint32 result = 0; + result |= (n & 0x7F000000) >> 3; + result |= (n & 0x007F0000) >> 2; + result |= (n & 0x00007F00) >> 1; + result |= (n & 0x0000007F) >> 0; + return result; +} +static drflac_uint8 drflac__crc8_table[] = { + 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, + 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, + 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, + 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, + 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, + 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, + 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, + 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, + 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, + 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, + 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, + 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, + 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, + 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, + 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, + 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 +}; +static drflac_uint16 drflac__crc16_table[] = { + 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, + 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, + 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, + 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, + 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, + 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, + 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, + 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, + 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, + 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, + 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, + 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, + 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, + 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, + 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, + 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, + 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, + 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, + 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, + 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, + 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, + 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, + 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, + 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, + 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, + 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, + 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, + 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, + 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, + 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, + 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, + 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 +}; +static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) +{ + return drflac__crc8_table[crc ^ data]; +} +static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + drflac_uint8 p = 0x07; + for (int i = count-1; i >= 0; --i) { + drflac_uint8 bit = (data & (1 << i)) >> i; + if (crc & 0x80) { + crc = ((crc << 1) | bit) ^ p; + } else { + crc = ((crc << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + DRFLAC_ASSERT(count <= 32); + wholeBytes = count >> 3; + leftoverBits = count - (wholeBytes*8); + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + switch (wholeBytes) { + case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]); + } + return crc; +#endif +#endif +} +static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) +{ + return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; +} +static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data) +{ +#ifdef DRFLAC_64BIT + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + return crc; +} +static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) +{ + switch (byteCount) + { +#ifdef DRFLAC_64BIT + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + } + return crc; +} +#if 0 +static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + drflac_uint16 p = 0x8005; + for (int i = count-1; i >= 0; --i) { + drflac_uint16 bit = (data & (1ULL << i)) >> i; + if (r & 0x8000) { + r = ((r << 1) | bit) ^ p; + } else { + r = ((r << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + DRFLAC_ASSERT(count <= 64); + wholeBytes = count >> 3; + leftoverBits = count & 7; + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + switch (wholeBytes) { + default: + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} +static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + DRFLAC_ASSERT(count <= 64); + wholeBytes = count >> 3; + leftoverBits = count & 7; + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + switch (wholeBytes) { + default: + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits))); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits))); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits))); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits))); + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +} +static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) +{ +#ifdef DRFLAC_64BIT + return drflac_crc16__64bit(crc, data, count); +#else + return drflac_crc16__32bit(crc, data, count); +#endif +} +#endif +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits) +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount))) +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount))) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1))) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) +#ifndef DR_FLAC_NO_CRC +static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) +{ + bs->crc16 = 0; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +} +static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) +{ + if (bs->crc16CacheIgnoredBytes == 0) { + bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache); + } else { + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = 0; + } +} +static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) +{ + DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); + if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { + drflac__update_crc16(bs); + } else { + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; + } + return bs->crc16; +} +#endif +static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + size_t bytesRead; + size_t alignedL1LineCount; + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + if (bs->unalignedByteCount > 0) { + return DRFLAC_FALSE; + } + bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + if (alignedL1LineCount > 0) { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + size_t i; + for (i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + bs->nextL2Line = (drflac_uint32)offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } else { + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DRFLAC_FALSE; + } +} +static drflac_bool32 drflac__reload_cache(drflac_bs* bs) +{ + size_t bytesRead; +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + return DRFLAC_TRUE; + } + bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + return DRFLAC_FALSE; + } + DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); + bs->unalignedByteCount = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache >> bs->consumedBits; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +#endif + return DRFLAC_TRUE; +} +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + bs->unalignedByteCount = 0; + bs->unalignedCache = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = 0; + bs->crc16CacheIgnoredBytes = 0; +#endif +} +static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResultOut != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 32); + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { +#ifdef DRFLAC_64BIT + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; +#else + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + *pResultOut = (drflac_uint32)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } +#endif + return DRFLAC_TRUE; + } else { + drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + drflac_uint32 bitCountLo = bitCount - bitCountHi; + drflac_uint32 resultHi; + DRFLAC_ASSERT(bitCountHi > 0); + DRFLAC_ASSERT(bitCountHi < 32); + resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DRFLAC_TRUE; + } +} +static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) +{ + drflac_uint32 result; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 32); + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + if (bitCount < 32) { + drflac_uint32 signbit; + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + } + *pResult = (drflac_int32)result; + return DRFLAC_TRUE; +} +#ifdef DRFLAC_64BIT +static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) +{ + drflac_uint32 resultHi; + drflac_uint32 resultLo; + DRFLAC_ASSERT(bitCount <= 64); + DRFLAC_ASSERT(bitCount > 32); + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DRFLAC_FALSE; + } + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DRFLAC_FALSE; + } + *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); + return DRFLAC_TRUE; +} +#endif +#if 0 +static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) +{ + drflac_uint64 result; + drflac_uint64 signbit; + DRFLAC_ASSERT(bitCount <= 64); + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + *pResultOut = (drflac_int64)result; + return DRFLAC_TRUE; +} +#endif +static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) +{ + drflac_uint32 result; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 16); + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + *pResult = (drflac_uint16)result; + return DRFLAC_TRUE; +} +#if 0 +static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) +{ + drflac_int32 result; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 16); + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + *pResult = (drflac_int16)result; + return DRFLAC_TRUE; +} +#endif +static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) +{ + drflac_uint32 result; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 8); + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + *pResult = (drflac_uint8)result; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) +{ + drflac_int32 result; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 8); + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + *pResult = (drflac_int8)result; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += (drflac_uint32)bitsToSeek; + bs->cache <<= bitsToSeek; + return DRFLAC_TRUE; + } else { + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; +#ifdef DRFLAC_64BIT + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint64 bin; + if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#else + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint32 bin; + if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#endif + while (bitsToSeek >= 8) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, 8, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= 8; + } + if (bitsToSeek > 0) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek = 0; + } + DRFLAC_ASSERT(bitsToSeek == 0); + return DRFLAC_TRUE; + } +} +static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) +{ + DRFLAC_ASSERT(bs != NULL); + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + for (;;) { + drflac_uint8 hi; +#ifndef DR_FLAC_NO_CRC + drflac__reset_crc16(bs); +#endif + if (!drflac__read_uint8(bs, 8, &hi)) { + return DRFLAC_FALSE; + } + if (hi == 0xFF) { + drflac_uint8 lo; + if (!drflac__read_uint8(bs, 6, &lo)) { + return DRFLAC_FALSE; + } + if (lo == 0x3E) { + return DRFLAC_TRUE; + } else { + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + } + } + } +} +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) +#define DRFLAC_IMPLEMENT_CLZ_LZCNT +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(__clang__) +#define DRFLAC_IMPLEMENT_CLZ_MSVC +#endif +static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) +{ + drflac_uint32 n; + static drflac_uint32 clz_table_4[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + if (x == 0) { + return sizeof(x)*8; + } + n = clz_table_4[x >> (sizeof(x)*8 - 4)]; + if (n == 0) { +#ifdef DRFLAC_64BIT + if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; } + if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; } + if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; } + if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; } +#else + if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } + if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } + if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } +#endif + n += clz_table_4[x >> (sizeof(x)*8 - 4)]; + } + return n - 1; +} +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT +static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void) +{ +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) + return DRFLAC_TRUE; +#else + #ifdef DRFLAC_HAS_LZCNT_INTRINSIC + return drflac__gIsLZCNTSupported; + #else + return DRFLAC_FALSE; + #endif +#endif +} +static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) +{ +#if defined(_MSC_VER) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__lzcnt64(x); + #else + return (drflac_uint32)__lzcnt(x); + #endif +#else + #if defined(__GNUC__) || defined(__clang__) + #if defined(DRFLAC_X64) + { + drflac_uint64 r; + __asm__ __volatile__ ( + "lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" + ); + return (drflac_uint32)r; + } + #elif defined(DRFLAC_X86) + { + drflac_uint32 r; + __asm__ __volatile__ ( + "lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" + ); + return r; + } + #elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT) + { + unsigned int r; + __asm__ __volatile__ ( + #if defined(DRFLAC_64BIT) + "clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x) + #else + "clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x) + #endif + ); + return r; + } + #else + if (x == 0) { + return sizeof(x)*8; + } + #ifdef DRFLAC_64BIT + return (drflac_uint32)__builtin_clzll((drflac_uint64)x); + #else + return (drflac_uint32)__builtin_clzl((drflac_uint32)x); + #endif + #endif + #else + #error "This compiler does not support the lzcnt intrinsic." + #endif +#endif +} +#endif +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC +#include +static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) +{ + drflac_uint32 n; + if (x == 0) { + return sizeof(x)*8; + } +#ifdef DRFLAC_64BIT + _BitScanReverse64((unsigned long*)&n, x); +#else + _BitScanReverse((unsigned long*)&n, x); +#endif + return sizeof(x)*8 - n - 1; +} +#endif +static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) +{ +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT + if (drflac__is_lzcnt_supported()) { + return drflac__clz_lzcnt(x); + } else +#endif + { +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC + return drflac__clz_msvc(x); +#else + return drflac__clz_software(x); +#endif + } +} +static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 setBitOffsetPlus1; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + setBitOffsetPlus1 = drflac__clz(bs->cache); + setBitOffsetPlus1 += 1; + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(offsetFromStart > 0); + if (offsetFromStart > 0x7FFFFFFF) { + drflac_uint64 bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + } + drflac__reset_cache(bs); + return DRFLAC_TRUE; +} +static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) +{ + drflac_uint8 crc; + drflac_uint64 result; + drflac_uint8 utf8[7] = {0}; + int byteCount; + int i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pNumberOut != NULL); + DRFLAC_ASSERT(pCRCOut != NULL); + crc = *pCRCOut; + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DRFLAC_AT_END; + } + crc = drflac_crc8(crc, utf8[0], 8); + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + *pCRCOut = crc; + return DRFLAC_SUCCESS; + } + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DRFLAC_CRC_MISMATCH; + } + DRFLAC_ASSERT(byteCount > 1); + result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); + for (i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DRFLAC_AT_END; + } + crc = drflac_crc8(crc, utf8[i], 8); + result = (result << 6) | (utf8[i] & 0x3F); + } + *pNumberOut = result; + *pCRCOut = crc; + return DRFLAC_SUCCESS; +} +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int32 prediction = 0; + DRFLAC_ASSERT(order <= 32); + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + return (drflac_int32)(prediction >> shift); +} +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int64 prediction; + DRFLAC_ASSERT(order <= 32); +#ifndef DRFLAC_64BIT + if (order == 8) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + } + else + { + int j; + prediction = 0; + for (j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; + } + } +#endif +#ifdef DRFLAC_64BIT + prediction = 0; + switch (order) + { + case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } +#endif + return (drflac_int32)(prediction >> shift); +} +#if 0 +static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(pSamplesOut != NULL); + for (i = 0; i < count; ++i) { + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + decodedRice |= (zeroCounter << riceParam); + if ((decodedRice & 0x01)) { + decodedRice = ~(decodedRice >> 1); + } else { + decodedRice = (decodedRice >> 1); + } + if (bitsPerSample+shift >= 32) { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + return DRFLAC_TRUE; +} +#endif +#if 0 +static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 decodedRice; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = decodedRice; + return DRFLAC_TRUE; +} +#endif +#if 0 +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_cache_t riceParamMask; + drflac_uint32 zeroCounter; + drflac_uint32 setBitOffsetPlus1; + drflac_uint32 riceParamPart; + drflac_uint32 riceLength; + DRFLAC_ASSERT(riceParam > 0); + riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); + zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + riceLength = setBitOffsetPlus1 + riceParam; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + drflac_uint32 bitCountLo; + drflac_cache_t resultHi; + bs->consumedBits += riceLength; + bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); + bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + } else { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + pZeroCounterOut[0] = zeroCounter; + pRiceParamPartOut[0] = riceParamPart; + return DRFLAC_TRUE; +} +#endif +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1); + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + pZeroCounterOut[0] = lzcount; + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + drflac_uint32 riceParamPartHi; + drflac_uint32 riceParamPartLo; + drflac_uint32 riceParamPartLoBitCount; + riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount))); + pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo; + bs_cache <<= riceParamPartLoBitCount; + } + } else { + drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits); + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + lzcount = drflac__clz(bs_cache); + zeroCounter += lzcount; + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + pZeroCounterOut[0] = zeroCounter; + goto extract_rice_param_part; + } + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + return DRFLAC_TRUE; +} +static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + bs_cache <<= riceParamPartLoBitCount; + } + } else { + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + goto extract_rice_param_part; + } + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + drflac_uint32 zeroCountPart0; + drflac_uint32 riceParamPart0; + drflac_uint32 riceParamMask; + drflac_uint32 i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(pSamplesOut != NULL); + (void)bitsPerSample; + (void)order; + (void)shift; + (void)coefficients; + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + i = 0; + while (i < count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + riceParamPart0 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + pSamplesOut[i] = riceParamPart0; + i += 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + drflac_uint32 zeroCountPart0 = 0; + drflac_uint32 zeroCountPart1 = 0; + drflac_uint32 zeroCountPart2 = 0; + drflac_uint32 zeroCountPart3 = 0; + drflac_uint32 riceParamPart0 = 0; + drflac_uint32 riceParamPart1 = 0; + drflac_uint32 riceParamPart2 = 0; + drflac_uint32 riceParamPart3 = 0; + drflac_uint32 riceParamMask; + const drflac_int32* pSamplesOutEnd; + drflac_uint32 i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(pSamplesOut != NULL); + if (order == 0) { + return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + pSamplesOutEnd = pSamplesOut + (count & ~3); + if (bitsPerSample+shift > 32) { + while (pSamplesOut < pSamplesOutEnd) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3); + pSamplesOut += 4; + } + } else { + while (pSamplesOut < pSamplesOutEnd) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3); + pSamplesOut += 4; + } + } + i = (count & ~3); + while (i < count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + riceParamPart0 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + if (bitsPerSample+shift > 32) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + } + i += 1; + pSamplesOut += 1; + } + return DRFLAC_TRUE; +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b) +{ + __m128i r; + r = _mm_packs_epi32(a, b); + r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0)); + r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); + r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); + return r; +} +#endif +#if defined(DRFLAC_SUPPORT_SSE41) +static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a) +{ + return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128())); +} +static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x) +{ + __m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); + __m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2)); + return _mm_add_epi32(x64, x32); +} +static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x) +{ + return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); +} +static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count) +{ + __m128i lo = _mm_srli_epi64(x, count); + __m128i hi = _mm_srai_epi32(x, count); + hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0)); + return _mm_or_si128(lo, hi); +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts0 = 0; + drflac_uint32 zeroCountParts1 = 0; + drflac_uint32 zeroCountParts2 = 0; + drflac_uint32 zeroCountParts3 = 0; + drflac_uint32 riceParamParts0 = 0; + drflac_uint32 riceParamParts1 = 0; + drflac_uint32 riceParamParts2 = 0; + drflac_uint32 riceParamParts3 = 0; + __m128i coefficients128_0; + __m128i coefficients128_4; + __m128i coefficients128_8; + __m128i samples128_0; + __m128i samples128_4; + __m128i samples128_8; + __m128i riceParamMask128; + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = _mm_set1_epi32(riceParamMask); + coefficients128_0 = _mm_setzero_si128(); + coefficients128_4 = _mm_setzero_si128(); + coefficients128_8 = _mm_setzero_si128(); + samples128_0 = _mm_setzero_si128(); + samples128_4 = _mm_setzero_si128(); + samples128_8 = _mm_setzero_si128(); +#if 1 + { + int runningOrder = order; + if (runningOrder >= 4) { + coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); + samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; + case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; + case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; + } + runningOrder = 0; + } + if (runningOrder >= 4) { + coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); + samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; + case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; + case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; + } + runningOrder = 0; + } + if (runningOrder == 4) { + coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); + samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; + case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; + case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; + } + runningOrder = 0; + } + coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); + } +#else + switch (order) + { + case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; + case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; + case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; + case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; + case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; + case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; + case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; + case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; + case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; + case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; + case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; + case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; + } +#endif + while (pDecodedSamples < pDecodedSamplesEnd) { + __m128i prediction128; + __m128i zeroCountPart128; + __m128i riceParamPart128; + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01))); + if (order <= 4) { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0); + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } else if (order <= 8) { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } else { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4)); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } + _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + i = (count & ~3); + while (i < (int)count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { + return DRFLAC_FALSE; + } + riceParamParts0 &= riceParamMask; + riceParamParts0 |= (zeroCountParts0 << riceParam); + riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; + pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); + i += 1; + pDecodedSamples += 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts0 = 0; + drflac_uint32 zeroCountParts1 = 0; + drflac_uint32 zeroCountParts2 = 0; + drflac_uint32 zeroCountParts3 = 0; + drflac_uint32 riceParamParts0 = 0; + drflac_uint32 riceParamParts1 = 0; + drflac_uint32 riceParamParts2 = 0; + drflac_uint32 riceParamParts3 = 0; + __m128i coefficients128_0; + __m128i coefficients128_4; + __m128i coefficients128_8; + __m128i samples128_0; + __m128i samples128_4; + __m128i samples128_8; + __m128i prediction128; + __m128i riceParamMask128; + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + DRFLAC_ASSERT(order <= 12); + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = _mm_set1_epi32(riceParamMask); + prediction128 = _mm_setzero_si128(); + coefficients128_0 = _mm_setzero_si128(); + coefficients128_4 = _mm_setzero_si128(); + coefficients128_8 = _mm_setzero_si128(); + samples128_0 = _mm_setzero_si128(); + samples128_4 = _mm_setzero_si128(); + samples128_8 = _mm_setzero_si128(); +#if 1 + { + int runningOrder = order; + if (runningOrder >= 4) { + coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); + samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; + case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; + case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; + } + runningOrder = 0; + } + if (runningOrder >= 4) { + coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); + samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; + case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; + case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; + } + runningOrder = 0; + } + if (runningOrder == 4) { + coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); + samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; + case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; + case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; + } + runningOrder = 0; + } + coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); + } +#else + switch (order) + { + case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; + case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; + case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; + case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; + case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; + case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; + case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; + case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; + case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; + case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; + case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; + case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; + } +#endif + while (pDecodedSamples < pDecodedSamplesEnd) { + __m128i zeroCountPart128; + __m128i riceParamPart128; + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1))); + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_xor_si128(prediction128, prediction128); + switch (order) + { + case 12: + case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0)))); + case 10: + case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2)))); + case 8: + case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0)))); + case 6: + case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2)))); + case 4: + case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0)))); + case 2: + case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2)))); + } + prediction128 = drflac__mm_hadd_epi64(prediction128); + prediction128 = drflac__mm_srai_epi64(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + i = (count & ~3); + while (i < (int)count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { + return DRFLAC_FALSE; + } + riceParamParts0 &= riceParamMask; + riceParamParts0 |= (zeroCountParts0 << riceParam); + riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; + pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); + i += 1; + pDecodedSamples += 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(pSamplesOut != NULL); + if (order > 0 && order <= 12) { + if (bitsPerSample+shift > 32) { + return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut); + } else { + return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut); + } + } else { + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x) +{ + vst1q_s32(p+0, x.val[0]); + vst1q_s32(p+4, x.val[1]); +} +static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x) +{ + vst1q_u32(p+0, x.val[0]); + vst1q_u32(p+4, x.val[1]); +} +static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x) +{ + vst1q_f32(p+0, x.val[0]); + vst1q_f32(p+4, x.val[1]); +} +static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x) +{ + vst1q_s16(p, vcombine_s16(x.val[0], x.val[1])); +} +static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x) +{ + vst1q_u16(p, vcombine_u16(x.val[0], x.val[1])); +} +static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0) +{ + drflac_int32 x[4]; + x[3] = x3; + x[2] = x2; + x[1] = x1; + x[0] = x0; + return vld1q_s32(x); +} +static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b) +{ + return vextq_s32(b, a, 1); +} +static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b) +{ + return vextq_u32(b, a, 1); +} +static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x) +{ + int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x)); + return vpadd_s32(r, r); +} +static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x) +{ + return vadd_s64(vget_high_s64(x), vget_low_s64(x)); +} +static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x) +{ + return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x))); +} +static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x) +{ + return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF)); +} +static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x) +{ + return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF)); +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts[4]; + drflac_uint32 riceParamParts[4]; + int32x4_t coefficients128_0; + int32x4_t coefficients128_4; + int32x4_t coefficients128_8; + int32x4_t samples128_0; + int32x4_t samples128_4; + int32x4_t samples128_8; + uint32x4_t riceParamMask128; + int32x4_t riceParam128; + int32x2_t shift64; + uint32x4_t one128; + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + riceParamMask = ~((~0UL) << riceParam); + riceParamMask128 = vdupq_n_u32(riceParamMask); + riceParam128 = vdupq_n_s32(riceParam); + shift64 = vdup_n_s32(-shift); + one128 = vdupq_n_u32(1); + { + int runningOrder = order; + drflac_int32 tempC[4] = {0, 0, 0, 0}; + drflac_int32 tempS[4] = {0, 0, 0, 0}; + if (runningOrder >= 4) { + coefficients128_0 = vld1q_s32(coefficients + 0); + samples128_0 = vld1q_s32(pSamplesOut - 4); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; + case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; + case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; + } + coefficients128_0 = vld1q_s32(tempC); + samples128_0 = vld1q_s32(tempS); + runningOrder = 0; + } + if (runningOrder >= 4) { + coefficients128_4 = vld1q_s32(coefficients + 4); + samples128_4 = vld1q_s32(pSamplesOut - 8); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; + case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; + case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; + } + coefficients128_4 = vld1q_s32(tempC); + samples128_4 = vld1q_s32(tempS); + runningOrder = 0; + } + if (runningOrder == 4) { + coefficients128_8 = vld1q_s32(coefficients + 8); + samples128_8 = vld1q_s32(pSamplesOut - 12); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; + case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; + case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; + } + coefficients128_8 = vld1q_s32(tempC); + samples128_8 = vld1q_s32(tempS); + runningOrder = 0; + } + coefficients128_0 = drflac__vrevq_s32(coefficients128_0); + coefficients128_4 = drflac__vrevq_s32(coefficients128_4); + coefficients128_8 = drflac__vrevq_s32(coefficients128_8); + } + while (pDecodedSamples < pDecodedSamplesEnd) { + int32x4_t prediction128; + int32x2_t prediction64; + uint32x4_t zeroCountPart128; + uint32x4_t riceParamPart128; + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { + return DRFLAC_FALSE; + } + zeroCountPart128 = vld1q_u32(zeroCountParts); + riceParamPart128 = vld1q_u32(riceParamParts); + riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); + riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); + riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); + if (order <= 4) { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_0, samples128_0); + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } else if (order <= 8) { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_4, samples128_4); + prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } else { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_8, samples128_8); + prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4); + prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } + vst1q_s32(pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + i = (count & ~3); + while (i < (int)count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { + return DRFLAC_FALSE; + } + riceParamParts[0] &= riceParamMask; + riceParamParts[0] |= (zeroCountParts[0] << riceParam); + riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; + pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); + i += 1; + pDecodedSamples += 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts[4]; + drflac_uint32 riceParamParts[4]; + int32x4_t coefficients128_0; + int32x4_t coefficients128_4; + int32x4_t coefficients128_8; + int32x4_t samples128_0; + int32x4_t samples128_4; + int32x4_t samples128_8; + uint32x4_t riceParamMask128; + int32x4_t riceParam128; + int64x1_t shift64; + uint32x4_t one128; + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + riceParamMask = ~((~0UL) << riceParam); + riceParamMask128 = vdupq_n_u32(riceParamMask); + riceParam128 = vdupq_n_s32(riceParam); + shift64 = vdup_n_s64(-shift); + one128 = vdupq_n_u32(1); + { + int runningOrder = order; + drflac_int32 tempC[4] = {0, 0, 0, 0}; + drflac_int32 tempS[4] = {0, 0, 0, 0}; + if (runningOrder >= 4) { + coefficients128_0 = vld1q_s32(coefficients + 0); + samples128_0 = vld1q_s32(pSamplesOut - 4); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; + case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; + case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; + } + coefficients128_0 = vld1q_s32(tempC); + samples128_0 = vld1q_s32(tempS); + runningOrder = 0; + } + if (runningOrder >= 4) { + coefficients128_4 = vld1q_s32(coefficients + 4); + samples128_4 = vld1q_s32(pSamplesOut - 8); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; + case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; + case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; + } + coefficients128_4 = vld1q_s32(tempC); + samples128_4 = vld1q_s32(tempS); + runningOrder = 0; + } + if (runningOrder == 4) { + coefficients128_8 = vld1q_s32(coefficients + 8); + samples128_8 = vld1q_s32(pSamplesOut - 12); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; + case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; + case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; + } + coefficients128_8 = vld1q_s32(tempC); + samples128_8 = vld1q_s32(tempS); + runningOrder = 0; + } + coefficients128_0 = drflac__vrevq_s32(coefficients128_0); + coefficients128_4 = drflac__vrevq_s32(coefficients128_4); + coefficients128_8 = drflac__vrevq_s32(coefficients128_8); + } + while (pDecodedSamples < pDecodedSamplesEnd) { + int64x2_t prediction128; + uint32x4_t zeroCountPart128; + uint32x4_t riceParamPart128; + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { + return DRFLAC_FALSE; + } + zeroCountPart128 = vld1q_u32(zeroCountParts); + riceParamPart128 = vld1q_u32(riceParamParts); + riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); + riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); + riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); + for (i = 0; i < 4; i += 1) { + int64x1_t prediction64; + prediction128 = veorq_s64(prediction128, prediction128); + switch (order) + { + case 12: + case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8))); + case 10: + case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8))); + case 8: + case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4))); + case 6: + case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4))); + case 4: + case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0))); + case 2: + case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0))); + } + prediction64 = drflac__vhaddq_s64(prediction128); + prediction64 = vshl_s64(prediction64, shift64); + prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0))); + samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + vst1q_s32(pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + i = (count & ~3); + while (i < (int)count) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { + return DRFLAC_FALSE; + } + riceParamParts[0] &= riceParamMask; + riceParamParts[0] |= (zeroCountParts[0] << riceParam); + riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; + pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); + i += 1; + pDecodedSamples += 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(pSamplesOut != NULL); + if (order > 0 && order <= 12) { + if (bitsPerSample+shift > 32) { + return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut); + } else { + return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut); + } + } else { + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } +} +#endif +static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ +#if defined(DRFLAC_SUPPORT_SSE41) + if (drflac__gIsSSE41Supported) { + return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported) { + return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } else +#endif + { + #if 0 + return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + #else + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + #endif + } +} +static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) +{ + drflac_uint32 i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + for (i = 0; i < count; ++i) { + if (!drflac__seek_rice_parts(bs, riceParam)) { + return DRFLAC_FALSE; + } + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(count > 0); + DRFLAC_ASSERT(unencodedBitsPerSample <= 31); + DRFLAC_ASSERT(pSamplesOut != NULL); + for (i = 0; i < count; ++i) { + if (unencodedBitsPerSample > 0) { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DRFLAC_FALSE; + } + } else { + pSamplesOut[i] = 0; + } + if (bitsPerSample >= 24) { + pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(blockSize != 0); + DRFLAC_ASSERT(pDecodedSamples != NULL); + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; + } + pDecodedSamples += order; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + partitionsRemaining = (1 << partitionOrder); + for (;;) { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + if (riceParam != 0xFF) { + if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } else { + drflac_uint8 unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } + pDecodedSamples += samplesInPartition; + if (partitionsRemaining == 1) { + break; + } + partitionsRemaining -= 1; + if (partitionOrder != 0) { + samplesInPartition = blockSize / (1 << partitionOrder); + } + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(blockSize != 0); + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; + } + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + partitionsRemaining = (1 << partitionOrder); + for (;;) + { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DRFLAC_FALSE; + } + } else { + drflac_uint8 unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DRFLAC_FALSE; + } + } + if (partitionsRemaining == 1) { + break; + } + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + for (i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + for (i = 0; i < blockSize; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + pDecodedSamples[i] = sample; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + static drflac_int32 lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + pDecodedSamples[i] = sample; + } + if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DRFLAC_FALSE; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint8 i; + drflac_uint8 lpcPrecision; + drflac_int8 lpcShift; + drflac_int32 coefficients[32]; + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + pDecodedSamples[i] = sample; + } + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; + } + lpcPrecision += 1; + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DRFLAC_FALSE; + } + if (lpcShift < 0) { + return DRFLAC_FALSE; + } + DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients)); + for (i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { + return DRFLAC_FALSE; + } + } + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) +{ + const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(header != NULL); + for (;;) { + drflac_uint8 crc8 = 0xCE; + drflac_uint8 reserved = 0; + drflac_uint8 blockingStrategy = 0; + drflac_uint8 blockSize = 0; + drflac_uint8 sampleRate = 0; + drflac_uint8 channelAssignment = 0; + drflac_uint8 bitsPerSample = 0; + drflac_bool32 isVariableBlockSize; + if (!drflac__find_and_seek_to_next_sync_code(bs)) { + return DRFLAC_FALSE; + } + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockingStrategy, 1); + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockSize == 0) { + continue; + } + crc8 = drflac_crc8(crc8, blockSize, 4); + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, sampleRate, 4); + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DRFLAC_FALSE; + } + if (channelAssignment > 10) { + continue; + } + crc8 = drflac_crc8(crc8, channelAssignment, 4); + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DRFLAC_FALSE; + } + if (bitsPerSample == 3 || bitsPerSample == 7) { + continue; + } + crc8 = drflac_crc8(crc8, bitsPerSample, 3); + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + drflac_uint64 pcmFrameNumber; + drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_AT_END) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->flacFrameNumber = 0; + header->pcmFrameNumber = pcmFrameNumber; + } else { + drflac_uint64 flacFrameNumber = 0; + drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_AT_END) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->flacFrameNumber = (drflac_uint32)flacFrameNumber; + header->pcmFrameNumber = 0; + } + DRFLAC_ASSERT(blockSize > 0); + if (blockSize == 1) { + header->blockSizeInPCMFrames = 192; + } else if (blockSize >= 2 && blockSize <= 5) { + header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8); + header->blockSizeInPCMFrames += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16); + header->blockSizeInPCMFrames += 1; + } else { + DRFLAC_ASSERT(blockSize >= 8); + header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8)); + } + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 8); + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + header->sampleRate *= 10; + } else { + continue; + } + header->channelAssignment = channelAssignment; + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + if (!drflac__read_uint8(bs, 8, &header->crc8)) { + return DRFLAC_FALSE; + } +#ifndef DR_FLAC_NO_CRC + if (header->crc8 != crc8) { + continue; + } +#endif + return DRFLAC_TRUE; + } +} +static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + drflac_uint8 header; + int type; + if (!drflac__read_uint8(bs, 8, &header)) { + return DRFLAC_FALSE; + } + if ((header & 0x80) != 0) { + return DRFLAC_FALSE; + } + type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (drflac_uint8)(type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) +{ + drflac_subframe* pSubframe; + drflac_uint32 subframeBitsPerSample; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(frame != NULL); + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + subframeBitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + subframeBitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + subframeBitsPerSample += 1; + } + if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { + return DRFLAC_FALSE; + } + subframeBitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pSamplesS32 = pDecodedSamplesOut; + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); + } break; + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); + } break; + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); + } break; + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); + } break; + default: return DRFLAC_FALSE; + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + drflac_subframe* pSubframe; + drflac_uint32 subframeBitsPerSample; + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(frame != NULL); + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + subframeBitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + subframeBitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + subframeBitsPerSample += 1; + } + if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { + return DRFLAC_FALSE; + } + subframeBitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pSamplesS32 = NULL; + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, subframeBitsPerSample)) { + return DRFLAC_FALSE; + } + } break; + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + } break; + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + case DRFLAC_SUBFRAME_LPC: + { + drflac_uint8 lpcPrecision; + unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; + } + lpcPrecision += 1; + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + default: return DRFLAC_FALSE; + } + return DRFLAC_TRUE; +} +static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) +{ + drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + DRFLAC_ASSERT(channelAssignment <= 10); + return lookup[channelAssignment]; +} +static drflac_result drflac__decode_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint8 paddingSizeInBits; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes)); + if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) { + return DRFLAC_ERROR; + } + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + if (channelCount != (int)pFlac->channels) { + return DRFLAC_ERROR; + } + for (i = 0; i < channelCount; ++i) { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) { + return DRFLAC_ERROR; + } + } + paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7); + if (paddingSizeInBits > 0) { + drflac_uint8 padding = 0; + if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { + return DRFLAC_AT_END; + } + } +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_AT_END; + } +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; + } +#endif + pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + return DRFLAC_SUCCESS; +} +static drflac_result drflac__seek_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + for (i = 0; i < channelCount; ++i) { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) { + return DRFLAC_ERROR; + } + } + if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { + return DRFLAC_ERROR; + } +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_AT_END; + } +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; + } +#endif + return DRFLAC_SUCCESS; +} +static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac) +{ + DRFLAC_ASSERT(pFlac != NULL); + for (;;) { + drflac_result result; + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + result = drflac__decode_flac_frame(pFlac); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return DRFLAC_FALSE; + } + } + return DRFLAC_TRUE; + } +} +static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame) +{ + drflac_uint64 firstPCMFrame; + drflac_uint64 lastPCMFrame; + DRFLAC_ASSERT(pFlac != NULL); + firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber; + if (firstPCMFrame == 0) { + firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames; + } + lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + if (lastPCMFrame > 0) { + lastPCMFrame -= 1; + } + if (pFirstPCMFrame) { + *pFirstPCMFrame = firstPCMFrame; + } + if (pLastPCMFrame) { + *pLastPCMFrame = lastPCMFrame; + } +} +static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + drflac_bool32 result; + DRFLAC_ASSERT(pFlac != NULL); + result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes); + DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); + pFlac->currentPCMFrame = 0; + return result; +} +static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac) +{ + DRFLAC_ASSERT(pFlac != NULL); + return drflac__seek_flac_frame(pFlac); +} +static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek) +{ + drflac_uint64 pcmFramesRead = 0; + while (pcmFramesToSeek > 0) { + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; + } + } else { + if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) { + pcmFramesRead += pcmFramesToSeek; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek; + pcmFramesToSeek = 0; + } else { + pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining; + pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + } + } + } + pFlac->currentPCMFrame += pcmFramesRead; + return pcmFramesRead; +} +static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningPCMFrameCount; + DRFLAC_ASSERT(pFlac != NULL); + if (pcmFrameIndex >= pFlac->currentPCMFrame) { + runningPCMFrameCount = pFlac->currentPCMFrame; + if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + runningPCMFrameCount = 0; + if (!drflac__seek_to_first_frame(pFlac)) { + return DRFLAC_FALSE; + } + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } + for (;;) { + drflac_uint64 pcmFrameCountInThisFLACFrame; + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { + drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; + } else { + return DRFLAC_FALSE; + } + } + } else { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } + } else { + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFLACFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; + } else { + return DRFLAC_FALSE; + } + } + } else { + runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { + return DRFLAC_TRUE; + } + } + next_iteration: + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } +} +#if !defined(DR_FLAC_NO_CRC) +#define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f +static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset) +{ + DRFLAC_ASSERT(pFlac != NULL); + DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL); + DRFLAC_ASSERT(targetByte >= rangeLo); + DRFLAC_ASSERT(targetByte <= rangeHi); + *pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes; + for (;;) { + drflac_uint64 lastTargetByte = targetByte; + if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) { + if (targetByte == 0) { + drflac__seek_to_first_frame(pFlac); + return DRFLAC_FALSE; + } + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); +#if 1 + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + break; + } +#else + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + break; + } +#endif + } + if(targetByte == lastTargetByte) { + return DRFLAC_FALSE; + } + } + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); + DRFLAC_ASSERT(targetByte <= rangeHi); + *pLastSuccessfulSeekOffset = targetByte; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset) +{ +#if 0 + if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) { + if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + } +#endif + return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset; +} +static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi) +{ + drflac_uint64 targetByte; + drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount; + drflac_uint64 pcmRangeHi = 0; + drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1; + drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo; + drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; + targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO); + if (targetByte > byteRangeHi) { + targetByte = byteRangeHi; + } + for (;;) { + if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) { + drflac_uint64 newPCMRangeLo; + drflac_uint64 newPCMRangeHi; + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi); + if (pcmRangeLo == newPCMRangeLo) { + if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) { + break; + } + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { + return DRFLAC_TRUE; + } else { + break; + } + } + pcmRangeLo = newPCMRangeLo; + pcmRangeHi = newPCMRangeHi; + if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) { + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) { + return DRFLAC_TRUE; + } else { + break; + } + } else { + const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f); + if (pcmRangeLo > pcmFrameIndex) { + byteRangeHi = lastSuccessfulSeekOffset; + if (byteRangeLo > byteRangeHi) { + byteRangeLo = byteRangeHi; + } + targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2); + if (targetByte < byteRangeLo) { + targetByte = byteRangeLo; + } + } else { + if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) { + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { + return DRFLAC_TRUE; + } else { + break; + } + } else { + byteRangeLo = lastSuccessfulSeekOffset; + if (byteRangeHi < byteRangeLo) { + byteRangeHi = byteRangeLo; + } + targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio); + if (targetByte > byteRangeHi) { + targetByte = byteRangeHi; + } + if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) { + closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset; + } + } + } + } + } else { + break; + } + } + drflac__seek_to_first_frame(pFlac); + return DRFLAC_FALSE; +} +static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_uint64 byteRangeLo; + drflac_uint64 byteRangeHi; + drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; + if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + if (pcmFrameIndex < seekForwardThreshold) { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex; + } + byteRangeLo = pFlac->firstFLACFramePosInBytes; + byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); + return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi); +} +#endif +static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_uint32 iClosestSeekpoint = 0; + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningPCMFrameCount; + drflac_uint32 iSeekpoint; + DRFLAC_ASSERT(pFlac != NULL); + if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) { + return DRFLAC_FALSE; + } + for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) { + break; + } + iClosestSeekpoint = iSeekpoint; + } + if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) { + return DRFLAC_FALSE; + } + if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) { + return DRFLAC_FALSE; + } +#if !defined(DR_FLAC_NO_CRC) + if (pFlac->totalPCMFrameCount > 0) { + drflac_uint64 byteRangeLo; + drflac_uint64 byteRangeHi; + byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); + byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset; + if (iClosestSeekpoint < pFlac->seekpointCount-1) { + drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1; + if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) { + return DRFLAC_FALSE; + } + if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) { + byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1; + } + } + if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { + if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); + if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) { + return DRFLAC_TRUE; + } + } + } + } +#endif + if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) { + runningPCMFrameCount = pFlac->currentPCMFrame; + if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame; + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { + return DRFLAC_FALSE; + } + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } + for (;;) { + drflac_uint64 pcmFrameCountInThisFLACFrame; + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { + drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; + } else { + return DRFLAC_FALSE; + } + } + } else { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } + } else { + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFLACFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; + } else { + return DRFLAC_FALSE; + } + } + } else { + runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { + return DRFLAC_TRUE; + } + } + next_iteration: + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } +} +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + drflac_uint8 capturePattern[4]; + drflac_uint8 structureVersion; + drflac_uint8 headerType; + drflac_uint64 granulePosition; + drflac_uint32 serialNumber; + drflac_uint32 sequenceNumber; + drflac_uint32 checksum; + drflac_uint8 segmentCount; + drflac_uint8 segmentTable[255]; +} drflac_ogg_page_header; +#endif +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + drflac_container container; + void* pUserData; + void* pUserDataMD; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalPCMFrameCount; + drflac_uint16 maxBlockSizeInPCMFrames; + drflac_uint64 runningFilePos; + drflac_bool32 hasStreamInfoBlock; + drflac_bool32 hasMetadataBlocks; + drflac_bs bs; + drflac_frame_header firstFrameHeader; +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggSerial; + drflac_uint64 oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; +static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31); + *blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24); + *blockSize = (blockHeader & 0x00FFFFFFUL); +} +static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + drflac_uint32 blockHeader; + *blockSize = 0; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DRFLAC_FALSE; + } + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + drflac_uint32 blockSizes; + drflac_uint64 frameSizes = 0; + drflac_uint64 importantProps; + drflac_uint8 md5[16]; + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, &importantProps, 8) != 8) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DRFLAC_FALSE; + } + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16); + pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF); + pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40); + pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16); + pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44); + pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1; + pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1; + pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF))); + DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5)); + return DRFLAC_TRUE; +} +static void* drflac__malloc_default(size_t sz, void* pUserData) +{ + (void)pUserData; + return DRFLAC_MALLOC(sz); +} +static void* drflac__realloc_default(void* p, size_t sz, void* pUserData) +{ + (void)pUserData; + return DRFLAC_REALLOC(p, sz); +} +static void drflac__free_default(void* p, void* pUserData) +{ + (void)pUserData; + DRFLAC_FREE(p); +} +static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onMalloc != NULL) { + return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); + } + return NULL; +} +static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { + void* p2; + p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); + if (p2 == NULL) { + return NULL; + } + if (p != NULL) { + DRFLAC_COPY_MEMORY(p2, p, szOld); + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } + return p2; + } + return NULL; +} +static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (p == NULL || pAllocationCallbacks == NULL) { + return; + } + if (pAllocationCallbacks->onFree != NULL) { + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } +} +static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize, drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac_uint64 runningFilePos = 42; + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + for (;;) { + drflac_metadata metadata; + drflac_uint8 isLastBlock = 0; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + runningFilePos += 4; + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (blockSize < 4) { + return DRFLAC_FALSE; + } + if (onMeta) { + void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); + metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); + metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + if (onMeta) { + drflac_uint32 iSeekpoint; + void* pRawData; + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint); + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + for (iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame); + pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset); + pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount); + } + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (blockSize < 8) { + return DRFLAC_FALSE; + } + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + drflac_uint32 i; + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.pComments = pRunningData; + for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) { + drflac_uint32 commentLength; + if (pRunningDataEnd - pRunningData < 4) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + pRunningData += commentLength; + } + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (blockSize < 396) { + return DRFLAC_FALSE; + } + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + drflac_uint8 iTrack; + drflac_uint8 iIndex; + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8; + metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = pRunningData; + for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { + drflac_uint8 indexCount; + drflac_uint32 indexPointSize; + if (pRunningDataEnd - pRunningData < 36) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + pRunningData += 35; + indexCount = pRunningData[0]; pRunningData += 1; + indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index); + if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + for (iIndex = 0; iIndex < indexCount; ++iIndex) { + drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData; + pRunningData += sizeof(drflac_cuesheet_track_index); + pTrack->offset = drflac__be2host_64(pTrack->offset); + } + } + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (blockSize < 32) { + return DRFLAC_FALSE; + } + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength; + metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; + if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (onMeta) { + metadata.data.padding.unused = 0; + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } else { + onMeta(pUserDataMD, &metadata); + } + } + } break; + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + if (onMeta) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + } break; + default: + { + if (onMeta) { + void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + onMeta(pUserDataMD, &metadata); + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + } + if (onMeta == NULL && blockSize > 0) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + *pSeektablePos = seektablePos; + *pSeektableSize = seektableSize; + *pFirstFramePos = runningFilePos; + return DRFLAC_TRUE; +} +static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + (void)onSeek; + pInit->container = drflac_container_native; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + if (!relaxed) { + return DRFLAC_FALSE; + } else { + pInit->hasStreamInfoBlock = DRFLAC_FALSE; + pInit->hasMetadataBlocks = DRFLAC_FALSE; + if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { + return DRFLAC_FALSE; + } + if (pInit->firstFrameHeader.bitsPerSample == 0) { + return DRFLAC_FALSE; + } + pInit->sampleRate = pInit->firstFrameHeader.sampleRate; + pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); + pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; + pInit->maxBlockSizeInPCMFrames = 65535; + return DRFLAC_TRUE; + } + } else { + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DRFLAC_FALSE; + } + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; + pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; + pInit->hasMetadataBlocks = !isLastBlock; + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + return DRFLAC_TRUE; + } +} +#ifndef DR_FLAC_NO_OGG +#define DRFLAC_OGG_MAX_PAGE_SIZE 65307 +#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 +typedef enum +{ + drflac_ogg_recover_on_crc_mismatch, + drflac_ogg_fail_on_crc_mismatch +} drflac_ogg_crc_mismatch_recovery; +#ifndef DR_FLAC_NO_CRC +static drflac_uint32 drflac__crc32_table[] = { + 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, + 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, + 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, + 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, + 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, + 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, + 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, + 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, + 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, + 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, + 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, + 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, + 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, + 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, + 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, + 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, + 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, + 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, + 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, + 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, + 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, + 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, + 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, + 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, + 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, + 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, + 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, + 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, + 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, + 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, + 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, + 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, + 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, + 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, + 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, + 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, + 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, + 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, + 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, + 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, + 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, + 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, + 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, + 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, + 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, + 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, + 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, + 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, + 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, + 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, + 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, + 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, + 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, + 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, + 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, + 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, + 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, + 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, + 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, + 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, + 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, + 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, + 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, + 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L +}; +#endif +static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) +{ +#ifndef DR_FLAC_NO_CRC + return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; +#else + (void)data; + return crc32; +#endif +} +#if 0 +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) +{ + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); + return crc32; +} +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) +{ + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); + return crc32; +} +#endif +static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) +{ + drflac_uint32 i; + for (i = 0; i < dataSize; ++i) { + crc32 = drflac_crc32_byte(crc32, pData[i]); + } + return crc32; +} +static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + drflac_uint32 pageBodySize = 0; + int i; + for (i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + return pageBodySize; +} +static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 data[23]; + drflac_uint32 i; + DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); + if (onRead(pUserData, data, 23) != 23) { + return DRFLAC_AT_END; + } + *pBytesRead += 23; + pHeader->capturePattern[0] = 'O'; + pHeader->capturePattern[1] = 'g'; + pHeader->capturePattern[2] = 'g'; + pHeader->capturePattern[3] = 'S'; + pHeader->structureVersion = data[0]; + pHeader->headerType = data[1]; + DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8); + DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4); + DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4); + DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4); + pHeader->segmentCount = data[22]; + data[18] = 0; + data[19] = 0; + data[20] = 0; + data[21] = 0; + for (i = 0; i < 23; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); + } + if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DRFLAC_AT_END; + } + *pBytesRead += pHeader->segmentCount; + for (i = 0; i < pHeader->segmentCount; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); + } + return DRFLAC_SUCCESS; +} +static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 id[4]; + *pBytesRead = 0; + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_AT_END; + } + *pBytesRead += 4; + for (;;) { + if (drflac_ogg__is_capture_pattern(id)) { + drflac_result result; + *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); + if (result == DRFLAC_SUCCESS) { + return DRFLAC_SUCCESS; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return result; + } + } + } else { + id[0] = id[1]; + id[1] = id[2]; + id[2] = id[3]; + if (onRead(pUserData, &id[3], 1) != 1) { + return DRFLAC_AT_END; + } + *pBytesRead += 1; + } + } +} +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + void* pUserData; + drflac_uint64 currentBytePos; + drflac_uint64 firstBytePos; + drflac_uint32 serialNumber; + drflac_ogg_page_header bosPageHeader; + drflac_ogg_page_header currentPageHeader; + drflac_uint32 bytesRemainingInPage; + drflac_uint32 pageDataSize; + drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; +} drflac_oggbs; +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + return bytesActuallyRead; +} +static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + return DRFLAC_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } else { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += offset; + return DRFLAC_TRUE; + } +} +static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) +{ + drflac_ogg_page_header header; + for (;;) { + drflac_uint32 crc32 = 0; + drflac_uint32 bytesRead; + drflac_uint32 pageBodySize; +#ifndef DR_FLAC_NO_CRC + drflac_uint32 actualCRC32; +#endif + if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += bytesRead; + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { + continue; + } + if (header.serialNumber != oggbs->serialNumber) { + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + continue; + } + if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { + return DRFLAC_FALSE; + } + oggbs->pageDataSize = pageBodySize; +#ifndef DR_FLAC_NO_CRC + actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); + if (actualCRC32 != header.checksum) { + if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { + continue; + } else { + drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); + return DRFLAC_FALSE; + } + } +#else + (void)recoveryMethod; +#endif + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DRFLAC_TRUE; + } +} +#if 0 +static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) +{ + drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + drflac_uint8 iSeg = 0; + drflac_uint32 iByte = 0; + while (iByte < bytesConsumedInPage) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); + return iSeg; +} +static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + for (;;) { + drflac_bool32 atEndOfPage = DRFLAC_FALSE; + drflac_uint8 bytesRemainingInSeg; + drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DRFLAC_TRUE; + } + break; + } + bytesToEndOfPacketOrPage += segmentSize; + } + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + if (atEndOfPage) { + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DRFLAC_FALSE; + } + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DRFLAC_TRUE; + } + } else { + return DRFLAC_TRUE; + } + } +} +static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; + size_t bytesRead = 0; + DRFLAC_ASSERT(oggbs != NULL); + DRFLAC_ASSERT(pRunningBufferOut != NULL); + while (bytesRead < bytesToRead) { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); + bytesRead += bytesRemainingToRead; + oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; + break; + } + if (oggbs->bytesRemainingInPage > 0) { + DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); + bytesRead += oggbs->bytesRemainingInPage; + pRunningBufferOut += oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + DRFLAC_ASSERT(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + break; + } + } + return bytesRead; +} +static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + int bytesSeeked = 0; + DRFLAC_ASSERT(oggbs != NULL); + DRFLAC_ASSERT(offset >= 0); + if (origin == drflac_seek_origin_start) { + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + DRFLAC_ASSERT(origin == drflac_seek_origin_current); + while (bytesSeeked < offset) { + int bytesRemainingToSeek = offset - bytesSeeked; + DRFLAC_ASSERT(bytesRemainingToSeek >= 0); + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + bytesSeeked += bytesRemainingToSeek; + (void)bytesSeeked; + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + if (oggbs->bytesRemainingInPage > 0) { + bytesSeeked += (int)oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + DRFLAC_ASSERT(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + } + return DRFLAC_TRUE; +} +static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + drflac_uint64 originalBytePos; + drflac_uint64 runningGranulePosition; + drflac_uint64 runningFrameBytePos; + drflac_uint64 runningPCMFrameCount; + DRFLAC_ASSERT(oggbs != NULL); + originalBytePos = oggbs->currentBytePos; + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) { + return DRFLAC_FALSE; + } + oggbs->bytesRemainingInPage = 0; + runningGranulePosition = 0; + for (;;) { + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DRFLAC_FALSE; + } + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; + if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) { + break; + } + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + drflac_uint8 firstBytesInPage[2]; + firstBytesInPage[0] = oggbs->pageData[0]; + firstBytesInPage[1] = oggbs->pageData[1]; + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { + runningGranulePosition = oggbs->currentPageHeader.granulePosition; + } + continue; + } + } + } + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + runningPCMFrameCount = runningGranulePosition; + for (;;) { + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + drflac_uint64 pcmFrameCountInThisFrame; + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + pFlac->currentPCMFrame = pcmFrameIndex; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + return DRFLAC_TRUE; + } else { + return DRFLAC_FALSE; + } + } + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount); + if (pcmFramesToDecode == 0) { + return DRFLAC_TRUE; + } + pFlac->currentPCMFrame = runningPCMFrameCount; + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return DRFLAC_FALSE; + } + } + } else { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return DRFLAC_FALSE; + } + } + } + } +} +static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + drflac_ogg_page_header header; + drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + drflac_uint32 bytesRead = 0; + (void)relaxed; + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + for (;;) { + int pageBodySize; + if ((header.headerType & 0x02) == 0) { + return DRFLAC_FALSE; + } + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) { + drflac_uint32 bytesRemainingInPage = pageBodySize; + drflac_uint8 packetType; + if (onRead(pUserData, &packetType, 1) != 1) { + return DRFLAC_FALSE; + } + bytesRemainingInPage -= 1; + if (packetType == 0x7F) { + drflac_uint8 sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { + drflac_uint8 mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DRFLAC_FALSE; + } + if (mappingVersion[0] != 1) { + return DRFLAC_FALSE; + } + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { + drflac_streaminfo streaminfo; + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DRFLAC_FALSE; + } + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; + pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; + pInit->hasMetadataBlocks = !isLastBlock; + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } else { + return DRFLAC_FALSE; + } + } else { + return DRFLAC_FALSE; + } + } else { + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + pInit->runningFilePos += pageBodySize; + if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + } + pInit->hasMetadataBlocks = DRFLAC_TRUE; + return DRFLAC_TRUE; +} +#endif +static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + drflac_bool32 relaxed; + drflac_uint8 id[4]; + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DRFLAC_FALSE; + } + DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit)); + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->container = container; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + pInit->bs.onRead = onRead; + pInit->bs.onSeek = onSeek; + pInit->bs.pUserData = pUserData; + drflac__reset_cache(&pInit->bs); + relaxed = container != drflac_container_unknown; + for (;;) { + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += 4; + if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { + drflac_uint8 header[6]; + drflac_uint8 flags; + drflac_uint32 headerSize; + if (onRead(pUserData, header, 6) != 6) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += 6; + flags = header[1]; + DRFLAC_COPY_MEMORY(&headerSize, header+2, 4); + headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); + if (flags & 0x10) { + headerSize += 10; + } + if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += headerSize; + } else { + break; + } + } + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + if (relaxed) { + if (container == drflac_container_native) { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (container == drflac_container_ogg) { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + } + return DRFLAC_FALSE; +} +static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit) +{ + DRFLAC_ASSERT(pFlac != NULL); + DRFLAC_ASSERT(pInit != NULL); + DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac)); + pFlac->bs = pInit->bs; + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (drflac_uint8)pInit->channels; + pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; + pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount; + pFlac->container = pInit->container; +} +static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac_init_info init; + drflac_uint32 allocationSize; + drflac_uint32 wholeSIMDVectorCountPerChannel; + drflac_uint32 decodedSamplesAllocationSize; +#ifndef DR_FLAC_NO_OGG + drflac_oggbs oggbs; +#endif + drflac_uint64 firstFramePos; + drflac_uint64 seektablePos; + drflac_uint32 seektableSize; + drflac_allocation_callbacks allocationCallbacks; + drflac* pFlac; + drflac__init_cpu_caps(); + if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { + return NULL; + } + if (pAllocationCallbacks != NULL) { + allocationCallbacks = *pAllocationCallbacks; + if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) { + return NULL; + } + } else { + allocationCallbacks.pUserData = NULL; + allocationCallbacks.onMalloc = drflac__malloc_default; + allocationCallbacks.onRealloc = drflac__realloc_default; + allocationCallbacks.onFree = drflac__free_default; + } + allocationSize = sizeof(drflac); + if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { + wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); + } else { + wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; + } + decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; + allocationSize += decodedSamplesAllocationSize; + allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + allocationSize += sizeof(drflac_oggbs); + } + DRFLAC_ZERO_MEMORY(&oggbs, sizeof(oggbs)); + if (init.container == drflac_container_ogg) { + oggbs.onRead = onRead; + oggbs.onSeek = onSeek; + oggbs.pUserData = pUserData; + oggbs.currentBytePos = init.oggFirstBytePos; + oggbs.firstBytePos = init.oggFirstBytePos; + oggbs.serialNumber = init.oggSerial; + oggbs.bosPageHeader = init.oggBosHeader; + oggbs.bytesRemainingInPage = 0; + } +#endif + firstFramePos = 42; + seektablePos = 0; + seektableSize = 0; + if (init.hasMetadataBlocks) { + drflac_read_proc onReadOverride = onRead; + drflac_seek_proc onSeekOverride = onSeek; + void* pUserDataOverride = pUserData; +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + onReadOverride = drflac__on_read_ogg; + onSeekOverride = drflac__on_seek_ogg; + pUserDataOverride = (void*)&oggbs; + } +#endif + if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize, &allocationCallbacks)) { + return NULL; + } + allocationSize += seektableSize; + } + pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + drflac__init_from_info(pFlac, &init); + pFlac->allocationCallbacks = allocationCallbacks; + pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize); + *pInternalOggbs = oggbs; + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)pInternalOggbs; + pFlac->_oggbs = (void*)pInternalOggbs; + } +#endif + pFlac->firstFLACFramePosInBytes = firstFramePos; +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) + { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + else +#endif + { + if (seektablePos != 0) { + pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints); + pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); + DRFLAC_ASSERT(pFlac->bs.onSeek != NULL); + DRFLAC_ASSERT(pFlac->bs.onRead != NULL); + if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) { + if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) { + drflac_uint32 iSeekpoint; + for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame); + pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset); + pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount); + } + } else { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + } else { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + } + } + if (!init.hasStreamInfoBlock) { + pFlac->currentFLACFrame.header = init.firstFrameHeader; + for (;;) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + break; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + continue; + } else { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + } + } + } + return pFlac; +} +#ifndef DR_FLAC_NO_STDIO +#include +#include +#include +static drflac_result drflac_result_from_errno(int e) +{ + switch (e) + { + case 0: return DRFLAC_SUCCESS; + #ifdef EPERM + case EPERM: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef ENOENT + case ENOENT: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef ESRCH + case ESRCH: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef EINTR + case EINTR: return DRFLAC_INTERRUPT; + #endif + #ifdef EIO + case EIO: return DRFLAC_IO_ERROR; + #endif + #ifdef ENXIO + case ENXIO: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef E2BIG + case E2BIG: return DRFLAC_INVALID_ARGS; + #endif + #ifdef ENOEXEC + case ENOEXEC: return DRFLAC_INVALID_FILE; + #endif + #ifdef EBADF + case EBADF: return DRFLAC_INVALID_FILE; + #endif + #ifdef ECHILD + case ECHILD: return DRFLAC_ERROR; + #endif + #ifdef EAGAIN + case EAGAIN: return DRFLAC_UNAVAILABLE; + #endif + #ifdef ENOMEM + case ENOMEM: return DRFLAC_OUT_OF_MEMORY; + #endif + #ifdef EACCES + case EACCES: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef EFAULT + case EFAULT: return DRFLAC_BAD_ADDRESS; + #endif + #ifdef ENOTBLK + case ENOTBLK: return DRFLAC_ERROR; + #endif + #ifdef EBUSY + case EBUSY: return DRFLAC_BUSY; + #endif + #ifdef EEXIST + case EEXIST: return DRFLAC_ALREADY_EXISTS; + #endif + #ifdef EXDEV + case EXDEV: return DRFLAC_ERROR; + #endif + #ifdef ENODEV + case ENODEV: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef ENOTDIR + case ENOTDIR: return DRFLAC_NOT_DIRECTORY; + #endif + #ifdef EISDIR + case EISDIR: return DRFLAC_IS_DIRECTORY; + #endif + #ifdef EINVAL + case EINVAL: return DRFLAC_INVALID_ARGS; + #endif + #ifdef ENFILE + case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES; + #endif + #ifdef EMFILE + case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES; + #endif + #ifdef ENOTTY + case ENOTTY: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef ETXTBSY + case ETXTBSY: return DRFLAC_BUSY; + #endif + #ifdef EFBIG + case EFBIG: return DRFLAC_TOO_BIG; + #endif + #ifdef ENOSPC + case ENOSPC: return DRFLAC_NO_SPACE; + #endif + #ifdef ESPIPE + case ESPIPE: return DRFLAC_BAD_SEEK; + #endif + #ifdef EROFS + case EROFS: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef EMLINK + case EMLINK: return DRFLAC_TOO_MANY_LINKS; + #endif + #ifdef EPIPE + case EPIPE: return DRFLAC_BAD_PIPE; + #endif + #ifdef EDOM + case EDOM: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef ERANGE + case ERANGE: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef EDEADLK + case EDEADLK: return DRFLAC_DEADLOCK; + #endif + #ifdef ENAMETOOLONG + case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG; + #endif + #ifdef ENOLCK + case ENOLCK: return DRFLAC_ERROR; + #endif + #ifdef ENOSYS + case ENOSYS: return DRFLAC_NOT_IMPLEMENTED; + #endif + #ifdef ENOTEMPTY + case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY; + #endif + #ifdef ELOOP + case ELOOP: return DRFLAC_TOO_MANY_LINKS; + #endif + #ifdef ENOMSG + case ENOMSG: return DRFLAC_NO_MESSAGE; + #endif + #ifdef EIDRM + case EIDRM: return DRFLAC_ERROR; + #endif + #ifdef ECHRNG + case ECHRNG: return DRFLAC_ERROR; + #endif + #ifdef EL2NSYNC + case EL2NSYNC: return DRFLAC_ERROR; + #endif + #ifdef EL3HLT + case EL3HLT: return DRFLAC_ERROR; + #endif + #ifdef EL3RST + case EL3RST: return DRFLAC_ERROR; + #endif + #ifdef ELNRNG + case ELNRNG: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef EUNATCH + case EUNATCH: return DRFLAC_ERROR; + #endif + #ifdef ENOCSI + case ENOCSI: return DRFLAC_ERROR; + #endif + #ifdef EL2HLT + case EL2HLT: return DRFLAC_ERROR; + #endif + #ifdef EBADE + case EBADE: return DRFLAC_ERROR; + #endif + #ifdef EBADR + case EBADR: return DRFLAC_ERROR; + #endif + #ifdef EXFULL + case EXFULL: return DRFLAC_ERROR; + #endif + #ifdef ENOANO + case ENOANO: return DRFLAC_ERROR; + #endif + #ifdef EBADRQC + case EBADRQC: return DRFLAC_ERROR; + #endif + #ifdef EBADSLT + case EBADSLT: return DRFLAC_ERROR; + #endif + #ifdef EBFONT + case EBFONT: return DRFLAC_INVALID_FILE; + #endif + #ifdef ENOSTR + case ENOSTR: return DRFLAC_ERROR; + #endif + #ifdef ENODATA + case ENODATA: return DRFLAC_NO_DATA_AVAILABLE; + #endif + #ifdef ETIME + case ETIME: return DRFLAC_TIMEOUT; + #endif + #ifdef ENOSR + case ENOSR: return DRFLAC_NO_DATA_AVAILABLE; + #endif + #ifdef ENONET + case ENONET: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENOPKG + case ENOPKG: return DRFLAC_ERROR; + #endif + #ifdef EREMOTE + case EREMOTE: return DRFLAC_ERROR; + #endif + #ifdef ENOLINK + case ENOLINK: return DRFLAC_ERROR; + #endif + #ifdef EADV + case EADV: return DRFLAC_ERROR; + #endif + #ifdef ESRMNT + case ESRMNT: return DRFLAC_ERROR; + #endif + #ifdef ECOMM + case ECOMM: return DRFLAC_ERROR; + #endif + #ifdef EPROTO + case EPROTO: return DRFLAC_ERROR; + #endif + #ifdef EMULTIHOP + case EMULTIHOP: return DRFLAC_ERROR; + #endif + #ifdef EDOTDOT + case EDOTDOT: return DRFLAC_ERROR; + #endif + #ifdef EBADMSG + case EBADMSG: return DRFLAC_BAD_MESSAGE; + #endif + #ifdef EOVERFLOW + case EOVERFLOW: return DRFLAC_TOO_BIG; + #endif + #ifdef ENOTUNIQ + case ENOTUNIQ: return DRFLAC_NOT_UNIQUE; + #endif + #ifdef EBADFD + case EBADFD: return DRFLAC_ERROR; + #endif + #ifdef EREMCHG + case EREMCHG: return DRFLAC_ERROR; + #endif + #ifdef ELIBACC + case ELIBACC: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef ELIBBAD + case ELIBBAD: return DRFLAC_INVALID_FILE; + #endif + #ifdef ELIBSCN + case ELIBSCN: return DRFLAC_INVALID_FILE; + #endif + #ifdef ELIBMAX + case ELIBMAX: return DRFLAC_ERROR; + #endif + #ifdef ELIBEXEC + case ELIBEXEC: return DRFLAC_ERROR; + #endif + #ifdef EILSEQ + case EILSEQ: return DRFLAC_INVALID_DATA; + #endif + #ifdef ERESTART + case ERESTART: return DRFLAC_ERROR; + #endif + #ifdef ESTRPIPE + case ESTRPIPE: return DRFLAC_ERROR; + #endif + #ifdef EUSERS + case EUSERS: return DRFLAC_ERROR; + #endif + #ifdef ENOTSOCK + case ENOTSOCK: return DRFLAC_NOT_SOCKET; + #endif + #ifdef EDESTADDRREQ + case EDESTADDRREQ: return DRFLAC_NO_ADDRESS; + #endif + #ifdef EMSGSIZE + case EMSGSIZE: return DRFLAC_TOO_BIG; + #endif + #ifdef EPROTOTYPE + case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL; + #endif + #ifdef ENOPROTOOPT + case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE; + #endif + #ifdef EPROTONOSUPPORT + case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED; + #endif + #ifdef ESOCKTNOSUPPORT + case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED; + #endif + #ifdef EOPNOTSUPP + case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef EPFNOSUPPORT + case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EAFNOSUPPORT + case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EADDRINUSE + case EADDRINUSE: return DRFLAC_ALREADY_IN_USE; + #endif + #ifdef EADDRNOTAVAIL + case EADDRNOTAVAIL: return DRFLAC_ERROR; + #endif + #ifdef ENETDOWN + case ENETDOWN: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENETUNREACH + case ENETUNREACH: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENETRESET + case ENETRESET: return DRFLAC_NO_NETWORK; + #endif + #ifdef ECONNABORTED + case ECONNABORTED: return DRFLAC_NO_NETWORK; + #endif + #ifdef ECONNRESET + case ECONNRESET: return DRFLAC_CONNECTION_RESET; + #endif + #ifdef ENOBUFS + case ENOBUFS: return DRFLAC_NO_SPACE; + #endif + #ifdef EISCONN + case EISCONN: return DRFLAC_ALREADY_CONNECTED; + #endif + #ifdef ENOTCONN + case ENOTCONN: return DRFLAC_NOT_CONNECTED; + #endif + #ifdef ESHUTDOWN + case ESHUTDOWN: return DRFLAC_ERROR; + #endif + #ifdef ETOOMANYREFS + case ETOOMANYREFS: return DRFLAC_ERROR; + #endif + #ifdef ETIMEDOUT + case ETIMEDOUT: return DRFLAC_TIMEOUT; + #endif + #ifdef ECONNREFUSED + case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED; + #endif + #ifdef EHOSTDOWN + case EHOSTDOWN: return DRFLAC_NO_HOST; + #endif + #ifdef EHOSTUNREACH + case EHOSTUNREACH: return DRFLAC_NO_HOST; + #endif + #ifdef EALREADY + case EALREADY: return DRFLAC_IN_PROGRESS; + #endif + #ifdef EINPROGRESS + case EINPROGRESS: return DRFLAC_IN_PROGRESS; + #endif + #ifdef ESTALE + case ESTALE: return DRFLAC_INVALID_FILE; + #endif + #ifdef EUCLEAN + case EUCLEAN: return DRFLAC_ERROR; + #endif + #ifdef ENOTNAM + case ENOTNAM: return DRFLAC_ERROR; + #endif + #ifdef ENAVAIL + case ENAVAIL: return DRFLAC_ERROR; + #endif + #ifdef EISNAM + case EISNAM: return DRFLAC_ERROR; + #endif + #ifdef EREMOTEIO + case EREMOTEIO: return DRFLAC_IO_ERROR; + #endif + #ifdef EDQUOT + case EDQUOT: return DRFLAC_NO_SPACE; + #endif + #ifdef ENOMEDIUM + case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef EMEDIUMTYPE + case EMEDIUMTYPE: return DRFLAC_ERROR; + #endif + #ifdef ECANCELED + case ECANCELED: return DRFLAC_CANCELLED; + #endif + #ifdef ENOKEY + case ENOKEY: return DRFLAC_ERROR; + #endif + #ifdef EKEYEXPIRED + case EKEYEXPIRED: return DRFLAC_ERROR; + #endif + #ifdef EKEYREVOKED + case EKEYREVOKED: return DRFLAC_ERROR; + #endif + #ifdef EKEYREJECTED + case EKEYREJECTED: return DRFLAC_ERROR; + #endif + #ifdef EOWNERDEAD + case EOWNERDEAD: return DRFLAC_ERROR; + #endif + #ifdef ENOTRECOVERABLE + case ENOTRECOVERABLE: return DRFLAC_ERROR; + #endif + #ifdef ERFKILL + case ERFKILL: return DRFLAC_ERROR; + #endif + #ifdef EHWPOISON + case EHWPOISON: return DRFLAC_ERROR; + #endif + default: return DRFLAC_ERROR; + } +} +static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) +{ +#if _MSC_VER && _MSC_VER >= 1400 + errno_t err; +#endif + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRFLAC_INVALID_ARGS; + } +#if _MSC_VER && _MSC_VER >= 1400 + err = fopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drflac_result_from_errno(err); + } +#else +#if defined(_WIN32) || defined(__APPLE__) + *ppFile = fopen(pFilePath, pOpenMode); +#else + #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) + *ppFile = fopen64(pFilePath, pOpenMode); + #else + *ppFile = fopen(pFilePath, pOpenMode); + #endif +#endif + if (*ppFile == NULL) { + drflac_result result = drflac_result_from_errno(errno); + if (result == DRFLAC_SUCCESS) { + result = DRFLAC_ERROR; + } + return result; + } +#endif + return DRFLAC_SUCCESS; +} +#if defined(_WIN32) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) + #define DRFLAC_HAS_WFOPEN + #endif +#endif +static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRFLAC_INVALID_ARGS; + } +#if defined(DRFLAC_HAS_WFOPEN) + { + #if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drflac_result_from_errno(err); + } + #else + *ppFile = _wfopen(pFilePath, pOpenMode); + if (*ppFile == NULL) { + return drflac_result_from_errno(errno); + } + #endif + (void)pAllocationCallbacks; + } +#else + { + mbstate_t mbs; + size_t lenMB; + const wchar_t* pFilePathTemp = pFilePath; + char* pFilePathMB = NULL; + char pOpenModeMB[32] = {0}; + DRFLAC_ZERO_OBJECT(&mbs); + lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); + if (lenMB == (size_t)-1) { + return drflac_result_from_errno(errno); + } + pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); + if (pFilePathMB == NULL) { + return DRFLAC_OUT_OF_MEMORY; + } + pFilePathTemp = pFilePath; + DRFLAC_ZERO_OBJECT(&mbs); + wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); + { + size_t i = 0; + for (;;) { + if (pOpenMode[i] == 0) { + pOpenModeMB[i] = '\0'; + break; + } + pOpenModeMB[i] = (char)pOpenMode[i]; + i += 1; + } + } + *ppFile = fopen(pFilePathMB, pOpenModeMB); + drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks); + } + if (*ppFile == NULL) { + return DRFLAC_ERROR; + } +#endif + return DRFLAC_SUCCESS; +} +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + DRFLAC_ASSERT(offset >= 0); + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} +DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { + return NULL; + } + pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return NULL; + } + return pFlac; +} +DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { + return NULL; + } + pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return NULL; + } + return pFlac; +} +DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { + return NULL; + } + pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return pFlac; + } + return pFlac; +} +DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { + return NULL; + } + pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return pFlac; + } + return pFlac; +} +#endif +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + size_t bytesRemaining; + DRFLAC_ASSERT(memoryStream != NULL); + DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos); + bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + if (bytesToRead > 0) { + DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + return bytesToRead; +} +static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + DRFLAC_ASSERT(memoryStream != NULL); + DRFLAC_ASSERT(offset >= 0); + if (offset > (drflac_int64)memoryStream->dataSize) { + return DRFLAC_FALSE; + } + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + return DRFLAC_FALSE; + } + } else { + if ((drflac_uint32)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + return DRFLAC_FALSE; + } + } + return DRFLAC_TRUE; +} +DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + memoryStream.data = (const drflac_uint8*)pData; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + pFlac->memoryStream = memoryStream; +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + return pFlac; +} +DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + memoryStream.data = (const drflac_uint8*)pData; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + pFlac->memoryStream = memoryStream; +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + return pFlac; +} +DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } +#ifndef DR_FLAC_NO_STDIO + if (pFlac->bs.onRead == drflac__on_read_stdio) { + fclose((FILE*)pFlac->bs.pUserData); + } +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg); + if (oggbs->onRead == drflac__on_read_stdio) { + fclose((FILE*)oggbs->pUserData); + } + } +#endif +#endif + drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks); +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + pOutputSamples[i*8+0] = (drflac_int32)left0; + pOutputSamples[i*8+1] = (drflac_int32)right0; + pOutputSamples[i*8+2] = (drflac_int32)left1; + pOutputSamples[i*8+3] = (drflac_int32)right1; + pOutputSamples[i*8+4] = (drflac_int32)left2; + pOutputSamples[i*8+5] = (drflac_int32)right2; + pOutputSamples[i*8+6] = (drflac_int32)left3; + pOutputSamples[i*8+7] = (drflac_int32)right3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + pOutputSamples[i*8+0] = (drflac_int32)left0; + pOutputSamples[i*8+1] = (drflac_int32)right0; + pOutputSamples[i*8+2] = (drflac_int32)left1; + pOutputSamples[i*8+3] = (drflac_int32)right1; + pOutputSamples[i*8+4] = (drflac_int32)left2; + pOutputSamples[i*8+5] = (drflac_int32)right2; + pOutputSamples[i*8+6] = (drflac_int32)left3; + pOutputSamples[i*8+7] = (drflac_int32)right3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + pOutputSamples[i*8+0] = (drflac_int32)temp0L; + pOutputSamples[i*8+1] = (drflac_int32)temp0R; + pOutputSamples[i*8+2] = (drflac_int32)temp1L; + pOutputSamples[i*8+3] = (drflac_int32)temp1R; + pOutputSamples[i*8+4] = (drflac_int32)temp2L; + pOutputSamples[i*8+5] = (drflac_int32)temp2R; + pOutputSamples[i*8+6] = (drflac_int32)temp3L; + pOutputSamples[i*8+7] = (drflac_int32)temp3R; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); + temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); + temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); + temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); + temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); + temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); + temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); + temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); + pOutputSamples[i*8+0] = (drflac_int32)temp0L; + pOutputSamples[i*8+1] = (drflac_int32)temp0R; + pOutputSamples[i*8+2] = (drflac_int32)temp1L; + pOutputSamples[i*8+3] = (drflac_int32)temp1R; + pOutputSamples[i*8+4] = (drflac_int32)temp2L; + pOutputSamples[i*8+5] = (drflac_int32)temp2R; + pOutputSamples[i*8+6] = (drflac_int32)temp3L; + pOutputSamples[i*8+7] = (drflac_int32)temp3R; + } + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; + pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); + } + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + int32x4_t wbpsShift0_4; + int32x4_t wbpsShift1_4; + uint32x4_t one4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + one4 = vdupq_n_u32(1); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); + left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; + pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; + } + } else { + int32x4_t shift4; + shift -= 1; + shift4 = vdupq_n_s32(shift); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); + left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); + } + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + pOutputSamples[i*8+0] = (drflac_int32)tempL0; + pOutputSamples[i*8+1] = (drflac_int32)tempR0; + pOutputSamples[i*8+2] = (drflac_int32)tempL1; + pOutputSamples[i*8+3] = (drflac_int32)tempR1; + pOutputSamples[i*8+4] = (drflac_int32)tempL2; + pOutputSamples[i*8+5] = (drflac_int32)tempR2; + pOutputSamples[i*8+6] = (drflac_int32)tempL3; + pOutputSamples[i*8+7] = (drflac_int32)tempR3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift4_0 = vdupq_n_s32(shift0); + int32x4_t shift4_1 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + int32x4_t left; + int32x4_t right; + left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0)); + right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1)); + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + framesRead = 0; + while (framesToRead > 0) { + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + } + } + } + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; + } + } + return framesRead; +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + left0 >>= 16; + left1 >>= 16; + left2 >>= 16; + left3 >>= 16; + right0 >>= 16; + right1 >>= 16; + right2 >>= 16; + right3 >>= 16; + pOutputSamples[i*8+0] = (drflac_int16)left0; + pOutputSamples[i*8+1] = (drflac_int16)right0; + pOutputSamples[i*8+2] = (drflac_int16)left1; + pOutputSamples[i*8+3] = (drflac_int16)right1; + pOutputSamples[i*8+4] = (drflac_int16)left2; + pOutputSamples[i*8+5] = (drflac_int16)right2; + pOutputSamples[i*8+6] = (drflac_int16)left3; + pOutputSamples[i*8+7] = (drflac_int16)right3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + left = vshrq_n_u32(left, 16); + right = vshrq_n_u32(right, 16); + drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + left0 >>= 16; + left1 >>= 16; + left2 >>= 16; + left3 >>= 16; + right0 >>= 16; + right1 >>= 16; + right2 >>= 16; + right3 >>= 16; + pOutputSamples[i*8+0] = (drflac_int16)left0; + pOutputSamples[i*8+1] = (drflac_int16)right0; + pOutputSamples[i*8+2] = (drflac_int16)left1; + pOutputSamples[i*8+3] = (drflac_int16)right1; + pOutputSamples[i*8+4] = (drflac_int16)left2; + pOutputSamples[i*8+5] = (drflac_int16)right2; + pOutputSamples[i*8+6] = (drflac_int16)left3; + pOutputSamples[i*8+7] = (drflac_int16)right3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + left = vshrq_n_u32(left, 16); + right = vshrq_n_u32(right, 16); + drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + left >>= 16; + right >>= 16; + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + temp0L >>= 16; + temp1L >>= 16; + temp2L >>= 16; + temp3L >>= 16; + temp0R >>= 16; + temp1R >>= 16; + temp2R >>= 16; + temp3R >>= 16; + pOutputSamples[i*8+0] = (drflac_int16)temp0L; + pOutputSamples[i*8+1] = (drflac_int16)temp0R; + pOutputSamples[i*8+2] = (drflac_int16)temp1L; + pOutputSamples[i*8+3] = (drflac_int16)temp1R; + pOutputSamples[i*8+4] = (drflac_int16)temp2L; + pOutputSamples[i*8+5] = (drflac_int16)temp2R; + pOutputSamples[i*8+6] = (drflac_int16)temp3L; + pOutputSamples[i*8+7] = (drflac_int16)temp3R; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = ((drflac_int32)(mid0 + side0) >> 1); + temp1L = ((drflac_int32)(mid1 + side1) >> 1); + temp2L = ((drflac_int32)(mid2 + side2) >> 1); + temp3L = ((drflac_int32)(mid3 + side3) >> 1); + temp0R = ((drflac_int32)(mid0 - side0) >> 1); + temp1R = ((drflac_int32)(mid1 - side1) >> 1); + temp2R = ((drflac_int32)(mid2 - side2) >> 1); + temp3R = ((drflac_int32)(mid3 - side3) >> 1); + temp0L >>= 16; + temp1L >>= 16; + temp2L >>= 16; + temp3L >>= 16; + temp0R >>= 16; + temp1R >>= 16; + temp2R >>= 16; + temp3R >>= 16; + pOutputSamples[i*8+0] = (drflac_int16)temp0L; + pOutputSamples[i*8+1] = (drflac_int16)temp0R; + pOutputSamples[i*8+2] = (drflac_int16)temp1L; + pOutputSamples[i*8+3] = (drflac_int16)temp1R; + pOutputSamples[i*8+4] = (drflac_int16)temp2L; + pOutputSamples[i*8+5] = (drflac_int16)temp2R; + pOutputSamples[i*8+6] = (drflac_int16)temp3L; + pOutputSamples[i*8+7] = (drflac_int16)temp3R; + } + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); + } + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + int32x4_t wbpsShift0_4; + int32x4_t wbpsShift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); + } + } else { + int32x4_t shift4; + shift -= 1; + shift4 = vdupq_n_s32(shift); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); + } + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + tempL0 >>= 16; + tempL1 >>= 16; + tempL2 >>= 16; + tempL3 >>= 16; + tempR0 >>= 16; + tempR1 >>= 16; + tempR2 >>= 16; + tempR3 >>= 16; + pOutputSamples[i*8+0] = (drflac_int16)tempL0; + pOutputSamples[i*8+1] = (drflac_int16)tempR0; + pOutputSamples[i*8+2] = (drflac_int16)tempL1; + pOutputSamples[i*8+3] = (drflac_int16)tempR1; + pOutputSamples[i*8+4] = (drflac_int16)tempL2; + pOutputSamples[i*8+5] = (drflac_int16)tempR2; + pOutputSamples[i*8+6] = (drflac_int16)tempL3; + pOutputSamples[i*8+7] = (drflac_int16)tempR3; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4 = vdupq_n_s32(shift0); + int32x4_t shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + int32x4_t left; + int32x4_t right; + left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); + right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + framesRead = 0; + while (framesToRead > 0) { + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16); + } + } + } + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; + } + } + return framesRead; +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + float factor = 1 / 2147483648.0; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left * factor; + pOutputSamples[i*2+1] = (drflac_int32)right * factor; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + __m128 factor; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor = _mm_set1_ps(1.0f / 8388608.0f); + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float32x4_t factor4; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor4 = vdupq_n_f32(1.0f / 8388608.0f); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + float32x4_t leftf; + float32x4_t rightf; + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + float factor = 1 / 2147483648.0; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left * factor; + pOutputSamples[i*2+1] = (drflac_int32)right * factor; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + __m128 factor; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor = _mm_set1_ps(1.0f / 8388608.0f); + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float32x4_t factor4; + int32x4_t shift0_4; + int32x4_t shift1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor4 = vdupq_n_f32(1.0f / 8388608.0f); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + float32x4_t leftf; + float32x4_t rightf; + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + float factor = 1 / 2147483648.0; + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; + pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; + pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; + pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; + pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; + pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; + pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; + pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); + temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); + temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); + temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); + temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); + temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); + temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); + temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); + pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; + pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; + pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; + pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; + pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; + pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; + pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; + pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; + } + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample - 8; + float factor; + __m128 factor128; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor = 1.0f / 8388608.0f; + factor128 = _mm_set1_ps(factor); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; + pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; + } + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample - 8; + float factor; + float32x4_t factor4; + int32x4_t shift4; + int32x4_t wbps0_4; + int32x4_t wbps1_4; + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + factor = 1.0f / 8388608.0f; + factor4 = vdupq_n_f32(factor); + wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); + uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; + pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; + } + } else { + shift -= 1; + shift4 = vdupq_n_s32(shift); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + mid = (mid << 1) | (side & 0x01); + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; + } + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0); + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + float factor = 1 / 2147483648.0; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor; + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float factor = 1.0f / 8388608.0f; + __m128 factor128 = _mm_set1_ps(factor); + for (i = 0; i < frameCount4; ++i) { + __m128i lefti; + __m128i righti; + __m128 leftf; + __m128 rightf; + lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128); + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} +#endif +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float factor = 1.0f / 8388608.0f; + float32x4_t factor4 = vdupq_n_f32(factor); + int32x4_t shift0_4 = vdupq_n_s32(shift0); + int32x4_t shift1_4 = vdupq_n_s32(shift1); + for (i = 0; i < frameCount4; ++i) { + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); + righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} +#endif +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { +#if 0 + drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + framesRead = 0; + while (framesToRead > 0) { + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0); + } + } + } + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration; + } + } + return framesRead; +} +DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + if (pFlac->currentPCMFrame == pcmFrameIndex) { + return DRFLAC_TRUE; + } + if (pFlac->firstFLACFramePosInBytes == 0) { + return DRFLAC_FALSE; + } + if (pcmFrameIndex == 0) { + pFlac->currentPCMFrame = 0; + return drflac__seek_to_first_frame(pFlac); + } else { + drflac_bool32 wasSuccessful = DRFLAC_FALSE; + if (pcmFrameIndex > pFlac->totalPCMFrameCount) { + pcmFrameIndex = pFlac->totalPCMFrameCount; + } + if (pcmFrameIndex > pFlac->currentPCMFrame) { + drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame); + if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) { + pFlac->currentFLACFrame.pcmFramesRemaining -= offset; + pFlac->currentPCMFrame = pcmFrameIndex; + return DRFLAC_TRUE; + } + } else { + drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex); + drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining; + if (currentFLACFramePCMFramesConsumed > offsetAbs) { + pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs; + pFlac->currentPCMFrame = pcmFrameIndex; + return DRFLAC_TRUE; + } + } +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex); + } + else +#endif + { + if (!pFlac->_noSeekTableSeek) { + wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex); + } +#if !defined(DR_FLAC_NO_CRC) + if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) { + wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex); + } +#endif + if (!wasSuccessful && !pFlac->_noBruteForceSeek) { + wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex); + } + } + pFlac->currentPCMFrame = pcmFrameIndex; + return wasSuccessful; + } +} +#if defined(SIZE_MAX) + #define DRFLAC_SIZE_MAX SIZE_MAX +#else + #if defined(DRFLAC_64BIT) + #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRFLAC_SIZE_MAX 0xFFFFFFFF + #endif +#endif +#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \ +static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\ +{ \ + type* pSampleData = NULL; \ + drflac_uint64 totalPCMFrameCount; \ + \ + DRFLAC_ASSERT(pFlac != NULL); \ + \ + totalPCMFrameCount = pFlac->totalPCMFrameCount; \ + \ + if (totalPCMFrameCount == 0) { \ + type buffer[4096]; \ + drflac_uint64 pcmFramesRead; \ + size_t sampleDataBufferSize = sizeof(buffer); \ + \ + pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \ + if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \ + type* pNewSampleData; \ + size_t newSampleDataBufferSize; \ + \ + newSampleDataBufferSize = sampleDataBufferSize * 2; \ + pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \ + if (pNewSampleData == NULL) { \ + drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \ + goto on_error; \ + } \ + \ + sampleDataBufferSize = newSampleDataBufferSize; \ + pSampleData = pNewSampleData; \ + } \ + \ + DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \ + totalPCMFrameCount += pcmFramesRead; \ + } \ + \ + \ + DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \ + } else { \ + drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \ + if (dataSize > DRFLAC_SIZE_MAX) { \ + goto on_error; \ + } \ + \ + pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \ + } \ + \ + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ + if (channelsOut) *channelsOut = pFlac->channels; \ + if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \ + \ + drflac_close(pFlac); \ + return pSampleData; \ + \ +on_error: \ + drflac_close(pFlac); \ + return NULL; \ +} +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float) +DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} +DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} +DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} +#ifndef DR_FLAC_NO_STDIO +DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} +DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} +DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} +#endif +DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} +DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} +DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} +DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + drflac__free_from_callbacks(p, pAllocationCallbacks); + } else { + drflac__free_default(p, NULL); + } +} +DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments) +{ + if (pIter == NULL) { + return; + } + pIter->countRemaining = commentCount; + pIter->pRunningData = (const char*)pComments; +} +DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) +{ + drflac_int32 length; + const char* pComment; + if (pCommentLengthOut) { + *pCommentLengthOut = 0; + } + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData); + pIter->pRunningData += 4; + pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + if (pCommentLengthOut) { + *pCommentLengthOut = length; + } + return pComment; +} +DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData) +{ + if (pIter == NULL) { + return; + } + pIter->countRemaining = trackCount; + pIter->pRunningData = (const char*)pTrackData; +} +DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack) +{ + drflac_cuesheet_track cuesheetTrack; + const char* pRunningData; + drflac_uint64 offsetHi; + drflac_uint64 offsetLo; + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return DRFLAC_FALSE; + } + pRunningData = pIter->pRunningData; + offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + cuesheetTrack.offset = offsetLo | (offsetHi << 32); + cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1; + DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12; + cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0; + cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14; + cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1; + cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index); + pIter->pRunningData = pRunningData; + pIter->countRemaining -= 1; + if (pCuesheetTrack) { + *pCuesheetTrack = cuesheetTrack; + } + return DRFLAC_TRUE; +} +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop +#endif +#endif +/* dr_flac_c end */ +#endif /* DRFLAC_IMPLEMENTATION */ +#endif /* MA_NO_FLAC */ + +#if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING) +#if !defined(DR_MP3_IMPLEMENTATION) && !defined(DRMP3_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ +/* dr_mp3_c begin */ +#ifndef dr_mp3_c +#define dr_mp3_c +#include +#include +#include +DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision) +{ + if (pMajor) { + *pMajor = DRMP3_VERSION_MAJOR; + } + if (pMinor) { + *pMinor = DRMP3_VERSION_MINOR; + } + if (pRevision) { + *pRevision = DRMP3_VERSION_REVISION; + } +} +DRMP3_API const char* drmp3_version_string(void) +{ + return DRMP3_VERSION_STRING; +} +#if defined(__TINYC__) +#define DR_MP3_NO_SIMD +#endif +#define DRMP3_OFFSET_PTR(p, offset) ((void*)((drmp3_uint8*)(p) + (offset))) +#define DRMP3_MAX_FREE_FORMAT_FRAME_SIZE 2304 +#ifndef DRMP3_MAX_FRAME_SYNC_MATCHES +#define DRMP3_MAX_FRAME_SYNC_MATCHES 10 +#endif +#define DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES DRMP3_MAX_FREE_FORMAT_FRAME_SIZE +#define DRMP3_MAX_BITRESERVOIR_BYTES 511 +#define DRMP3_SHORT_BLOCK_TYPE 2 +#define DRMP3_STOP_BLOCK_TYPE 3 +#define DRMP3_MODE_MONO 3 +#define DRMP3_MODE_JOINT_STEREO 1 +#define DRMP3_HDR_SIZE 4 +#define DRMP3_HDR_IS_MONO(h) (((h[3]) & 0xC0) == 0xC0) +#define DRMP3_HDR_IS_MS_STEREO(h) (((h[3]) & 0xE0) == 0x60) +#define DRMP3_HDR_IS_FREE_FORMAT(h) (((h[2]) & 0xF0) == 0) +#define DRMP3_HDR_IS_CRC(h) (!((h[1]) & 1)) +#define DRMP3_HDR_TEST_PADDING(h) ((h[2]) & 0x2) +#define DRMP3_HDR_TEST_MPEG1(h) ((h[1]) & 0x8) +#define DRMP3_HDR_TEST_NOT_MPEG25(h) ((h[1]) & 0x10) +#define DRMP3_HDR_TEST_I_STEREO(h) ((h[3]) & 0x10) +#define DRMP3_HDR_TEST_MS_STEREO(h) ((h[3]) & 0x20) +#define DRMP3_HDR_GET_STEREO_MODE(h) (((h[3]) >> 6) & 3) +#define DRMP3_HDR_GET_STEREO_MODE_EXT(h) (((h[3]) >> 4) & 3) +#define DRMP3_HDR_GET_LAYER(h) (((h[1]) >> 1) & 3) +#define DRMP3_HDR_GET_BITRATE(h) ((h[2]) >> 4) +#define DRMP3_HDR_GET_SAMPLE_RATE(h) (((h[2]) >> 2) & 3) +#define DRMP3_HDR_GET_MY_SAMPLE_RATE(h) (DRMP3_HDR_GET_SAMPLE_RATE(h) + (((h[1] >> 3) & 1) + ((h[1] >> 4) & 1))*3) +#define DRMP3_HDR_IS_FRAME_576(h) ((h[1] & 14) == 2) +#define DRMP3_HDR_IS_LAYER_1(h) ((h[1] & 6) == 6) +#define DRMP3_BITS_DEQUANTIZER_OUT -1 +#define DRMP3_MAX_SCF (255 + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210) +#define DRMP3_MAX_SCFI ((DRMP3_MAX_SCF + 3) & ~3) +#define DRMP3_MIN(a, b) ((a) > (b) ? (b) : (a)) +#define DRMP3_MAX(a, b) ((a) < (b) ? (b) : (a)) +#if !defined(DR_MP3_NO_SIMD) +#if !defined(DR_MP3_ONLY_SIMD) && (defined(_M_X64) || defined(__x86_64__) || defined(__aarch64__) || defined(_M_ARM64)) +#define DR_MP3_ONLY_SIMD +#endif +#if ((defined(_MSC_VER) && _MSC_VER >= 1400) && (defined(_M_IX86) || defined(_M_X64))) || ((defined(__i386__) || defined(__x86_64__)) && defined(__SSE2__)) +#if defined(_MSC_VER) +#include +#endif +#include +#define DRMP3_HAVE_SSE 1 +#define DRMP3_HAVE_SIMD 1 +#define DRMP3_VSTORE _mm_storeu_ps +#define DRMP3_VLD _mm_loadu_ps +#define DRMP3_VSET _mm_set1_ps +#define DRMP3_VADD _mm_add_ps +#define DRMP3_VSUB _mm_sub_ps +#define DRMP3_VMUL _mm_mul_ps +#define DRMP3_VMAC(a, x, y) _mm_add_ps(a, _mm_mul_ps(x, y)) +#define DRMP3_VMSB(a, x, y) _mm_sub_ps(a, _mm_mul_ps(x, y)) +#define DRMP3_VMUL_S(x, s) _mm_mul_ps(x, _mm_set1_ps(s)) +#define DRMP3_VREV(x) _mm_shuffle_ps(x, x, _MM_SHUFFLE(0, 1, 2, 3)) +typedef __m128 drmp3_f4; +#if defined(_MSC_VER) || defined(DR_MP3_ONLY_SIMD) +#define drmp3_cpuid __cpuid +#else +static __inline__ __attribute__((always_inline)) void drmp3_cpuid(int CPUInfo[], const int InfoType) +{ +#if defined(__PIC__) + __asm__ __volatile__( +#if defined(__x86_64__) + "push %%rbx\n" + "cpuid\n" + "xchgl %%ebx, %1\n" + "pop %%rbx\n" +#else + "xchgl %%ebx, %1\n" + "cpuid\n" + "xchgl %%ebx, %1\n" +#endif + : "=a" (CPUInfo[0]), "=r" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3]) + : "a" (InfoType)); +#else + __asm__ __volatile__( + "cpuid" + : "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3]) + : "a" (InfoType)); +#endif +} +#endif +static int drmp3_have_simd(void) +{ +#ifdef DR_MP3_ONLY_SIMD + return 1; +#else + static int g_have_simd; + int CPUInfo[4]; +#ifdef MINIMP3_TEST + static int g_counter; + if (g_counter++ > 100) + return 0; +#endif + if (g_have_simd) + goto end; + drmp3_cpuid(CPUInfo, 0); + if (CPUInfo[0] > 0) + { + drmp3_cpuid(CPUInfo, 1); + g_have_simd = (CPUInfo[3] & (1 << 26)) + 1; + return g_have_simd - 1; + } +end: + return g_have_simd - 1; +#endif +} +#elif defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64) +#include +#define DRMP3_HAVE_SSE 0 +#define DRMP3_HAVE_SIMD 1 +#define DRMP3_VSTORE vst1q_f32 +#define DRMP3_VLD vld1q_f32 +#define DRMP3_VSET vmovq_n_f32 +#define DRMP3_VADD vaddq_f32 +#define DRMP3_VSUB vsubq_f32 +#define DRMP3_VMUL vmulq_f32 +#define DRMP3_VMAC(a, x, y) vmlaq_f32(a, x, y) +#define DRMP3_VMSB(a, x, y) vmlsq_f32(a, x, y) +#define DRMP3_VMUL_S(x, s) vmulq_f32(x, vmovq_n_f32(s)) +#define DRMP3_VREV(x) vcombine_f32(vget_high_f32(vrev64q_f32(x)), vget_low_f32(vrev64q_f32(x))) +typedef float32x4_t drmp3_f4; +static int drmp3_have_simd(void) +{ + return 1; +} +#else +#define DRMP3_HAVE_SSE 0 +#define DRMP3_HAVE_SIMD 0 +#ifdef DR_MP3_ONLY_SIMD +#error DR_MP3_ONLY_SIMD used, but SSE/NEON not enabled +#endif +#endif +#else +#define DRMP3_HAVE_SIMD 0 +#endif +#if defined(__ARM_ARCH) && (__ARM_ARCH >= 6) && !defined(__aarch64__) && !defined(_M_ARM64) +#define DRMP3_HAVE_ARMV6 1 +static __inline__ __attribute__((always_inline)) drmp3_int32 drmp3_clip_int16_arm(int32_t a) +{ + drmp3_int32 x = 0; + __asm__ ("ssat %0, #16, %1" : "=r"(x) : "r"(a)); + return x; +} +#else +#define DRMP3_HAVE_ARMV6 0 +#endif +typedef struct +{ + const drmp3_uint8 *buf; + int pos, limit; +} drmp3_bs; +typedef struct +{ + float scf[3*64]; + drmp3_uint8 total_bands, stereo_bands, bitalloc[64], scfcod[64]; +} drmp3_L12_scale_info; +typedef struct +{ + drmp3_uint8 tab_offset, code_tab_width, band_count; +} drmp3_L12_subband_alloc; +typedef struct +{ + const drmp3_uint8 *sfbtab; + drmp3_uint16 part_23_length, big_values, scalefac_compress; + drmp3_uint8 global_gain, block_type, mixed_block_flag, n_long_sfb, n_short_sfb; + drmp3_uint8 table_select[3], region_count[3], subblock_gain[3]; + drmp3_uint8 preflag, scalefac_scale, count1_table, scfsi; +} drmp3_L3_gr_info; +typedef struct +{ + drmp3_bs bs; + drmp3_uint8 maindata[DRMP3_MAX_BITRESERVOIR_BYTES + DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES]; + drmp3_L3_gr_info gr_info[4]; + float grbuf[2][576], scf[40], syn[18 + 15][2*32]; + drmp3_uint8 ist_pos[2][39]; +} drmp3dec_scratch; +static void drmp3_bs_init(drmp3_bs *bs, const drmp3_uint8 *data, int bytes) +{ + bs->buf = data; + bs->pos = 0; + bs->limit = bytes*8; +} +static drmp3_uint32 drmp3_bs_get_bits(drmp3_bs *bs, int n) +{ + drmp3_uint32 next, cache = 0, s = bs->pos & 7; + int shl = n + s; + const drmp3_uint8 *p = bs->buf + (bs->pos >> 3); + if ((bs->pos += n) > bs->limit) + return 0; + next = *p++ & (255 >> s); + while ((shl -= 8) > 0) + { + cache |= next << shl; + next = *p++; + } + return cache | (next >> -shl); +} +static int drmp3_hdr_valid(const drmp3_uint8 *h) +{ + return h[0] == 0xff && + ((h[1] & 0xF0) == 0xf0 || (h[1] & 0xFE) == 0xe2) && + (DRMP3_HDR_GET_LAYER(h) != 0) && + (DRMP3_HDR_GET_BITRATE(h) != 15) && + (DRMP3_HDR_GET_SAMPLE_RATE(h) != 3); +} +static int drmp3_hdr_compare(const drmp3_uint8 *h1, const drmp3_uint8 *h2) +{ + return drmp3_hdr_valid(h2) && + ((h1[1] ^ h2[1]) & 0xFE) == 0 && + ((h1[2] ^ h2[2]) & 0x0C) == 0 && + !(DRMP3_HDR_IS_FREE_FORMAT(h1) ^ DRMP3_HDR_IS_FREE_FORMAT(h2)); +} +static unsigned drmp3_hdr_bitrate_kbps(const drmp3_uint8 *h) +{ + static const drmp3_uint8 halfrate[2][3][15] = { + { { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,16,24,28,32,40,48,56,64,72,80,88,96,112,128 } }, + { { 0,16,20,24,28,32,40,48,56,64,80,96,112,128,160 }, { 0,16,24,28,32,40,48,56,64,80,96,112,128,160,192 }, { 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224 } }, + }; + return 2*halfrate[!!DRMP3_HDR_TEST_MPEG1(h)][DRMP3_HDR_GET_LAYER(h) - 1][DRMP3_HDR_GET_BITRATE(h)]; +} +static unsigned drmp3_hdr_sample_rate_hz(const drmp3_uint8 *h) +{ + static const unsigned g_hz[3] = { 44100, 48000, 32000 }; + return g_hz[DRMP3_HDR_GET_SAMPLE_RATE(h)] >> (int)!DRMP3_HDR_TEST_MPEG1(h) >> (int)!DRMP3_HDR_TEST_NOT_MPEG25(h); +} +static unsigned drmp3_hdr_frame_samples(const drmp3_uint8 *h) +{ + return DRMP3_HDR_IS_LAYER_1(h) ? 384 : (1152 >> (int)DRMP3_HDR_IS_FRAME_576(h)); +} +static int drmp3_hdr_frame_bytes(const drmp3_uint8 *h, int free_format_size) +{ + int frame_bytes = drmp3_hdr_frame_samples(h)*drmp3_hdr_bitrate_kbps(h)*125/drmp3_hdr_sample_rate_hz(h); + if (DRMP3_HDR_IS_LAYER_1(h)) + { + frame_bytes &= ~3; + } + return frame_bytes ? frame_bytes : free_format_size; +} +static int drmp3_hdr_padding(const drmp3_uint8 *h) +{ + return DRMP3_HDR_TEST_PADDING(h) ? (DRMP3_HDR_IS_LAYER_1(h) ? 4 : 1) : 0; +} +#ifndef DR_MP3_ONLY_MP3 +static const drmp3_L12_subband_alloc *drmp3_L12_subband_alloc_table(const drmp3_uint8 *hdr, drmp3_L12_scale_info *sci) +{ + const drmp3_L12_subband_alloc *alloc; + int mode = DRMP3_HDR_GET_STEREO_MODE(hdr); + int nbands, stereo_bands = (mode == DRMP3_MODE_MONO) ? 0 : (mode == DRMP3_MODE_JOINT_STEREO) ? (DRMP3_HDR_GET_STEREO_MODE_EXT(hdr) << 2) + 4 : 32; + if (DRMP3_HDR_IS_LAYER_1(hdr)) + { + static const drmp3_L12_subband_alloc g_alloc_L1[] = { { 76, 4, 32 } }; + alloc = g_alloc_L1; + nbands = 32; + } else if (!DRMP3_HDR_TEST_MPEG1(hdr)) + { + static const drmp3_L12_subband_alloc g_alloc_L2M2[] = { { 60, 4, 4 }, { 44, 3, 7 }, { 44, 2, 19 } }; + alloc = g_alloc_L2M2; + nbands = 30; + } else + { + static const drmp3_L12_subband_alloc g_alloc_L2M1[] = { { 0, 4, 3 }, { 16, 4, 8 }, { 32, 3, 12 }, { 40, 2, 7 } }; + int sample_rate_idx = DRMP3_HDR_GET_SAMPLE_RATE(hdr); + unsigned kbps = drmp3_hdr_bitrate_kbps(hdr) >> (int)(mode != DRMP3_MODE_MONO); + if (!kbps) + { + kbps = 192; + } + alloc = g_alloc_L2M1; + nbands = 27; + if (kbps < 56) + { + static const drmp3_L12_subband_alloc g_alloc_L2M1_lowrate[] = { { 44, 4, 2 }, { 44, 3, 10 } }; + alloc = g_alloc_L2M1_lowrate; + nbands = sample_rate_idx == 2 ? 12 : 8; + } else if (kbps >= 96 && sample_rate_idx != 1) + { + nbands = 30; + } + } + sci->total_bands = (drmp3_uint8)nbands; + sci->stereo_bands = (drmp3_uint8)DRMP3_MIN(stereo_bands, nbands); + return alloc; +} +static void drmp3_L12_read_scalefactors(drmp3_bs *bs, drmp3_uint8 *pba, drmp3_uint8 *scfcod, int bands, float *scf) +{ + static const float g_deq_L12[18*3] = { +#define DRMP3_DQ(x) 9.53674316e-07f/x, 7.56931807e-07f/x, 6.00777173e-07f/x + DRMP3_DQ(3),DRMP3_DQ(7),DRMP3_DQ(15),DRMP3_DQ(31),DRMP3_DQ(63),DRMP3_DQ(127),DRMP3_DQ(255),DRMP3_DQ(511),DRMP3_DQ(1023),DRMP3_DQ(2047),DRMP3_DQ(4095),DRMP3_DQ(8191),DRMP3_DQ(16383),DRMP3_DQ(32767),DRMP3_DQ(65535),DRMP3_DQ(3),DRMP3_DQ(5),DRMP3_DQ(9) + }; + int i, m; + for (i = 0; i < bands; i++) + { + float s = 0; + int ba = *pba++; + int mask = ba ? 4 + ((19 >> scfcod[i]) & 3) : 0; + for (m = 4; m; m >>= 1) + { + if (mask & m) + { + int b = drmp3_bs_get_bits(bs, 6); + s = g_deq_L12[ba*3 - 6 + b % 3]*(int)(1 << 21 >> b/3); + } + *scf++ = s; + } + } +} +static void drmp3_L12_read_scale_info(const drmp3_uint8 *hdr, drmp3_bs *bs, drmp3_L12_scale_info *sci) +{ + static const drmp3_uint8 g_bitalloc_code_tab[] = { + 0,17, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16, + 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,16, + 0,17,18, 3,19,4,5,16, + 0,17,18,16, + 0,17,18,19, 4,5,6, 7,8, 9,10,11,12,13,14,15, + 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,14, + 0, 2, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16 + }; + const drmp3_L12_subband_alloc *subband_alloc = drmp3_L12_subband_alloc_table(hdr, sci); + int i, k = 0, ba_bits = 0; + const drmp3_uint8 *ba_code_tab = g_bitalloc_code_tab; + for (i = 0; i < sci->total_bands; i++) + { + drmp3_uint8 ba; + if (i == k) + { + k += subband_alloc->band_count; + ba_bits = subband_alloc->code_tab_width; + ba_code_tab = g_bitalloc_code_tab + subband_alloc->tab_offset; + subband_alloc++; + } + ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)]; + sci->bitalloc[2*i] = ba; + if (i < sci->stereo_bands) + { + ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)]; + } + sci->bitalloc[2*i + 1] = sci->stereo_bands ? ba : 0; + } + for (i = 0; i < 2*sci->total_bands; i++) + { + sci->scfcod[i] = (drmp3_uint8)(sci->bitalloc[i] ? DRMP3_HDR_IS_LAYER_1(hdr) ? 2 : drmp3_bs_get_bits(bs, 2) : 6); + } + drmp3_L12_read_scalefactors(bs, sci->bitalloc, sci->scfcod, sci->total_bands*2, sci->scf); + for (i = sci->stereo_bands; i < sci->total_bands; i++) + { + sci->bitalloc[2*i + 1] = 0; + } +} +static int drmp3_L12_dequantize_granule(float *grbuf, drmp3_bs *bs, drmp3_L12_scale_info *sci, int group_size) +{ + int i, j, k, choff = 576; + for (j = 0; j < 4; j++) + { + float *dst = grbuf + group_size*j; + for (i = 0; i < 2*sci->total_bands; i++) + { + int ba = sci->bitalloc[i]; + if (ba != 0) + { + if (ba < 17) + { + int half = (1 << (ba - 1)) - 1; + for (k = 0; k < group_size; k++) + { + dst[k] = (float)((int)drmp3_bs_get_bits(bs, ba) - half); + } + } else + { + unsigned mod = (2 << (ba - 17)) + 1; + unsigned code = drmp3_bs_get_bits(bs, mod + 2 - (mod >> 3)); + for (k = 0; k < group_size; k++, code /= mod) + { + dst[k] = (float)((int)(code % mod - mod/2)); + } + } + } + dst += choff; + choff = 18 - choff; + } + } + return group_size*4; +} +static void drmp3_L12_apply_scf_384(drmp3_L12_scale_info *sci, const float *scf, float *dst) +{ + int i, k; + memcpy(dst + 576 + sci->stereo_bands*18, dst + sci->stereo_bands*18, (sci->total_bands - sci->stereo_bands)*18*sizeof(float)); + for (i = 0; i < sci->total_bands; i++, dst += 18, scf += 6) + { + for (k = 0; k < 12; k++) + { + dst[k + 0] *= scf[0]; + dst[k + 576] *= scf[3]; + } + } +} +#endif +static int drmp3_L3_read_side_info(drmp3_bs *bs, drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr) +{ + static const drmp3_uint8 g_scf_long[8][23] = { + { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, + { 12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2,0 }, + { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, + { 6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36,0 }, + { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, + { 4,4,4,4,4,4,6,6,8,8,10,12,16,20,24,28,34,42,50,54,76,158,0 }, + { 4,4,4,4,4,4,6,6,6,8,10,12,16,18,22,28,34,40,46,54,54,192,0 }, + { 4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102,26,0 } + }; + static const drmp3_uint8 g_scf_short[8][40] = { + { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, + { 8,8,8,8,8,8,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 }, + { 4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 }, + { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 }, + { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, + { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 }, + { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 }, + { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 } + }; + static const drmp3_uint8 g_scf_mixed[8][40] = { + { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, + { 12,12,12,4,4,4,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 }, + { 6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 }, + { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 }, + { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, + { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 }, + { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 }, + { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 } + }; + unsigned tables, scfsi = 0; + int main_data_begin, part_23_sum = 0; + int gr_count = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2; + int sr_idx = DRMP3_HDR_GET_MY_SAMPLE_RATE(hdr); sr_idx -= (sr_idx != 0); + if (DRMP3_HDR_TEST_MPEG1(hdr)) + { + gr_count *= 2; + main_data_begin = drmp3_bs_get_bits(bs, 9); + scfsi = drmp3_bs_get_bits(bs, 7 + gr_count); + } else + { + main_data_begin = drmp3_bs_get_bits(bs, 8 + gr_count) >> gr_count; + } + do + { + if (DRMP3_HDR_IS_MONO(hdr)) + { + scfsi <<= 4; + } + gr->part_23_length = (drmp3_uint16)drmp3_bs_get_bits(bs, 12); + part_23_sum += gr->part_23_length; + gr->big_values = (drmp3_uint16)drmp3_bs_get_bits(bs, 9); + if (gr->big_values > 288) + { + return -1; + } + gr->global_gain = (drmp3_uint8)drmp3_bs_get_bits(bs, 8); + gr->scalefac_compress = (drmp3_uint16)drmp3_bs_get_bits(bs, DRMP3_HDR_TEST_MPEG1(hdr) ? 4 : 9); + gr->sfbtab = g_scf_long[sr_idx]; + gr->n_long_sfb = 22; + gr->n_short_sfb = 0; + if (drmp3_bs_get_bits(bs, 1)) + { + gr->block_type = (drmp3_uint8)drmp3_bs_get_bits(bs, 2); + if (!gr->block_type) + { + return -1; + } + gr->mixed_block_flag = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); + gr->region_count[0] = 7; + gr->region_count[1] = 255; + if (gr->block_type == DRMP3_SHORT_BLOCK_TYPE) + { + scfsi &= 0x0F0F; + if (!gr->mixed_block_flag) + { + gr->region_count[0] = 8; + gr->sfbtab = g_scf_short[sr_idx]; + gr->n_long_sfb = 0; + gr->n_short_sfb = 39; + } else + { + gr->sfbtab = g_scf_mixed[sr_idx]; + gr->n_long_sfb = DRMP3_HDR_TEST_MPEG1(hdr) ? 8 : 6; + gr->n_short_sfb = 30; + } + } + tables = drmp3_bs_get_bits(bs, 10); + tables <<= 5; + gr->subblock_gain[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); + gr->subblock_gain[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); + gr->subblock_gain[2] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); + } else + { + gr->block_type = 0; + gr->mixed_block_flag = 0; + tables = drmp3_bs_get_bits(bs, 15); + gr->region_count[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 4); + gr->region_count[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); + gr->region_count[2] = 255; + } + gr->table_select[0] = (drmp3_uint8)(tables >> 10); + gr->table_select[1] = (drmp3_uint8)((tables >> 5) & 31); + gr->table_select[2] = (drmp3_uint8)((tables) & 31); + gr->preflag = (drmp3_uint8)(DRMP3_HDR_TEST_MPEG1(hdr) ? drmp3_bs_get_bits(bs, 1) : (gr->scalefac_compress >= 500)); + gr->scalefac_scale = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); + gr->count1_table = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); + gr->scfsi = (drmp3_uint8)((scfsi >> 12) & 15); + scfsi <<= 4; + gr++; + } while(--gr_count); + if (part_23_sum + bs->pos > bs->limit + main_data_begin*8) + { + return -1; + } + return main_data_begin; +} +static void drmp3_L3_read_scalefactors(drmp3_uint8 *scf, drmp3_uint8 *ist_pos, const drmp3_uint8 *scf_size, const drmp3_uint8 *scf_count, drmp3_bs *bitbuf, int scfsi) +{ + int i, k; + for (i = 0; i < 4 && scf_count[i]; i++, scfsi *= 2) + { + int cnt = scf_count[i]; + if (scfsi & 8) + { + memcpy(scf, ist_pos, cnt); + } else + { + int bits = scf_size[i]; + if (!bits) + { + memset(scf, 0, cnt); + memset(ist_pos, 0, cnt); + } else + { + int max_scf = (scfsi < 0) ? (1 << bits) - 1 : -1; + for (k = 0; k < cnt; k++) + { + int s = drmp3_bs_get_bits(bitbuf, bits); + ist_pos[k] = (drmp3_uint8)(s == max_scf ? -1 : s); + scf[k] = (drmp3_uint8)s; + } + } + } + ist_pos += cnt; + scf += cnt; + } + scf[0] = scf[1] = scf[2] = 0; +} +static float drmp3_L3_ldexp_q2(float y, int exp_q2) +{ + static const float g_expfrac[4] = { 9.31322575e-10f,7.83145814e-10f,6.58544508e-10f,5.53767716e-10f }; + int e; + do + { + e = DRMP3_MIN(30*4, exp_q2); + y *= g_expfrac[e & 3]*(1 << 30 >> (e >> 2)); + } while ((exp_q2 -= e) > 0); + return y; +} +static void drmp3_L3_decode_scalefactors(const drmp3_uint8 *hdr, drmp3_uint8 *ist_pos, drmp3_bs *bs, const drmp3_L3_gr_info *gr, float *scf, int ch) +{ + static const drmp3_uint8 g_scf_partitions[3][28] = { + { 6,5,5, 5,6,5,5,5,6,5, 7,3,11,10,0,0, 7, 7, 7,0, 6, 6,6,3, 8, 8,5,0 }, + { 8,9,6,12,6,9,9,9,6,9,12,6,15,18,0,0, 6,15,12,0, 6,12,9,6, 6,18,9,0 }, + { 9,9,6,12,9,9,9,9,9,9,12,6,18,18,0,0,12,12,12,0,12, 9,9,6,15,12,9,0 } + }; + const drmp3_uint8 *scf_partition = g_scf_partitions[!!gr->n_short_sfb + !gr->n_long_sfb]; + drmp3_uint8 scf_size[4], iscf[40]; + int i, scf_shift = gr->scalefac_scale + 1, gain_exp, scfsi = gr->scfsi; + float gain; + if (DRMP3_HDR_TEST_MPEG1(hdr)) + { + static const drmp3_uint8 g_scfc_decode[16] = { 0,1,2,3, 12,5,6,7, 9,10,11,13, 14,15,18,19 }; + int part = g_scfc_decode[gr->scalefac_compress]; + scf_size[1] = scf_size[0] = (drmp3_uint8)(part >> 2); + scf_size[3] = scf_size[2] = (drmp3_uint8)(part & 3); + } else + { + static const drmp3_uint8 g_mod[6*4] = { 5,5,4,4,5,5,4,1,4,3,1,1,5,6,6,1,4,4,4,1,4,3,1,1 }; + int k, modprod, sfc, ist = DRMP3_HDR_TEST_I_STEREO(hdr) && ch; + sfc = gr->scalefac_compress >> ist; + for (k = ist*3*4; sfc >= 0; sfc -= modprod, k += 4) + { + for (modprod = 1, i = 3; i >= 0; i--) + { + scf_size[i] = (drmp3_uint8)(sfc / modprod % g_mod[k + i]); + modprod *= g_mod[k + i]; + } + } + scf_partition += k; + scfsi = -16; + } + drmp3_L3_read_scalefactors(iscf, ist_pos, scf_size, scf_partition, bs, scfsi); + if (gr->n_short_sfb) + { + int sh = 3 - scf_shift; + for (i = 0; i < gr->n_short_sfb; i += 3) + { + iscf[gr->n_long_sfb + i + 0] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 0] + (gr->subblock_gain[0] << sh)); + iscf[gr->n_long_sfb + i + 1] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 1] + (gr->subblock_gain[1] << sh)); + iscf[gr->n_long_sfb + i + 2] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 2] + (gr->subblock_gain[2] << sh)); + } + } else if (gr->preflag) + { + static const drmp3_uint8 g_preamp[10] = { 1,1,1,1,2,2,3,3,3,2 }; + for (i = 0; i < 10; i++) + { + iscf[11 + i] = (drmp3_uint8)(iscf[11 + i] + g_preamp[i]); + } + } + gain_exp = gr->global_gain + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210 - (DRMP3_HDR_IS_MS_STEREO(hdr) ? 2 : 0); + gain = drmp3_L3_ldexp_q2(1 << (DRMP3_MAX_SCFI/4), DRMP3_MAX_SCFI - gain_exp); + for (i = 0; i < (int)(gr->n_long_sfb + gr->n_short_sfb); i++) + { + scf[i] = drmp3_L3_ldexp_q2(gain, iscf[i] << scf_shift); + } +} +static const float g_drmp3_pow43[129 + 16] = { + 0,-1,-2.519842f,-4.326749f,-6.349604f,-8.549880f,-10.902724f,-13.390518f,-16.000000f,-18.720754f,-21.544347f,-24.463781f,-27.473142f,-30.567351f,-33.741992f,-36.993181f, + 0,1,2.519842f,4.326749f,6.349604f,8.549880f,10.902724f,13.390518f,16.000000f,18.720754f,21.544347f,24.463781f,27.473142f,30.567351f,33.741992f,36.993181f,40.317474f,43.711787f,47.173345f,50.699631f,54.288352f,57.937408f,61.644865f,65.408941f,69.227979f,73.100443f,77.024898f,81.000000f,85.024491f,89.097188f,93.216975f,97.382800f,101.593667f,105.848633f,110.146801f,114.487321f,118.869381f,123.292209f,127.755065f,132.257246f,136.798076f,141.376907f,145.993119f,150.646117f,155.335327f,160.060199f,164.820202f,169.614826f,174.443577f,179.305980f,184.201575f,189.129918f,194.090580f,199.083145f,204.107210f,209.162385f,214.248292f,219.364564f,224.510845f,229.686789f,234.892058f,240.126328f,245.389280f,250.680604f,256.000000f,261.347174f,266.721841f,272.123723f,277.552547f,283.008049f,288.489971f,293.998060f,299.532071f,305.091761f,310.676898f,316.287249f,321.922592f,327.582707f,333.267377f,338.976394f,344.709550f,350.466646f,356.247482f,362.051866f,367.879608f,373.730522f,379.604427f,385.501143f,391.420496f,397.362314f,403.326427f,409.312672f,415.320884f,421.350905f,427.402579f,433.475750f,439.570269f,445.685987f,451.822757f,457.980436f,464.158883f,470.357960f,476.577530f,482.817459f,489.077615f,495.357868f,501.658090f,507.978156f,514.317941f,520.677324f,527.056184f,533.454404f,539.871867f,546.308458f,552.764065f,559.238575f,565.731879f,572.243870f,578.774440f,585.323483f,591.890898f,598.476581f,605.080431f,611.702349f,618.342238f,625.000000f,631.675540f,638.368763f,645.079578f +}; +static float drmp3_L3_pow_43(int x) +{ + float frac; + int sign, mult = 256; + if (x < 129) + { + return g_drmp3_pow43[16 + x]; + } + if (x < 1024) + { + mult = 16; + x <<= 3; + } + sign = 2*x & 64; + frac = (float)((x & 63) - sign) / ((x & ~63) + sign); + return g_drmp3_pow43[16 + ((x + sign) >> 6)]*(1.f + frac*((4.f/3) + frac*(2.f/9)))*mult; +} +static void drmp3_L3_huffman(float *dst, drmp3_bs *bs, const drmp3_L3_gr_info *gr_info, const float *scf, int layer3gr_limit) +{ + static const drmp3_int16 tabs[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 785,785,785,785,784,784,784,784,513,513,513,513,513,513,513,513,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256, + -255,1313,1298,1282,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,290,288, + -255,1313,1298,1282,769,769,769,769,529,529,529,529,529,529,529,529,528,528,528,528,528,528,528,528,512,512,512,512,512,512,512,512,290,288, + -253,-318,-351,-367,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,819,818,547,547,275,275,275,275,561,560,515,546,289,274,288,258, + -254,-287,1329,1299,1314,1312,1057,1057,1042,1042,1026,1026,784,784,784,784,529,529,529,529,529,529,529,529,769,769,769,769,768,768,768,768,563,560,306,306,291,259, + -252,-413,-477,-542,1298,-575,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-383,-399,1107,1092,1106,1061,849,849,789,789,1104,1091,773,773,1076,1075,341,340,325,309,834,804,577,577,532,532,516,516,832,818,803,816,561,561,531,531,515,546,289,289,288,258, + -252,-429,-493,-559,1057,1057,1042,1042,529,529,529,529,529,529,529,529,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,-382,1077,-415,1106,1061,1104,849,849,789,789,1091,1076,1029,1075,834,834,597,581,340,340,339,324,804,833,532,532,832,772,818,803,817,787,816,771,290,290,290,290,288,258, + -253,-349,-414,-447,-463,1329,1299,-479,1314,1312,1057,1057,1042,1042,1026,1026,785,785,785,785,784,784,784,784,769,769,769,769,768,768,768,768,-319,851,821,-335,836,850,805,849,341,340,325,336,533,533,579,579,564,564,773,832,578,548,563,516,321,276,306,291,304,259, + -251,-572,-733,-830,-863,-879,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,1396,1351,1381,1366,1395,1335,1380,-559,1334,1138,1138,1063,1063,1350,1392,1031,1031,1062,1062,1364,1363,1120,1120,1333,1348,881,881,881,881,375,374,359,373,343,358,341,325,791,791,1123,1122,-703,1105,1045,-719,865,865,790,790,774,774,1104,1029,338,293,323,308,-799,-815,833,788,772,818,803,816,322,292,307,320,561,531,515,546,289,274,288,258, + -251,-525,-605,-685,-765,-831,-846,1298,1057,1057,1312,1282,785,785,785,785,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,1399,1398,1383,1367,1382,1396,1351,-511,1381,1366,1139,1139,1079,1079,1124,1124,1364,1349,1363,1333,882,882,882,882,807,807,807,807,1094,1094,1136,1136,373,341,535,535,881,775,867,822,774,-591,324,338,-671,849,550,550,866,864,609,609,293,336,534,534,789,835,773,-751,834,804,308,307,833,788,832,772,562,562,547,547,305,275,560,515,290,290, + -252,-397,-477,-557,-622,-653,-719,-735,-750,1329,1299,1314,1057,1057,1042,1042,1312,1282,1024,1024,785,785,785,785,784,784,784,784,769,769,769,769,-383,1127,1141,1111,1126,1140,1095,1110,869,869,883,883,1079,1109,882,882,375,374,807,868,838,881,791,-463,867,822,368,263,852,837,836,-543,610,610,550,550,352,336,534,534,865,774,851,821,850,805,593,533,579,564,773,832,578,578,548,548,577,577,307,276,306,291,516,560,259,259, + -250,-2107,-2507,-2764,-2909,-2974,-3007,-3023,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-767,-1052,-1213,-1277,-1358,-1405,-1469,-1535,-1550,-1582,-1614,-1647,-1662,-1694,-1726,-1759,-1774,-1807,-1822,-1854,-1886,1565,-1919,-1935,-1951,-1967,1731,1730,1580,1717,-1983,1729,1564,-1999,1548,-2015,-2031,1715,1595,-2047,1714,-2063,1610,-2079,1609,-2095,1323,1323,1457,1457,1307,1307,1712,1547,1641,1700,1699,1594,1685,1625,1442,1442,1322,1322,-780,-973,-910,1279,1278,1277,1262,1276,1261,1275,1215,1260,1229,-959,974,974,989,989,-943,735,478,478,495,463,506,414,-1039,1003,958,1017,927,942,987,957,431,476,1272,1167,1228,-1183,1256,-1199,895,895,941,941,1242,1227,1212,1135,1014,1014,490,489,503,487,910,1013,985,925,863,894,970,955,1012,847,-1343,831,755,755,984,909,428,366,754,559,-1391,752,486,457,924,997,698,698,983,893,740,740,908,877,739,739,667,667,953,938,497,287,271,271,683,606,590,712,726,574,302,302,738,736,481,286,526,725,605,711,636,724,696,651,589,681,666,710,364,467,573,695,466,466,301,465,379,379,709,604,665,679,316,316,634,633,436,436,464,269,424,394,452,332,438,363,347,408,393,448,331,422,362,407,392,421,346,406,391,376,375,359,1441,1306,-2367,1290,-2383,1337,-2399,-2415,1426,1321,-2431,1411,1336,-2447,-2463,-2479,1169,1169,1049,1049,1424,1289,1412,1352,1319,-2495,1154,1154,1064,1064,1153,1153,416,390,360,404,403,389,344,374,373,343,358,372,327,357,342,311,356,326,1395,1394,1137,1137,1047,1047,1365,1392,1287,1379,1334,1364,1349,1378,1318,1363,792,792,792,792,1152,1152,1032,1032,1121,1121,1046,1046,1120,1120,1030,1030,-2895,1106,1061,1104,849,849,789,789,1091,1076,1029,1090,1060,1075,833,833,309,324,532,532,832,772,818,803,561,561,531,560,515,546,289,274,288,258, + -250,-1179,-1579,-1836,-1996,-2124,-2253,-2333,-2413,-2477,-2542,-2574,-2607,-2622,-2655,1314,1313,1298,1312,1282,785,785,785,785,1040,1040,1025,1025,768,768,768,768,-766,-798,-830,-862,-895,-911,-927,-943,-959,-975,-991,-1007,-1023,-1039,-1055,-1070,1724,1647,-1103,-1119,1631,1767,1662,1738,1708,1723,-1135,1780,1615,1779,1599,1677,1646,1778,1583,-1151,1777,1567,1737,1692,1765,1722,1707,1630,1751,1661,1764,1614,1736,1676,1763,1750,1645,1598,1721,1691,1762,1706,1582,1761,1566,-1167,1749,1629,767,766,751,765,494,494,735,764,719,749,734,763,447,447,748,718,477,506,431,491,446,476,461,505,415,430,475,445,504,399,460,489,414,503,383,474,429,459,502,502,746,752,488,398,501,473,413,472,486,271,480,270,-1439,-1455,1357,-1471,-1487,-1503,1341,1325,-1519,1489,1463,1403,1309,-1535,1372,1448,1418,1476,1356,1462,1387,-1551,1475,1340,1447,1402,1386,-1567,1068,1068,1474,1461,455,380,468,440,395,425,410,454,364,467,466,464,453,269,409,448,268,432,1371,1473,1432,1417,1308,1460,1355,1446,1459,1431,1083,1083,1401,1416,1458,1445,1067,1067,1370,1457,1051,1051,1291,1430,1385,1444,1354,1415,1400,1443,1082,1082,1173,1113,1186,1066,1185,1050,-1967,1158,1128,1172,1097,1171,1081,-1983,1157,1112,416,266,375,400,1170,1142,1127,1065,793,793,1169,1033,1156,1096,1141,1111,1155,1080,1126,1140,898,898,808,808,897,897,792,792,1095,1152,1032,1125,1110,1139,1079,1124,882,807,838,881,853,791,-2319,867,368,263,822,852,837,866,806,865,-2399,851,352,262,534,534,821,836,594,594,549,549,593,593,533,533,848,773,579,579,564,578,548,563,276,276,577,576,306,291,516,560,305,305,275,259, + -251,-892,-2058,-2620,-2828,-2957,-3023,-3039,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,-559,1530,-575,-591,1528,1527,1407,1526,1391,1023,1023,1023,1023,1525,1375,1268,1268,1103,1103,1087,1087,1039,1039,1523,-604,815,815,815,815,510,495,509,479,508,463,507,447,431,505,415,399,-734,-782,1262,-815,1259,1244,-831,1258,1228,-847,-863,1196,-879,1253,987,987,748,-767,493,493,462,477,414,414,686,669,478,446,461,445,474,429,487,458,412,471,1266,1264,1009,1009,799,799,-1019,-1276,-1452,-1581,-1677,-1757,-1821,-1886,-1933,-1997,1257,1257,1483,1468,1512,1422,1497,1406,1467,1496,1421,1510,1134,1134,1225,1225,1466,1451,1374,1405,1252,1252,1358,1480,1164,1164,1251,1251,1238,1238,1389,1465,-1407,1054,1101,-1423,1207,-1439,830,830,1248,1038,1237,1117,1223,1148,1236,1208,411,426,395,410,379,269,1193,1222,1132,1235,1221,1116,976,976,1192,1162,1177,1220,1131,1191,963,963,-1647,961,780,-1663,558,558,994,993,437,408,393,407,829,978,813,797,947,-1743,721,721,377,392,844,950,828,890,706,706,812,859,796,960,948,843,934,874,571,571,-1919,690,555,689,421,346,539,539,944,779,918,873,932,842,903,888,570,570,931,917,674,674,-2575,1562,-2591,1609,-2607,1654,1322,1322,1441,1441,1696,1546,1683,1593,1669,1624,1426,1426,1321,1321,1639,1680,1425,1425,1305,1305,1545,1668,1608,1623,1667,1592,1638,1666,1320,1320,1652,1607,1409,1409,1304,1304,1288,1288,1664,1637,1395,1395,1335,1335,1622,1636,1394,1394,1319,1319,1606,1621,1392,1392,1137,1137,1137,1137,345,390,360,375,404,373,1047,-2751,-2767,-2783,1062,1121,1046,-2799,1077,-2815,1106,1061,789,789,1105,1104,263,355,310,340,325,354,352,262,339,324,1091,1076,1029,1090,1060,1075,833,833,788,788,1088,1028,818,818,803,803,561,561,531,531,816,771,546,546,289,274,288,258, + -253,-317,-381,-446,-478,-509,1279,1279,-811,-1179,-1451,-1756,-1900,-2028,-2189,-2253,-2333,-2414,-2445,-2511,-2526,1313,1298,-2559,1041,1041,1040,1040,1025,1025,1024,1024,1022,1007,1021,991,1020,975,1019,959,687,687,1018,1017,671,671,655,655,1016,1015,639,639,758,758,623,623,757,607,756,591,755,575,754,559,543,543,1009,783,-575,-621,-685,-749,496,-590,750,749,734,748,974,989,1003,958,988,973,1002,942,987,957,972,1001,926,986,941,971,956,1000,910,985,925,999,894,970,-1071,-1087,-1102,1390,-1135,1436,1509,1451,1374,-1151,1405,1358,1480,1420,-1167,1507,1494,1389,1342,1465,1435,1450,1326,1505,1310,1493,1373,1479,1404,1492,1464,1419,428,443,472,397,736,526,464,464,486,457,442,471,484,482,1357,1449,1434,1478,1388,1491,1341,1490,1325,1489,1463,1403,1309,1477,1372,1448,1418,1433,1476,1356,1462,1387,-1439,1475,1340,1447,1402,1474,1324,1461,1371,1473,269,448,1432,1417,1308,1460,-1711,1459,-1727,1441,1099,1099,1446,1386,1431,1401,-1743,1289,1083,1083,1160,1160,1458,1445,1067,1067,1370,1457,1307,1430,1129,1129,1098,1098,268,432,267,416,266,400,-1887,1144,1187,1082,1173,1113,1186,1066,1050,1158,1128,1143,1172,1097,1171,1081,420,391,1157,1112,1170,1142,1127,1065,1169,1049,1156,1096,1141,1111,1155,1080,1126,1154,1064,1153,1140,1095,1048,-2159,1125,1110,1137,-2175,823,823,1139,1138,807,807,384,264,368,263,868,838,853,791,867,822,852,837,866,806,865,790,-2319,851,821,836,352,262,850,805,849,-2399,533,533,835,820,336,261,578,548,563,577,532,532,832,772,562,562,547,547,305,275,560,515,290,290,288,258 }; + static const drmp3_uint8 tab32[] = { 130,162,193,209,44,28,76,140,9,9,9,9,9,9,9,9,190,254,222,238,126,94,157,157,109,61,173,205}; + static const drmp3_uint8 tab33[] = { 252,236,220,204,188,172,156,140,124,108,92,76,60,44,28,12 }; + static const drmp3_int16 tabindex[2*16] = { 0,32,64,98,0,132,180,218,292,364,426,538,648,746,0,1126,1460,1460,1460,1460,1460,1460,1460,1460,1842,1842,1842,1842,1842,1842,1842,1842 }; + static const drmp3_uint8 g_linbits[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,6,8,10,13,4,5,6,7,8,9,11,13 }; +#define DRMP3_PEEK_BITS(n) (bs_cache >> (32 - n)) +#define DRMP3_FLUSH_BITS(n) { bs_cache <<= (n); bs_sh += (n); } +#define DRMP3_CHECK_BITS while (bs_sh >= 0) { bs_cache |= (drmp3_uint32)*bs_next_ptr++ << bs_sh; bs_sh -= 8; } +#define DRMP3_BSPOS ((bs_next_ptr - bs->buf)*8 - 24 + bs_sh) + float one = 0.0f; + int ireg = 0, big_val_cnt = gr_info->big_values; + const drmp3_uint8 *sfb = gr_info->sfbtab; + const drmp3_uint8 *bs_next_ptr = bs->buf + bs->pos/8; + drmp3_uint32 bs_cache = (((bs_next_ptr[0]*256u + bs_next_ptr[1])*256u + bs_next_ptr[2])*256u + bs_next_ptr[3]) << (bs->pos & 7); + int pairs_to_decode, np, bs_sh = (bs->pos & 7) - 8; + bs_next_ptr += 4; + while (big_val_cnt > 0) + { + int tab_num = gr_info->table_select[ireg]; + int sfb_cnt = gr_info->region_count[ireg++]; + const drmp3_int16 *codebook = tabs + tabindex[tab_num]; + int linbits = g_linbits[tab_num]; + if (linbits) + { + do + { + np = *sfb++ / 2; + pairs_to_decode = DRMP3_MIN(big_val_cnt, np); + one = *scf++; + do + { + int j, w = 5; + int leaf = codebook[DRMP3_PEEK_BITS(w)]; + while (leaf < 0) + { + DRMP3_FLUSH_BITS(w); + w = leaf & 7; + leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)]; + } + DRMP3_FLUSH_BITS(leaf >> 8); + for (j = 0; j < 2; j++, dst++, leaf >>= 4) + { + int lsb = leaf & 0x0F; + if (lsb == 15) + { + lsb += DRMP3_PEEK_BITS(linbits); + DRMP3_FLUSH_BITS(linbits); + DRMP3_CHECK_BITS; + *dst = one*drmp3_L3_pow_43(lsb)*((drmp3_int32)bs_cache < 0 ? -1: 1); + } else + { + *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one; + } + DRMP3_FLUSH_BITS(lsb ? 1 : 0); + } + DRMP3_CHECK_BITS; + } while (--pairs_to_decode); + } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0); + } else + { + do + { + np = *sfb++ / 2; + pairs_to_decode = DRMP3_MIN(big_val_cnt, np); + one = *scf++; + do + { + int j, w = 5; + int leaf = codebook[DRMP3_PEEK_BITS(w)]; + while (leaf < 0) + { + DRMP3_FLUSH_BITS(w); + w = leaf & 7; + leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)]; + } + DRMP3_FLUSH_BITS(leaf >> 8); + for (j = 0; j < 2; j++, dst++, leaf >>= 4) + { + int lsb = leaf & 0x0F; + *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one; + DRMP3_FLUSH_BITS(lsb ? 1 : 0); + } + DRMP3_CHECK_BITS; + } while (--pairs_to_decode); + } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0); + } + } + for (np = 1 - big_val_cnt;; dst += 4) + { + const drmp3_uint8 *codebook_count1 = (gr_info->count1_table) ? tab33 : tab32; + int leaf = codebook_count1[DRMP3_PEEK_BITS(4)]; + if (!(leaf & 8)) + { + leaf = codebook_count1[(leaf >> 3) + (bs_cache << 4 >> (32 - (leaf & 3)))]; + } + DRMP3_FLUSH_BITS(leaf & 7); + if (DRMP3_BSPOS > layer3gr_limit) + { + break; + } +#define DRMP3_RELOAD_SCALEFACTOR if (!--np) { np = *sfb++/2; if (!np) break; one = *scf++; } +#define DRMP3_DEQ_COUNT1(s) if (leaf & (128 >> s)) { dst[s] = ((drmp3_int32)bs_cache < 0) ? -one : one; DRMP3_FLUSH_BITS(1) } + DRMP3_RELOAD_SCALEFACTOR; + DRMP3_DEQ_COUNT1(0); + DRMP3_DEQ_COUNT1(1); + DRMP3_RELOAD_SCALEFACTOR; + DRMP3_DEQ_COUNT1(2); + DRMP3_DEQ_COUNT1(3); + DRMP3_CHECK_BITS; + } + bs->pos = layer3gr_limit; +} +static void drmp3_L3_midside_stereo(float *left, int n) +{ + int i = 0; + float *right = left + 576; +#if DRMP3_HAVE_SIMD + if (drmp3_have_simd()) for (; i < n - 3; i += 4) + { + drmp3_f4 vl = DRMP3_VLD(left + i); + drmp3_f4 vr = DRMP3_VLD(right + i); + DRMP3_VSTORE(left + i, DRMP3_VADD(vl, vr)); + DRMP3_VSTORE(right + i, DRMP3_VSUB(vl, vr)); + } +#endif + for (; i < n; i++) + { + float a = left[i]; + float b = right[i]; + left[i] = a + b; + right[i] = a - b; + } +} +static void drmp3_L3_intensity_stereo_band(float *left, int n, float kl, float kr) +{ + int i; + for (i = 0; i < n; i++) + { + left[i + 576] = left[i]*kr; + left[i] = left[i]*kl; + } +} +static void drmp3_L3_stereo_top_band(const float *right, const drmp3_uint8 *sfb, int nbands, int max_band[3]) +{ + int i, k; + max_band[0] = max_band[1] = max_band[2] = -1; + for (i = 0; i < nbands; i++) + { + for (k = 0; k < sfb[i]; k += 2) + { + if (right[k] != 0 || right[k + 1] != 0) + { + max_band[i % 3] = i; + break; + } + } + right += sfb[i]; + } +} +static void drmp3_L3_stereo_process(float *left, const drmp3_uint8 *ist_pos, const drmp3_uint8 *sfb, const drmp3_uint8 *hdr, int max_band[3], int mpeg2_sh) +{ + static const float g_pan[7*2] = { 0,1,0.21132487f,0.78867513f,0.36602540f,0.63397460f,0.5f,0.5f,0.63397460f,0.36602540f,0.78867513f,0.21132487f,1,0 }; + unsigned i, max_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 7 : 64; + for (i = 0; sfb[i]; i++) + { + unsigned ipos = ist_pos[i]; + if ((int)i > max_band[i % 3] && ipos < max_pos) + { + float kl, kr, s = DRMP3_HDR_TEST_MS_STEREO(hdr) ? 1.41421356f : 1; + if (DRMP3_HDR_TEST_MPEG1(hdr)) + { + kl = g_pan[2*ipos]; + kr = g_pan[2*ipos + 1]; + } else + { + kl = 1; + kr = drmp3_L3_ldexp_q2(1, (ipos + 1) >> 1 << mpeg2_sh); + if (ipos & 1) + { + kl = kr; + kr = 1; + } + } + drmp3_L3_intensity_stereo_band(left, sfb[i], kl*s, kr*s); + } else if (DRMP3_HDR_TEST_MS_STEREO(hdr)) + { + drmp3_L3_midside_stereo(left, sfb[i]); + } + left += sfb[i]; + } +} +static void drmp3_L3_intensity_stereo(float *left, drmp3_uint8 *ist_pos, const drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr) +{ + int max_band[3], n_sfb = gr->n_long_sfb + gr->n_short_sfb; + int i, max_blocks = gr->n_short_sfb ? 3 : 1; + drmp3_L3_stereo_top_band(left + 576, gr->sfbtab, n_sfb, max_band); + if (gr->n_long_sfb) + { + max_band[0] = max_band[1] = max_band[2] = DRMP3_MAX(DRMP3_MAX(max_band[0], max_band[1]), max_band[2]); + } + for (i = 0; i < max_blocks; i++) + { + int default_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 3 : 0; + int itop = n_sfb - max_blocks + i; + int prev = itop - max_blocks; + ist_pos[itop] = (drmp3_uint8)(max_band[i] >= prev ? default_pos : ist_pos[prev]); + } + drmp3_L3_stereo_process(left, ist_pos, gr->sfbtab, hdr, max_band, gr[1].scalefac_compress & 1); +} +static void drmp3_L3_reorder(float *grbuf, float *scratch, const drmp3_uint8 *sfb) +{ + int i, len; + float *src = grbuf, *dst = scratch; + for (;0 != (len = *sfb); sfb += 3, src += 2*len) + { + for (i = 0; i < len; i++, src++) + { + *dst++ = src[0*len]; + *dst++ = src[1*len]; + *dst++ = src[2*len]; + } + } + memcpy(grbuf, scratch, (dst - scratch)*sizeof(float)); +} +static void drmp3_L3_antialias(float *grbuf, int nbands) +{ + static const float g_aa[2][8] = { + {0.85749293f,0.88174200f,0.94962865f,0.98331459f,0.99551782f,0.99916056f,0.99989920f,0.99999316f}, + {0.51449576f,0.47173197f,0.31337745f,0.18191320f,0.09457419f,0.04096558f,0.01419856f,0.00369997f} + }; + for (; nbands > 0; nbands--, grbuf += 18) + { + int i = 0; +#if DRMP3_HAVE_SIMD + if (drmp3_have_simd()) for (; i < 8; i += 4) + { + drmp3_f4 vu = DRMP3_VLD(grbuf + 18 + i); + drmp3_f4 vd = DRMP3_VLD(grbuf + 14 - i); + drmp3_f4 vc0 = DRMP3_VLD(g_aa[0] + i); + drmp3_f4 vc1 = DRMP3_VLD(g_aa[1] + i); + vd = DRMP3_VREV(vd); + DRMP3_VSTORE(grbuf + 18 + i, DRMP3_VSUB(DRMP3_VMUL(vu, vc0), DRMP3_VMUL(vd, vc1))); + vd = DRMP3_VADD(DRMP3_VMUL(vu, vc1), DRMP3_VMUL(vd, vc0)); + DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vd)); + } +#endif +#ifndef DR_MP3_ONLY_SIMD + for(; i < 8; i++) + { + float u = grbuf[18 + i]; + float d = grbuf[17 - i]; + grbuf[18 + i] = u*g_aa[0][i] - d*g_aa[1][i]; + grbuf[17 - i] = u*g_aa[1][i] + d*g_aa[0][i]; + } +#endif + } +} +static void drmp3_L3_dct3_9(float *y) +{ + float s0, s1, s2, s3, s4, s5, s6, s7, s8, t0, t2, t4; + s0 = y[0]; s2 = y[2]; s4 = y[4]; s6 = y[6]; s8 = y[8]; + t0 = s0 + s6*0.5f; + s0 -= s6; + t4 = (s4 + s2)*0.93969262f; + t2 = (s8 + s2)*0.76604444f; + s6 = (s4 - s8)*0.17364818f; + s4 += s8 - s2; + s2 = s0 - s4*0.5f; + y[4] = s4 + s0; + s8 = t0 - t2 + s6; + s0 = t0 - t4 + t2; + s4 = t0 + t4 - s6; + s1 = y[1]; s3 = y[3]; s5 = y[5]; s7 = y[7]; + s3 *= 0.86602540f; + t0 = (s5 + s1)*0.98480775f; + t4 = (s5 - s7)*0.34202014f; + t2 = (s1 + s7)*0.64278761f; + s1 = (s1 - s5 - s7)*0.86602540f; + s5 = t0 - s3 - t2; + s7 = t4 - s3 - t0; + s3 = t4 + s3 - t2; + y[0] = s4 - s7; + y[1] = s2 + s1; + y[2] = s0 - s3; + y[3] = s8 + s5; + y[5] = s8 - s5; + y[6] = s0 + s3; + y[7] = s2 - s1; + y[8] = s4 + s7; +} +static void drmp3_L3_imdct36(float *grbuf, float *overlap, const float *window, int nbands) +{ + int i, j; + static const float g_twid9[18] = { + 0.73727734f,0.79335334f,0.84339145f,0.88701083f,0.92387953f,0.95371695f,0.97629601f,0.99144486f,0.99904822f,0.67559021f,0.60876143f,0.53729961f,0.46174861f,0.38268343f,0.30070580f,0.21643961f,0.13052619f,0.04361938f + }; + for (j = 0; j < nbands; j++, grbuf += 18, overlap += 9) + { + float co[9], si[9]; + co[0] = -grbuf[0]; + si[0] = grbuf[17]; + for (i = 0; i < 4; i++) + { + si[8 - 2*i] = grbuf[4*i + 1] - grbuf[4*i + 2]; + co[1 + 2*i] = grbuf[4*i + 1] + grbuf[4*i + 2]; + si[7 - 2*i] = grbuf[4*i + 4] - grbuf[4*i + 3]; + co[2 + 2*i] = -(grbuf[4*i + 3] + grbuf[4*i + 4]); + } + drmp3_L3_dct3_9(co); + drmp3_L3_dct3_9(si); + si[1] = -si[1]; + si[3] = -si[3]; + si[5] = -si[5]; + si[7] = -si[7]; + i = 0; +#if DRMP3_HAVE_SIMD + if (drmp3_have_simd()) for (; i < 8; i += 4) + { + drmp3_f4 vovl = DRMP3_VLD(overlap + i); + drmp3_f4 vc = DRMP3_VLD(co + i); + drmp3_f4 vs = DRMP3_VLD(si + i); + drmp3_f4 vr0 = DRMP3_VLD(g_twid9 + i); + drmp3_f4 vr1 = DRMP3_VLD(g_twid9 + 9 + i); + drmp3_f4 vw0 = DRMP3_VLD(window + i); + drmp3_f4 vw1 = DRMP3_VLD(window + 9 + i); + drmp3_f4 vsum = DRMP3_VADD(DRMP3_VMUL(vc, vr1), DRMP3_VMUL(vs, vr0)); + DRMP3_VSTORE(overlap + i, DRMP3_VSUB(DRMP3_VMUL(vc, vr0), DRMP3_VMUL(vs, vr1))); + DRMP3_VSTORE(grbuf + i, DRMP3_VSUB(DRMP3_VMUL(vovl, vw0), DRMP3_VMUL(vsum, vw1))); + vsum = DRMP3_VADD(DRMP3_VMUL(vovl, vw1), DRMP3_VMUL(vsum, vw0)); + DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vsum)); + } +#endif + for (; i < 9; i++) + { + float ovl = overlap[i]; + float sum = co[i]*g_twid9[9 + i] + si[i]*g_twid9[0 + i]; + overlap[i] = co[i]*g_twid9[0 + i] - si[i]*g_twid9[9 + i]; + grbuf[i] = ovl*window[0 + i] - sum*window[9 + i]; + grbuf[17 - i] = ovl*window[9 + i] + sum*window[0 + i]; + } + } +} +static void drmp3_L3_idct3(float x0, float x1, float x2, float *dst) +{ + float m1 = x1*0.86602540f; + float a1 = x0 - x2*0.5f; + dst[1] = x0 + x2; + dst[0] = a1 + m1; + dst[2] = a1 - m1; +} +static void drmp3_L3_imdct12(float *x, float *dst, float *overlap) +{ + static const float g_twid3[6] = { 0.79335334f,0.92387953f,0.99144486f, 0.60876143f,0.38268343f,0.13052619f }; + float co[3], si[3]; + int i; + drmp3_L3_idct3(-x[0], x[6] + x[3], x[12] + x[9], co); + drmp3_L3_idct3(x[15], x[12] - x[9], x[6] - x[3], si); + si[1] = -si[1]; + for (i = 0; i < 3; i++) + { + float ovl = overlap[i]; + float sum = co[i]*g_twid3[3 + i] + si[i]*g_twid3[0 + i]; + overlap[i] = co[i]*g_twid3[0 + i] - si[i]*g_twid3[3 + i]; + dst[i] = ovl*g_twid3[2 - i] - sum*g_twid3[5 - i]; + dst[5 - i] = ovl*g_twid3[5 - i] + sum*g_twid3[2 - i]; + } +} +static void drmp3_L3_imdct_short(float *grbuf, float *overlap, int nbands) +{ + for (;nbands > 0; nbands--, overlap += 9, grbuf += 18) + { + float tmp[18]; + memcpy(tmp, grbuf, sizeof(tmp)); + memcpy(grbuf, overlap, 6*sizeof(float)); + drmp3_L3_imdct12(tmp, grbuf + 6, overlap + 6); + drmp3_L3_imdct12(tmp + 1, grbuf + 12, overlap + 6); + drmp3_L3_imdct12(tmp + 2, overlap, overlap + 6); + } +} +static void drmp3_L3_change_sign(float *grbuf) +{ + int b, i; + for (b = 0, grbuf += 18; b < 32; b += 2, grbuf += 36) + for (i = 1; i < 18; i += 2) + grbuf[i] = -grbuf[i]; +} +static void drmp3_L3_imdct_gr(float *grbuf, float *overlap, unsigned block_type, unsigned n_long_bands) +{ + static const float g_mdct_window[2][18] = { + { 0.99904822f,0.99144486f,0.97629601f,0.95371695f,0.92387953f,0.88701083f,0.84339145f,0.79335334f,0.73727734f,0.04361938f,0.13052619f,0.21643961f,0.30070580f,0.38268343f,0.46174861f,0.53729961f,0.60876143f,0.67559021f }, + { 1,1,1,1,1,1,0.99144486f,0.92387953f,0.79335334f,0,0,0,0,0,0,0.13052619f,0.38268343f,0.60876143f } + }; + if (n_long_bands) + { + drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[0], n_long_bands); + grbuf += 18*n_long_bands; + overlap += 9*n_long_bands; + } + if (block_type == DRMP3_SHORT_BLOCK_TYPE) + drmp3_L3_imdct_short(grbuf, overlap, 32 - n_long_bands); + else + drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[block_type == DRMP3_STOP_BLOCK_TYPE], 32 - n_long_bands); +} +static void drmp3_L3_save_reservoir(drmp3dec *h, drmp3dec_scratch *s) +{ + int pos = (s->bs.pos + 7)/8u; + int remains = s->bs.limit/8u - pos; + if (remains > DRMP3_MAX_BITRESERVOIR_BYTES) + { + pos += remains - DRMP3_MAX_BITRESERVOIR_BYTES; + remains = DRMP3_MAX_BITRESERVOIR_BYTES; + } + if (remains > 0) + { + memmove(h->reserv_buf, s->maindata + pos, remains); + } + h->reserv = remains; +} +static int drmp3_L3_restore_reservoir(drmp3dec *h, drmp3_bs *bs, drmp3dec_scratch *s, int main_data_begin) +{ + int frame_bytes = (bs->limit - bs->pos)/8; + int bytes_have = DRMP3_MIN(h->reserv, main_data_begin); + memcpy(s->maindata, h->reserv_buf + DRMP3_MAX(0, h->reserv - main_data_begin), DRMP3_MIN(h->reserv, main_data_begin)); + memcpy(s->maindata + bytes_have, bs->buf + bs->pos/8, frame_bytes); + drmp3_bs_init(&s->bs, s->maindata, bytes_have + frame_bytes); + return h->reserv >= main_data_begin; +} +static void drmp3_L3_decode(drmp3dec *h, drmp3dec_scratch *s, drmp3_L3_gr_info *gr_info, int nch) +{ + int ch; + for (ch = 0; ch < nch; ch++) + { + int layer3gr_limit = s->bs.pos + gr_info[ch].part_23_length; + drmp3_L3_decode_scalefactors(h->header, s->ist_pos[ch], &s->bs, gr_info + ch, s->scf, ch); + drmp3_L3_huffman(s->grbuf[ch], &s->bs, gr_info + ch, s->scf, layer3gr_limit); + } + if (DRMP3_HDR_TEST_I_STEREO(h->header)) + { + drmp3_L3_intensity_stereo(s->grbuf[0], s->ist_pos[1], gr_info, h->header); + } else if (DRMP3_HDR_IS_MS_STEREO(h->header)) + { + drmp3_L3_midside_stereo(s->grbuf[0], 576); + } + for (ch = 0; ch < nch; ch++, gr_info++) + { + int aa_bands = 31; + int n_long_bands = (gr_info->mixed_block_flag ? 2 : 0) << (int)(DRMP3_HDR_GET_MY_SAMPLE_RATE(h->header) == 2); + if (gr_info->n_short_sfb) + { + aa_bands = n_long_bands - 1; + drmp3_L3_reorder(s->grbuf[ch] + n_long_bands*18, s->syn[0], gr_info->sfbtab + gr_info->n_long_sfb); + } + drmp3_L3_antialias(s->grbuf[ch], aa_bands); + drmp3_L3_imdct_gr(s->grbuf[ch], h->mdct_overlap[ch], gr_info->block_type, n_long_bands); + drmp3_L3_change_sign(s->grbuf[ch]); + } +} +static void drmp3d_DCT_II(float *grbuf, int n) +{ + static const float g_sec[24] = { + 10.19000816f,0.50060302f,0.50241929f,3.40760851f,0.50547093f,0.52249861f,2.05778098f,0.51544732f,0.56694406f,1.48416460f,0.53104258f,0.64682180f,1.16943991f,0.55310392f,0.78815460f,0.97256821f,0.58293498f,1.06067765f,0.83934963f,0.62250412f,1.72244716f,0.74453628f,0.67480832f,5.10114861f + }; + int i, k = 0; +#if DRMP3_HAVE_SIMD + if (drmp3_have_simd()) for (; k < n; k += 4) + { + drmp3_f4 t[4][8], *x; + float *y = grbuf + k; + for (x = t[0], i = 0; i < 8; i++, x++) + { + drmp3_f4 x0 = DRMP3_VLD(&y[i*18]); + drmp3_f4 x1 = DRMP3_VLD(&y[(15 - i)*18]); + drmp3_f4 x2 = DRMP3_VLD(&y[(16 + i)*18]); + drmp3_f4 x3 = DRMP3_VLD(&y[(31 - i)*18]); + drmp3_f4 t0 = DRMP3_VADD(x0, x3); + drmp3_f4 t1 = DRMP3_VADD(x1, x2); + drmp3_f4 t2 = DRMP3_VMUL_S(DRMP3_VSUB(x1, x2), g_sec[3*i + 0]); + drmp3_f4 t3 = DRMP3_VMUL_S(DRMP3_VSUB(x0, x3), g_sec[3*i + 1]); + x[0] = DRMP3_VADD(t0, t1); + x[8] = DRMP3_VMUL_S(DRMP3_VSUB(t0, t1), g_sec[3*i + 2]); + x[16] = DRMP3_VADD(t3, t2); + x[24] = DRMP3_VMUL_S(DRMP3_VSUB(t3, t2), g_sec[3*i + 2]); + } + for (x = t[0], i = 0; i < 4; i++, x += 8) + { + drmp3_f4 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt; + xt = DRMP3_VSUB(x0, x7); x0 = DRMP3_VADD(x0, x7); + x7 = DRMP3_VSUB(x1, x6); x1 = DRMP3_VADD(x1, x6); + x6 = DRMP3_VSUB(x2, x5); x2 = DRMP3_VADD(x2, x5); + x5 = DRMP3_VSUB(x3, x4); x3 = DRMP3_VADD(x3, x4); + x4 = DRMP3_VSUB(x0, x3); x0 = DRMP3_VADD(x0, x3); + x3 = DRMP3_VSUB(x1, x2); x1 = DRMP3_VADD(x1, x2); + x[0] = DRMP3_VADD(x0, x1); + x[4] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x1), 0.70710677f); + x5 = DRMP3_VADD(x5, x6); + x6 = DRMP3_VMUL_S(DRMP3_VADD(x6, x7), 0.70710677f); + x7 = DRMP3_VADD(x7, xt); + x3 = DRMP3_VMUL_S(DRMP3_VADD(x3, x4), 0.70710677f); + x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f)); + x7 = DRMP3_VADD(x7, DRMP3_VMUL_S(x5, 0.382683432f)); + x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f)); + x0 = DRMP3_VSUB(xt, x6); xt = DRMP3_VADD(xt, x6); + x[1] = DRMP3_VMUL_S(DRMP3_VADD(xt, x7), 0.50979561f); + x[2] = DRMP3_VMUL_S(DRMP3_VADD(x4, x3), 0.54119611f); + x[3] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x5), 0.60134488f); + x[5] = DRMP3_VMUL_S(DRMP3_VADD(x0, x5), 0.89997619f); + x[6] = DRMP3_VMUL_S(DRMP3_VSUB(x4, x3), 1.30656302f); + x[7] = DRMP3_VMUL_S(DRMP3_VSUB(xt, x7), 2.56291556f); + } + if (k > n - 3) + { +#if DRMP3_HAVE_SSE +#define DRMP3_VSAVE2(i, v) _mm_storel_pi((__m64 *)(void*)&y[i*18], v) +#else +#define DRMP3_VSAVE2(i, v) vst1_f32((float32_t *)&y[i*18], vget_low_f32(v)) +#endif + for (i = 0; i < 7; i++, y += 4*18) + { + drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]); + DRMP3_VSAVE2(0, t[0][i]); + DRMP3_VSAVE2(1, DRMP3_VADD(t[2][i], s)); + DRMP3_VSAVE2(2, DRMP3_VADD(t[1][i], t[1][i + 1])); + DRMP3_VSAVE2(3, DRMP3_VADD(t[2][1 + i], s)); + } + DRMP3_VSAVE2(0, t[0][7]); + DRMP3_VSAVE2(1, DRMP3_VADD(t[2][7], t[3][7])); + DRMP3_VSAVE2(2, t[1][7]); + DRMP3_VSAVE2(3, t[3][7]); + } else + { +#define DRMP3_VSAVE4(i, v) DRMP3_VSTORE(&y[i*18], v) + for (i = 0; i < 7; i++, y += 4*18) + { + drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]); + DRMP3_VSAVE4(0, t[0][i]); + DRMP3_VSAVE4(1, DRMP3_VADD(t[2][i], s)); + DRMP3_VSAVE4(2, DRMP3_VADD(t[1][i], t[1][i + 1])); + DRMP3_VSAVE4(3, DRMP3_VADD(t[2][1 + i], s)); + } + DRMP3_VSAVE4(0, t[0][7]); + DRMP3_VSAVE4(1, DRMP3_VADD(t[2][7], t[3][7])); + DRMP3_VSAVE4(2, t[1][7]); + DRMP3_VSAVE4(3, t[3][7]); + } + } else +#endif +#ifdef DR_MP3_ONLY_SIMD + {} +#else + for (; k < n; k++) + { + float t[4][8], *x, *y = grbuf + k; + for (x = t[0], i = 0; i < 8; i++, x++) + { + float x0 = y[i*18]; + float x1 = y[(15 - i)*18]; + float x2 = y[(16 + i)*18]; + float x3 = y[(31 - i)*18]; + float t0 = x0 + x3; + float t1 = x1 + x2; + float t2 = (x1 - x2)*g_sec[3*i + 0]; + float t3 = (x0 - x3)*g_sec[3*i + 1]; + x[0] = t0 + t1; + x[8] = (t0 - t1)*g_sec[3*i + 2]; + x[16] = t3 + t2; + x[24] = (t3 - t2)*g_sec[3*i + 2]; + } + for (x = t[0], i = 0; i < 4; i++, x += 8) + { + float x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt; + xt = x0 - x7; x0 += x7; + x7 = x1 - x6; x1 += x6; + x6 = x2 - x5; x2 += x5; + x5 = x3 - x4; x3 += x4; + x4 = x0 - x3; x0 += x3; + x3 = x1 - x2; x1 += x2; + x[0] = x0 + x1; + x[4] = (x0 - x1)*0.70710677f; + x5 = x5 + x6; + x6 = (x6 + x7)*0.70710677f; + x7 = x7 + xt; + x3 = (x3 + x4)*0.70710677f; + x5 -= x7*0.198912367f; + x7 += x5*0.382683432f; + x5 -= x7*0.198912367f; + x0 = xt - x6; xt += x6; + x[1] = (xt + x7)*0.50979561f; + x[2] = (x4 + x3)*0.54119611f; + x[3] = (x0 - x5)*0.60134488f; + x[5] = (x0 + x5)*0.89997619f; + x[6] = (x4 - x3)*1.30656302f; + x[7] = (xt - x7)*2.56291556f; + } + for (i = 0; i < 7; i++, y += 4*18) + { + y[0*18] = t[0][i]; + y[1*18] = t[2][i] + t[3][i] + t[3][i + 1]; + y[2*18] = t[1][i] + t[1][i + 1]; + y[3*18] = t[2][i + 1] + t[3][i] + t[3][i + 1]; + } + y[0*18] = t[0][7]; + y[1*18] = t[2][7] + t[3][7]; + y[2*18] = t[1][7]; + y[3*18] = t[3][7]; + } +#endif +} +#ifndef DR_MP3_FLOAT_OUTPUT +typedef drmp3_int16 drmp3d_sample_t; +static drmp3_int16 drmp3d_scale_pcm(float sample) +{ + drmp3_int16 s; +#if DRMP3_HAVE_ARMV6 + drmp3_int32 s32 = (drmp3_int32)(sample + .5f); + s32 -= (s32 < 0); + s = (drmp3_int16)drmp3_clip_int16_arm(s32); +#else + if (sample >= 32766.5) return (drmp3_int16) 32767; + if (sample <= -32767.5) return (drmp3_int16)-32768; + s = (drmp3_int16)(sample + .5f); + s -= (s < 0); +#endif + return s; +} +#else +typedef float drmp3d_sample_t; +static float drmp3d_scale_pcm(float sample) +{ + return sample*(1.f/32768.f); +} +#endif +static void drmp3d_synth_pair(drmp3d_sample_t *pcm, int nch, const float *z) +{ + float a; + a = (z[14*64] - z[ 0]) * 29; + a += (z[ 1*64] + z[13*64]) * 213; + a += (z[12*64] - z[ 2*64]) * 459; + a += (z[ 3*64] + z[11*64]) * 2037; + a += (z[10*64] - z[ 4*64]) * 5153; + a += (z[ 5*64] + z[ 9*64]) * 6574; + a += (z[ 8*64] - z[ 6*64]) * 37489; + a += z[ 7*64] * 75038; + pcm[0] = drmp3d_scale_pcm(a); + z += 2; + a = z[14*64] * 104; + a += z[12*64] * 1567; + a += z[10*64] * 9727; + a += z[ 8*64] * 64019; + a += z[ 6*64] * -9975; + a += z[ 4*64] * -45; + a += z[ 2*64] * 146; + a += z[ 0*64] * -5; + pcm[16*nch] = drmp3d_scale_pcm(a); +} +static void drmp3d_synth(float *xl, drmp3d_sample_t *dstl, int nch, float *lins) +{ + int i; + float *xr = xl + 576*(nch - 1); + drmp3d_sample_t *dstr = dstl + (nch - 1); + static const float g_win[] = { + -1,26,-31,208,218,401,-519,2063,2000,4788,-5517,7134,5959,35640,-39336,74992, + -1,24,-35,202,222,347,-581,2080,1952,4425,-5879,7640,5288,33791,-41176,74856, + -1,21,-38,196,225,294,-645,2087,1893,4063,-6237,8092,4561,31947,-43006,74630, + -1,19,-41,190,227,244,-711,2085,1822,3705,-6589,8492,3776,30112,-44821,74313, + -1,17,-45,183,228,197,-779,2075,1739,3351,-6935,8840,2935,28289,-46617,73908, + -1,16,-49,176,228,153,-848,2057,1644,3004,-7271,9139,2037,26482,-48390,73415, + -2,14,-53,169,227,111,-919,2032,1535,2663,-7597,9389,1082,24694,-50137,72835, + -2,13,-58,161,224,72,-991,2001,1414,2330,-7910,9592,70,22929,-51853,72169, + -2,11,-63,154,221,36,-1064,1962,1280,2006,-8209,9750,-998,21189,-53534,71420, + -2,10,-68,147,215,2,-1137,1919,1131,1692,-8491,9863,-2122,19478,-55178,70590, + -3,9,-73,139,208,-29,-1210,1870,970,1388,-8755,9935,-3300,17799,-56778,69679, + -3,8,-79,132,200,-57,-1283,1817,794,1095,-8998,9966,-4533,16155,-58333,68692, + -4,7,-85,125,189,-83,-1356,1759,605,814,-9219,9959,-5818,14548,-59838,67629, + -4,7,-91,117,177,-106,-1428,1698,402,545,-9416,9916,-7154,12980,-61289,66494, + -5,6,-97,111,163,-127,-1498,1634,185,288,-9585,9838,-8540,11455,-62684,65290 + }; + float *zlin = lins + 15*64; + const float *w = g_win; + zlin[4*15] = xl[18*16]; + zlin[4*15 + 1] = xr[18*16]; + zlin[4*15 + 2] = xl[0]; + zlin[4*15 + 3] = xr[0]; + zlin[4*31] = xl[1 + 18*16]; + zlin[4*31 + 1] = xr[1 + 18*16]; + zlin[4*31 + 2] = xl[1]; + zlin[4*31 + 3] = xr[1]; + drmp3d_synth_pair(dstr, nch, lins + 4*15 + 1); + drmp3d_synth_pair(dstr + 32*nch, nch, lins + 4*15 + 64 + 1); + drmp3d_synth_pair(dstl, nch, lins + 4*15); + drmp3d_synth_pair(dstl + 32*nch, nch, lins + 4*15 + 64); +#if DRMP3_HAVE_SIMD + if (drmp3_have_simd()) for (i = 14; i >= 0; i--) + { +#define DRMP3_VLOAD(k) drmp3_f4 w0 = DRMP3_VSET(*w++); drmp3_f4 w1 = DRMP3_VSET(*w++); drmp3_f4 vz = DRMP3_VLD(&zlin[4*i - 64*k]); drmp3_f4 vy = DRMP3_VLD(&zlin[4*i - 64*(15 - k)]); +#define DRMP3_V0(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0)) ; a = DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1)); } +#define DRMP3_V1(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1))); } +#define DRMP3_V2(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vy, w1), DRMP3_VMUL(vz, w0))); } + drmp3_f4 a, b; + zlin[4*i] = xl[18*(31 - i)]; + zlin[4*i + 1] = xr[18*(31 - i)]; + zlin[4*i + 2] = xl[1 + 18*(31 - i)]; + zlin[4*i + 3] = xr[1 + 18*(31 - i)]; + zlin[4*i + 64] = xl[1 + 18*(1 + i)]; + zlin[4*i + 64 + 1] = xr[1 + 18*(1 + i)]; + zlin[4*i - 64 + 2] = xl[18*(1 + i)]; + zlin[4*i - 64 + 3] = xr[18*(1 + i)]; + DRMP3_V0(0) DRMP3_V2(1) DRMP3_V1(2) DRMP3_V2(3) DRMP3_V1(4) DRMP3_V2(5) DRMP3_V1(6) DRMP3_V2(7) + { +#ifndef DR_MP3_FLOAT_OUTPUT +#if DRMP3_HAVE_SSE + static const drmp3_f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f }; + static const drmp3_f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f }; + __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)), + _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min))); + dstr[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 1); + dstr[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 5); + dstl[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 0); + dstl[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 4); + dstr[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 3); + dstr[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 7); + dstl[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 2); + dstl[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 6); +#else + int16x4_t pcma, pcmb; + a = DRMP3_VADD(a, DRMP3_VSET(0.5f)); + b = DRMP3_VADD(b, DRMP3_VSET(0.5f)); + pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0))))); + pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0))))); + vst1_lane_s16(dstr + (15 - i)*nch, pcma, 1); + vst1_lane_s16(dstr + (17 + i)*nch, pcmb, 1); + vst1_lane_s16(dstl + (15 - i)*nch, pcma, 0); + vst1_lane_s16(dstl + (17 + i)*nch, pcmb, 0); + vst1_lane_s16(dstr + (47 - i)*nch, pcma, 3); + vst1_lane_s16(dstr + (49 + i)*nch, pcmb, 3); + vst1_lane_s16(dstl + (47 - i)*nch, pcma, 2); + vst1_lane_s16(dstl + (49 + i)*nch, pcmb, 2); +#endif +#else + static const drmp3_f4 g_scale = { 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f }; + a = DRMP3_VMUL(a, g_scale); + b = DRMP3_VMUL(b, g_scale); +#if DRMP3_HAVE_SSE + _mm_store_ss(dstr + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1))); + _mm_store_ss(dstr + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(1, 1, 1, 1))); + _mm_store_ss(dstl + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0))); + _mm_store_ss(dstl + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(0, 0, 0, 0))); + _mm_store_ss(dstr + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3))); + _mm_store_ss(dstr + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 3, 3))); + _mm_store_ss(dstl + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2))); + _mm_store_ss(dstl + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 2, 2))); +#else + vst1q_lane_f32(dstr + (15 - i)*nch, a, 1); + vst1q_lane_f32(dstr + (17 + i)*nch, b, 1); + vst1q_lane_f32(dstl + (15 - i)*nch, a, 0); + vst1q_lane_f32(dstl + (17 + i)*nch, b, 0); + vst1q_lane_f32(dstr + (47 - i)*nch, a, 3); + vst1q_lane_f32(dstr + (49 + i)*nch, b, 3); + vst1q_lane_f32(dstl + (47 - i)*nch, a, 2); + vst1q_lane_f32(dstl + (49 + i)*nch, b, 2); +#endif +#endif + } + } else +#endif +#ifdef DR_MP3_ONLY_SIMD + {} +#else + for (i = 14; i >= 0; i--) + { +#define DRMP3_LOAD(k) float w0 = *w++; float w1 = *w++; float *vz = &zlin[4*i - k*64]; float *vy = &zlin[4*i - (15 - k)*64]; +#define DRMP3_S0(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] = vz[j]*w1 + vy[j]*w0, a[j] = vz[j]*w0 - vy[j]*w1; } +#define DRMP3_S1(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vz[j]*w0 - vy[j]*w1; } +#define DRMP3_S2(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vy[j]*w1 - vz[j]*w0; } + float a[4], b[4]; + zlin[4*i] = xl[18*(31 - i)]; + zlin[4*i + 1] = xr[18*(31 - i)]; + zlin[4*i + 2] = xl[1 + 18*(31 - i)]; + zlin[4*i + 3] = xr[1 + 18*(31 - i)]; + zlin[4*(i + 16)] = xl[1 + 18*(1 + i)]; + zlin[4*(i + 16) + 1] = xr[1 + 18*(1 + i)]; + zlin[4*(i - 16) + 2] = xl[18*(1 + i)]; + zlin[4*(i - 16) + 3] = xr[18*(1 + i)]; + DRMP3_S0(0) DRMP3_S2(1) DRMP3_S1(2) DRMP3_S2(3) DRMP3_S1(4) DRMP3_S2(5) DRMP3_S1(6) DRMP3_S2(7) + dstr[(15 - i)*nch] = drmp3d_scale_pcm(a[1]); + dstr[(17 + i)*nch] = drmp3d_scale_pcm(b[1]); + dstl[(15 - i)*nch] = drmp3d_scale_pcm(a[0]); + dstl[(17 + i)*nch] = drmp3d_scale_pcm(b[0]); + dstr[(47 - i)*nch] = drmp3d_scale_pcm(a[3]); + dstr[(49 + i)*nch] = drmp3d_scale_pcm(b[3]); + dstl[(47 - i)*nch] = drmp3d_scale_pcm(a[2]); + dstl[(49 + i)*nch] = drmp3d_scale_pcm(b[2]); + } +#endif +} +static void drmp3d_synth_granule(float *qmf_state, float *grbuf, int nbands, int nch, drmp3d_sample_t *pcm, float *lins) +{ + int i; + for (i = 0; i < nch; i++) + { + drmp3d_DCT_II(grbuf + 576*i, nbands); + } + memcpy(lins, qmf_state, sizeof(float)*15*64); + for (i = 0; i < nbands; i += 2) + { + drmp3d_synth(grbuf + i, pcm + 32*nch*i, nch, lins + i*64); + } +#ifndef DR_MP3_NONSTANDARD_BUT_LOGICAL + if (nch == 1) + { + for (i = 0; i < 15*64; i += 2) + { + qmf_state[i] = lins[nbands*64 + i]; + } + } else +#endif + { + memcpy(qmf_state, lins + nbands*64, sizeof(float)*15*64); + } +} +static int drmp3d_match_frame(const drmp3_uint8 *hdr, int mp3_bytes, int frame_bytes) +{ + int i, nmatch; + for (i = 0, nmatch = 0; nmatch < DRMP3_MAX_FRAME_SYNC_MATCHES; nmatch++) + { + i += drmp3_hdr_frame_bytes(hdr + i, frame_bytes) + drmp3_hdr_padding(hdr + i); + if (i + DRMP3_HDR_SIZE > mp3_bytes) + return nmatch > 0; + if (!drmp3_hdr_compare(hdr, hdr + i)) + return 0; + } + return 1; +} +static int drmp3d_find_frame(const drmp3_uint8 *mp3, int mp3_bytes, int *free_format_bytes, int *ptr_frame_bytes) +{ + int i, k; + for (i = 0; i < mp3_bytes - DRMP3_HDR_SIZE; i++, mp3++) + { + if (drmp3_hdr_valid(mp3)) + { + int frame_bytes = drmp3_hdr_frame_bytes(mp3, *free_format_bytes); + int frame_and_padding = frame_bytes + drmp3_hdr_padding(mp3); + for (k = DRMP3_HDR_SIZE; !frame_bytes && k < DRMP3_MAX_FREE_FORMAT_FRAME_SIZE && i + 2*k < mp3_bytes - DRMP3_HDR_SIZE; k++) + { + if (drmp3_hdr_compare(mp3, mp3 + k)) + { + int fb = k - drmp3_hdr_padding(mp3); + int nextfb = fb + drmp3_hdr_padding(mp3 + k); + if (i + k + nextfb + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + k + nextfb)) + continue; + frame_and_padding = k; + frame_bytes = fb; + *free_format_bytes = fb; + } + } + if ((frame_bytes && i + frame_and_padding <= mp3_bytes && + drmp3d_match_frame(mp3, mp3_bytes - i, frame_bytes)) || + (!i && frame_and_padding == mp3_bytes)) + { + *ptr_frame_bytes = frame_and_padding; + return i; + } + *free_format_bytes = 0; + } + } + *ptr_frame_bytes = 0; + return mp3_bytes; +} +DRMP3_API void drmp3dec_init(drmp3dec *dec) +{ + dec->header[0] = 0; +} +DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info) +{ + int i = 0, igr, frame_size = 0, success = 1; + const drmp3_uint8 *hdr; + drmp3_bs bs_frame[1]; + drmp3dec_scratch scratch; + if (mp3_bytes > 4 && dec->header[0] == 0xff && drmp3_hdr_compare(dec->header, mp3)) + { + frame_size = drmp3_hdr_frame_bytes(mp3, dec->free_format_bytes) + drmp3_hdr_padding(mp3); + if (frame_size != mp3_bytes && (frame_size + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + frame_size))) + { + frame_size = 0; + } + } + if (!frame_size) + { + memset(dec, 0, sizeof(drmp3dec)); + i = drmp3d_find_frame(mp3, mp3_bytes, &dec->free_format_bytes, &frame_size); + if (!frame_size || i + frame_size > mp3_bytes) + { + info->frame_bytes = i; + return 0; + } + } + hdr = mp3 + i; + memcpy(dec->header, hdr, DRMP3_HDR_SIZE); + info->frame_bytes = i + frame_size; + info->channels = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2; + info->hz = drmp3_hdr_sample_rate_hz(hdr); + info->layer = 4 - DRMP3_HDR_GET_LAYER(hdr); + info->bitrate_kbps = drmp3_hdr_bitrate_kbps(hdr); + drmp3_bs_init(bs_frame, hdr + DRMP3_HDR_SIZE, frame_size - DRMP3_HDR_SIZE); + if (DRMP3_HDR_IS_CRC(hdr)) + { + drmp3_bs_get_bits(bs_frame, 16); + } + if (info->layer == 3) + { + int main_data_begin = drmp3_L3_read_side_info(bs_frame, scratch.gr_info, hdr); + if (main_data_begin < 0 || bs_frame->pos > bs_frame->limit) + { + drmp3dec_init(dec); + return 0; + } + success = drmp3_L3_restore_reservoir(dec, bs_frame, &scratch, main_data_begin); + if (success && pcm != NULL) + { + for (igr = 0; igr < (DRMP3_HDR_TEST_MPEG1(hdr) ? 2 : 1); igr++, pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*576*info->channels)) + { + memset(scratch.grbuf[0], 0, 576*2*sizeof(float)); + drmp3_L3_decode(dec, &scratch, scratch.gr_info + igr*info->channels, info->channels); + drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 18, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]); + } + } + drmp3_L3_save_reservoir(dec, &scratch); + } else + { +#ifdef DR_MP3_ONLY_MP3 + return 0; +#else + drmp3_L12_scale_info sci[1]; + if (pcm == NULL) { + return drmp3_hdr_frame_samples(hdr); + } + drmp3_L12_read_scale_info(hdr, bs_frame, sci); + memset(scratch.grbuf[0], 0, 576*2*sizeof(float)); + for (i = 0, igr = 0; igr < 3; igr++) + { + if (12 == (i += drmp3_L12_dequantize_granule(scratch.grbuf[0] + i, bs_frame, sci, info->layer | 1))) + { + i = 0; + drmp3_L12_apply_scf_384(sci, sci->scf + igr, scratch.grbuf[0]); + drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 12, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]); + memset(scratch.grbuf[0], 0, 576*2*sizeof(float)); + pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*384*info->channels); + } + if (bs_frame->pos > bs_frame->limit) + { + drmp3dec_init(dec); + return 0; + } + } +#endif + } + return success*drmp3_hdr_frame_samples(dec->header); +} +DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples) +{ + size_t i = 0; +#if DRMP3_HAVE_SIMD + size_t aligned_count = num_samples & ~7; + for(; i < aligned_count; i+=8) + { + drmp3_f4 scale = DRMP3_VSET(32768.0f); + drmp3_f4 a = DRMP3_VMUL(DRMP3_VLD(&in[i ]), scale); + drmp3_f4 b = DRMP3_VMUL(DRMP3_VLD(&in[i+4]), scale); +#if DRMP3_HAVE_SSE + drmp3_f4 s16max = DRMP3_VSET( 32767.0f); + drmp3_f4 s16min = DRMP3_VSET(-32768.0f); + __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, s16max), s16min)), + _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, s16max), s16min))); + out[i ] = (drmp3_int16)_mm_extract_epi16(pcm8, 0); + out[i+1] = (drmp3_int16)_mm_extract_epi16(pcm8, 1); + out[i+2] = (drmp3_int16)_mm_extract_epi16(pcm8, 2); + out[i+3] = (drmp3_int16)_mm_extract_epi16(pcm8, 3); + out[i+4] = (drmp3_int16)_mm_extract_epi16(pcm8, 4); + out[i+5] = (drmp3_int16)_mm_extract_epi16(pcm8, 5); + out[i+6] = (drmp3_int16)_mm_extract_epi16(pcm8, 6); + out[i+7] = (drmp3_int16)_mm_extract_epi16(pcm8, 7); +#else + int16x4_t pcma, pcmb; + a = DRMP3_VADD(a, DRMP3_VSET(0.5f)); + b = DRMP3_VADD(b, DRMP3_VSET(0.5f)); + pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0))))); + pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0))))); + vst1_lane_s16(out+i , pcma, 0); + vst1_lane_s16(out+i+1, pcma, 1); + vst1_lane_s16(out+i+2, pcma, 2); + vst1_lane_s16(out+i+3, pcma, 3); + vst1_lane_s16(out+i+4, pcmb, 0); + vst1_lane_s16(out+i+5, pcmb, 1); + vst1_lane_s16(out+i+6, pcmb, 2); + vst1_lane_s16(out+i+7, pcmb, 3); +#endif + } +#endif + for(; i < num_samples; i++) + { + float sample = in[i] * 32768.0f; + if (sample >= 32766.5) + out[i] = (drmp3_int16) 32767; + else if (sample <= -32767.5) + out[i] = (drmp3_int16)-32768; + else + { + short s = (drmp3_int16)(sample + .5f); + s -= (s < 0); + out[i] = s; + } + } +} +#include +#if defined(SIZE_MAX) + #define DRMP3_SIZE_MAX SIZE_MAX +#else + #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) + #define DRMP3_SIZE_MAX ((drmp3_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRMP3_SIZE_MAX 0xFFFFFFFF + #endif +#endif +#ifndef DRMP3_SEEK_LEADING_MP3_FRAMES +#define DRMP3_SEEK_LEADING_MP3_FRAMES 2 +#endif +#define DRMP3_MIN_DATA_CHUNK_SIZE 16384 +#ifndef DRMP3_DATA_CHUNK_SIZE +#define DRMP3_DATA_CHUNK_SIZE DRMP3_MIN_DATA_CHUNK_SIZE*4 +#endif +#ifndef DRMP3_ASSERT +#include +#define DRMP3_ASSERT(expression) assert(expression) +#endif +#ifndef DRMP3_COPY_MEMORY +#define DRMP3_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRMP3_ZERO_MEMORY +#define DRMP3_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif +#define DRMP3_ZERO_OBJECT(p) DRMP3_ZERO_MEMORY((p), sizeof(*(p))) +#ifndef DRMP3_MALLOC +#define DRMP3_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRMP3_REALLOC +#define DRMP3_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRMP3_FREE +#define DRMP3_FREE(p) free((p)) +#endif +#define DRMP3_COUNTOF(x) (sizeof(x) / sizeof(x[0])) +#define DRMP3_CLAMP(x, lo, hi) (DRMP3_MAX(lo, DRMP3_MIN(x, hi))) +#ifndef DRMP3_PI_D +#define DRMP3_PI_D 3.14159265358979323846264 +#endif +#define DRMP3_DEFAULT_RESAMPLER_LPF_ORDER 2 +static DRMP3_INLINE float drmp3_mix_f32(float x, float y, float a) +{ + return x*(1-a) + y*a; +} +static DRMP3_INLINE float drmp3_mix_f32_fast(float x, float y, float a) +{ + float r0 = (y - x); + float r1 = r0*a; + return x + r1; +} +static DRMP3_INLINE drmp3_uint32 drmp3_gcf_u32(drmp3_uint32 a, drmp3_uint32 b) +{ + for (;;) { + if (b == 0) { + break; + } else { + drmp3_uint32 t = a; + a = b; + b = t % a; + } + } + return a; +} +static DRMP3_INLINE double drmp3_sin(double x) +{ + return sin(x); +} +static DRMP3_INLINE double drmp3_exp(double x) +{ + return exp(x); +} +static DRMP3_INLINE double drmp3_cos(double x) +{ + return drmp3_sin((DRMP3_PI_D*0.5) - x); +} +static void* drmp3__malloc_default(size_t sz, void* pUserData) +{ + (void)pUserData; + return DRMP3_MALLOC(sz); +} +static void* drmp3__realloc_default(void* p, size_t sz, void* pUserData) +{ + (void)pUserData; + return DRMP3_REALLOC(p, sz); +} +static void drmp3__free_default(void* p, void* pUserData) +{ + (void)pUserData; + DRMP3_FREE(p); +} +static void* drmp3__malloc_from_callbacks(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onMalloc != NULL) { + return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); + } + return NULL; +} +static void* drmp3__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); + } + if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { + void* p2; + p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); + if (p2 == NULL) { + return NULL; + } + if (p != NULL) { + DRMP3_COPY_MEMORY(p2, p, szOld); + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } + return p2; + } + return NULL; +} +static void drmp3__free_from_callbacks(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (p == NULL || pAllocationCallbacks == NULL) { + return; + } + if (pAllocationCallbacks->onFree != NULL) { + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } +} +static drmp3_allocation_callbacks drmp3_copy_allocation_callbacks_or_defaults(const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + return *pAllocationCallbacks; + } else { + drmp3_allocation_callbacks allocationCallbacks; + allocationCallbacks.pUserData = NULL; + allocationCallbacks.onMalloc = drmp3__malloc_default; + allocationCallbacks.onRealloc = drmp3__realloc_default; + allocationCallbacks.onFree = drmp3__free_default; + return allocationCallbacks; + } +} +static size_t drmp3__on_read(drmp3* pMP3, void* pBufferOut, size_t bytesToRead) +{ + size_t bytesRead = pMP3->onRead(pMP3->pUserData, pBufferOut, bytesToRead); + pMP3->streamCursor += bytesRead; + return bytesRead; +} +static drmp3_bool32 drmp3__on_seek(drmp3* pMP3, int offset, drmp3_seek_origin origin) +{ + DRMP3_ASSERT(offset >= 0); + if (!pMP3->onSeek(pMP3->pUserData, offset, origin)) { + return DRMP3_FALSE; + } + if (origin == drmp3_seek_origin_start) { + pMP3->streamCursor = (drmp3_uint64)offset; + } else { + pMP3->streamCursor += offset; + } + return DRMP3_TRUE; +} +static drmp3_bool32 drmp3__on_seek_64(drmp3* pMP3, drmp3_uint64 offset, drmp3_seek_origin origin) +{ + if (offset <= 0x7FFFFFFF) { + return drmp3__on_seek(pMP3, (int)offset, origin); + } + if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_start)) { + return DRMP3_FALSE; + } + offset -= 0x7FFFFFFF; + while (offset > 0) { + if (offset <= 0x7FFFFFFF) { + if (!drmp3__on_seek(pMP3, (int)offset, drmp3_seek_origin_current)) { + return DRMP3_FALSE; + } + offset = 0; + } else { + if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_current)) { + return DRMP3_FALSE; + } + offset -= 0x7FFFFFFF; + } + } + return DRMP3_TRUE; +} +static drmp3_uint32 drmp3_decode_next_frame_ex__callbacks(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) +{ + drmp3_uint32 pcmFramesRead = 0; + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->onRead != NULL); + if (pMP3->atEnd) { + return 0; + } + for (;;) { + drmp3dec_frame_info info; + if (pMP3->dataSize < DRMP3_MIN_DATA_CHUNK_SIZE) { + size_t bytesRead; + if (pMP3->pData != NULL) { + memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize); + } + pMP3->dataConsumed = 0; + if (pMP3->dataCapacity < DRMP3_DATA_CHUNK_SIZE) { + drmp3_uint8* pNewData; + size_t newDataCap; + newDataCap = DRMP3_DATA_CHUNK_SIZE; + pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks); + if (pNewData == NULL) { + return 0; + } + pMP3->pData = pNewData; + pMP3->dataCapacity = newDataCap; + } + bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize)); + if (bytesRead == 0) { + if (pMP3->dataSize == 0) { + pMP3->atEnd = DRMP3_TRUE; + return 0; + } + } + pMP3->dataSize += bytesRead; + } + if (pMP3->dataSize > INT_MAX) { + pMP3->atEnd = DRMP3_TRUE; + return 0; + } + DRMP3_ASSERT(pMP3->pData != NULL); + DRMP3_ASSERT(pMP3->dataCapacity > 0); + pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->pData + pMP3->dataConsumed, (int)pMP3->dataSize, pPCMFrames, &info); + if (info.frame_bytes > 0) { + pMP3->dataConsumed += (size_t)info.frame_bytes; + pMP3->dataSize -= (size_t)info.frame_bytes; + } + if (pcmFramesRead > 0) { + pcmFramesRead = drmp3_hdr_frame_samples(pMP3->decoder.header); + pMP3->pcmFramesConsumedInMP3Frame = 0; + pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead; + pMP3->mp3FrameChannels = info.channels; + pMP3->mp3FrameSampleRate = info.hz; + break; + } else if (info.frame_bytes == 0) { + size_t bytesRead; + memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize); + pMP3->dataConsumed = 0; + if (pMP3->dataCapacity == pMP3->dataSize) { + drmp3_uint8* pNewData; + size_t newDataCap; + newDataCap = pMP3->dataCapacity + DRMP3_DATA_CHUNK_SIZE; + pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks); + if (pNewData == NULL) { + return 0; + } + pMP3->pData = pNewData; + pMP3->dataCapacity = newDataCap; + } + bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize)); + if (bytesRead == 0) { + pMP3->atEnd = DRMP3_TRUE; + return 0; + } + pMP3->dataSize += bytesRead; + } + }; + return pcmFramesRead; +} +static drmp3_uint32 drmp3_decode_next_frame_ex__memory(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) +{ + drmp3_uint32 pcmFramesRead = 0; + drmp3dec_frame_info info; + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->memory.pData != NULL); + if (pMP3->atEnd) { + return 0; + } + pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->memory.pData + pMP3->memory.currentReadPos, (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos), pPCMFrames, &info); + if (pcmFramesRead > 0) { + pMP3->pcmFramesConsumedInMP3Frame = 0; + pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead; + pMP3->mp3FrameChannels = info.channels; + pMP3->mp3FrameSampleRate = info.hz; + } + pMP3->memory.currentReadPos += (size_t)info.frame_bytes; + return pcmFramesRead; +} +static drmp3_uint32 drmp3_decode_next_frame_ex(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) +{ + if (pMP3->memory.pData != NULL && pMP3->memory.dataSize > 0) { + return drmp3_decode_next_frame_ex__memory(pMP3, pPCMFrames); + } else { + return drmp3_decode_next_frame_ex__callbacks(pMP3, pPCMFrames); + } +} +static drmp3_uint32 drmp3_decode_next_frame(drmp3* pMP3) +{ + DRMP3_ASSERT(pMP3 != NULL); + return drmp3_decode_next_frame_ex(pMP3, (drmp3d_sample_t*)pMP3->pcmFrames); +} +#if 0 +static drmp3_uint32 drmp3_seek_next_frame(drmp3* pMP3) +{ + drmp3_uint32 pcmFrameCount; + DRMP3_ASSERT(pMP3 != NULL); + pcmFrameCount = drmp3_decode_next_frame_ex(pMP3, NULL); + if (pcmFrameCount == 0) { + return 0; + } + pMP3->currentPCMFrame += pcmFrameCount; + pMP3->pcmFramesConsumedInMP3Frame = pcmFrameCount; + pMP3->pcmFramesRemainingInMP3Frame = 0; + return pcmFrameCount; +} +#endif +static drmp3_bool32 drmp3_init_internal(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(onRead != NULL); + drmp3dec_init(&pMP3->decoder); + pMP3->onRead = onRead; + pMP3->onSeek = onSeek; + pMP3->pUserData = pUserData; + pMP3->allocationCallbacks = drmp3_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); + if (pMP3->allocationCallbacks.onFree == NULL || (pMP3->allocationCallbacks.onMalloc == NULL && pMP3->allocationCallbacks.onRealloc == NULL)) { + return DRMP3_FALSE; + } + if (!drmp3_decode_next_frame(pMP3)) { + drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks); + return DRMP3_FALSE; + } + pMP3->channels = pMP3->mp3FrameChannels; + pMP3->sampleRate = pMP3->mp3FrameSampleRate; + return DRMP3_TRUE; +} +DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pMP3 == NULL || onRead == NULL) { + return DRMP3_FALSE; + } + DRMP3_ZERO_OBJECT(pMP3); + return drmp3_init_internal(pMP3, onRead, onSeek, pUserData, pAllocationCallbacks); +} +static size_t drmp3__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + drmp3* pMP3 = (drmp3*)pUserData; + size_t bytesRemaining; + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->memory.dataSize >= pMP3->memory.currentReadPos); + bytesRemaining = pMP3->memory.dataSize - pMP3->memory.currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + if (bytesToRead > 0) { + DRMP3_COPY_MEMORY(pBufferOut, pMP3->memory.pData + pMP3->memory.currentReadPos, bytesToRead); + pMP3->memory.currentReadPos += bytesToRead; + } + return bytesToRead; +} +static drmp3_bool32 drmp3__on_seek_memory(void* pUserData, int byteOffset, drmp3_seek_origin origin) +{ + drmp3* pMP3 = (drmp3*)pUserData; + DRMP3_ASSERT(pMP3 != NULL); + if (origin == drmp3_seek_origin_current) { + if (byteOffset > 0) { + if (pMP3->memory.currentReadPos + byteOffset > pMP3->memory.dataSize) { + byteOffset = (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos); + } + } else { + if (pMP3->memory.currentReadPos < (size_t)-byteOffset) { + byteOffset = -(int)pMP3->memory.currentReadPos; + } + } + pMP3->memory.currentReadPos += byteOffset; + } else { + if ((drmp3_uint32)byteOffset <= pMP3->memory.dataSize) { + pMP3->memory.currentReadPos = byteOffset; + } else { + pMP3->memory.currentReadPos = pMP3->memory.dataSize; + } + } + return DRMP3_TRUE; +} +DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pMP3 == NULL) { + return DRMP3_FALSE; + } + DRMP3_ZERO_OBJECT(pMP3); + if (pData == NULL || dataSize == 0) { + return DRMP3_FALSE; + } + pMP3->memory.pData = (const drmp3_uint8*)pData; + pMP3->memory.dataSize = dataSize; + pMP3->memory.currentReadPos = 0; + return drmp3_init_internal(pMP3, drmp3__on_read_memory, drmp3__on_seek_memory, pMP3, pAllocationCallbacks); +} +#ifndef DR_MP3_NO_STDIO +#include +#include +#include +static drmp3_result drmp3_result_from_errno(int e) +{ + switch (e) + { + case 0: return DRMP3_SUCCESS; + #ifdef EPERM + case EPERM: return DRMP3_INVALID_OPERATION; + #endif + #ifdef ENOENT + case ENOENT: return DRMP3_DOES_NOT_EXIST; + #endif + #ifdef ESRCH + case ESRCH: return DRMP3_DOES_NOT_EXIST; + #endif + #ifdef EINTR + case EINTR: return DRMP3_INTERRUPT; + #endif + #ifdef EIO + case EIO: return DRMP3_IO_ERROR; + #endif + #ifdef ENXIO + case ENXIO: return DRMP3_DOES_NOT_EXIST; + #endif + #ifdef E2BIG + case E2BIG: return DRMP3_INVALID_ARGS; + #endif + #ifdef ENOEXEC + case ENOEXEC: return DRMP3_INVALID_FILE; + #endif + #ifdef EBADF + case EBADF: return DRMP3_INVALID_FILE; + #endif + #ifdef ECHILD + case ECHILD: return DRMP3_ERROR; + #endif + #ifdef EAGAIN + case EAGAIN: return DRMP3_UNAVAILABLE; + #endif + #ifdef ENOMEM + case ENOMEM: return DRMP3_OUT_OF_MEMORY; + #endif + #ifdef EACCES + case EACCES: return DRMP3_ACCESS_DENIED; + #endif + #ifdef EFAULT + case EFAULT: return DRMP3_BAD_ADDRESS; + #endif + #ifdef ENOTBLK + case ENOTBLK: return DRMP3_ERROR; + #endif + #ifdef EBUSY + case EBUSY: return DRMP3_BUSY; + #endif + #ifdef EEXIST + case EEXIST: return DRMP3_ALREADY_EXISTS; + #endif + #ifdef EXDEV + case EXDEV: return DRMP3_ERROR; + #endif + #ifdef ENODEV + case ENODEV: return DRMP3_DOES_NOT_EXIST; + #endif + #ifdef ENOTDIR + case ENOTDIR: return DRMP3_NOT_DIRECTORY; + #endif + #ifdef EISDIR + case EISDIR: return DRMP3_IS_DIRECTORY; + #endif + #ifdef EINVAL + case EINVAL: return DRMP3_INVALID_ARGS; + #endif + #ifdef ENFILE + case ENFILE: return DRMP3_TOO_MANY_OPEN_FILES; + #endif + #ifdef EMFILE + case EMFILE: return DRMP3_TOO_MANY_OPEN_FILES; + #endif + #ifdef ENOTTY + case ENOTTY: return DRMP3_INVALID_OPERATION; + #endif + #ifdef ETXTBSY + case ETXTBSY: return DRMP3_BUSY; + #endif + #ifdef EFBIG + case EFBIG: return DRMP3_TOO_BIG; + #endif + #ifdef ENOSPC + case ENOSPC: return DRMP3_NO_SPACE; + #endif + #ifdef ESPIPE + case ESPIPE: return DRMP3_BAD_SEEK; + #endif + #ifdef EROFS + case EROFS: return DRMP3_ACCESS_DENIED; + #endif + #ifdef EMLINK + case EMLINK: return DRMP3_TOO_MANY_LINKS; + #endif + #ifdef EPIPE + case EPIPE: return DRMP3_BAD_PIPE; + #endif + #ifdef EDOM + case EDOM: return DRMP3_OUT_OF_RANGE; + #endif + #ifdef ERANGE + case ERANGE: return DRMP3_OUT_OF_RANGE; + #endif + #ifdef EDEADLK + case EDEADLK: return DRMP3_DEADLOCK; + #endif + #ifdef ENAMETOOLONG + case ENAMETOOLONG: return DRMP3_PATH_TOO_LONG; + #endif + #ifdef ENOLCK + case ENOLCK: return DRMP3_ERROR; + #endif + #ifdef ENOSYS + case ENOSYS: return DRMP3_NOT_IMPLEMENTED; + #endif + #ifdef ENOTEMPTY + case ENOTEMPTY: return DRMP3_DIRECTORY_NOT_EMPTY; + #endif + #ifdef ELOOP + case ELOOP: return DRMP3_TOO_MANY_LINKS; + #endif + #ifdef ENOMSG + case ENOMSG: return DRMP3_NO_MESSAGE; + #endif + #ifdef EIDRM + case EIDRM: return DRMP3_ERROR; + #endif + #ifdef ECHRNG + case ECHRNG: return DRMP3_ERROR; + #endif + #ifdef EL2NSYNC + case EL2NSYNC: return DRMP3_ERROR; + #endif + #ifdef EL3HLT + case EL3HLT: return DRMP3_ERROR; + #endif + #ifdef EL3RST + case EL3RST: return DRMP3_ERROR; + #endif + #ifdef ELNRNG + case ELNRNG: return DRMP3_OUT_OF_RANGE; + #endif + #ifdef EUNATCH + case EUNATCH: return DRMP3_ERROR; + #endif + #ifdef ENOCSI + case ENOCSI: return DRMP3_ERROR; + #endif + #ifdef EL2HLT + case EL2HLT: return DRMP3_ERROR; + #endif + #ifdef EBADE + case EBADE: return DRMP3_ERROR; + #endif + #ifdef EBADR + case EBADR: return DRMP3_ERROR; + #endif + #ifdef EXFULL + case EXFULL: return DRMP3_ERROR; + #endif + #ifdef ENOANO + case ENOANO: return DRMP3_ERROR; + #endif + #ifdef EBADRQC + case EBADRQC: return DRMP3_ERROR; + #endif + #ifdef EBADSLT + case EBADSLT: return DRMP3_ERROR; + #endif + #ifdef EBFONT + case EBFONT: return DRMP3_INVALID_FILE; + #endif + #ifdef ENOSTR + case ENOSTR: return DRMP3_ERROR; + #endif + #ifdef ENODATA + case ENODATA: return DRMP3_NO_DATA_AVAILABLE; + #endif + #ifdef ETIME + case ETIME: return DRMP3_TIMEOUT; + #endif + #ifdef ENOSR + case ENOSR: return DRMP3_NO_DATA_AVAILABLE; + #endif + #ifdef ENONET + case ENONET: return DRMP3_NO_NETWORK; + #endif + #ifdef ENOPKG + case ENOPKG: return DRMP3_ERROR; + #endif + #ifdef EREMOTE + case EREMOTE: return DRMP3_ERROR; + #endif + #ifdef ENOLINK + case ENOLINK: return DRMP3_ERROR; + #endif + #ifdef EADV + case EADV: return DRMP3_ERROR; + #endif + #ifdef ESRMNT + case ESRMNT: return DRMP3_ERROR; + #endif + #ifdef ECOMM + case ECOMM: return DRMP3_ERROR; + #endif + #ifdef EPROTO + case EPROTO: return DRMP3_ERROR; + #endif + #ifdef EMULTIHOP + case EMULTIHOP: return DRMP3_ERROR; + #endif + #ifdef EDOTDOT + case EDOTDOT: return DRMP3_ERROR; + #endif + #ifdef EBADMSG + case EBADMSG: return DRMP3_BAD_MESSAGE; + #endif + #ifdef EOVERFLOW + case EOVERFLOW: return DRMP3_TOO_BIG; + #endif + #ifdef ENOTUNIQ + case ENOTUNIQ: return DRMP3_NOT_UNIQUE; + #endif + #ifdef EBADFD + case EBADFD: return DRMP3_ERROR; + #endif + #ifdef EREMCHG + case EREMCHG: return DRMP3_ERROR; + #endif + #ifdef ELIBACC + case ELIBACC: return DRMP3_ACCESS_DENIED; + #endif + #ifdef ELIBBAD + case ELIBBAD: return DRMP3_INVALID_FILE; + #endif + #ifdef ELIBSCN + case ELIBSCN: return DRMP3_INVALID_FILE; + #endif + #ifdef ELIBMAX + case ELIBMAX: return DRMP3_ERROR; + #endif + #ifdef ELIBEXEC + case ELIBEXEC: return DRMP3_ERROR; + #endif + #ifdef EILSEQ + case EILSEQ: return DRMP3_INVALID_DATA; + #endif + #ifdef ERESTART + case ERESTART: return DRMP3_ERROR; + #endif + #ifdef ESTRPIPE + case ESTRPIPE: return DRMP3_ERROR; + #endif + #ifdef EUSERS + case EUSERS: return DRMP3_ERROR; + #endif + #ifdef ENOTSOCK + case ENOTSOCK: return DRMP3_NOT_SOCKET; + #endif + #ifdef EDESTADDRREQ + case EDESTADDRREQ: return DRMP3_NO_ADDRESS; + #endif + #ifdef EMSGSIZE + case EMSGSIZE: return DRMP3_TOO_BIG; + #endif + #ifdef EPROTOTYPE + case EPROTOTYPE: return DRMP3_BAD_PROTOCOL; + #endif + #ifdef ENOPROTOOPT + case ENOPROTOOPT: return DRMP3_PROTOCOL_UNAVAILABLE; + #endif + #ifdef EPROTONOSUPPORT + case EPROTONOSUPPORT: return DRMP3_PROTOCOL_NOT_SUPPORTED; + #endif + #ifdef ESOCKTNOSUPPORT + case ESOCKTNOSUPPORT: return DRMP3_SOCKET_NOT_SUPPORTED; + #endif + #ifdef EOPNOTSUPP + case EOPNOTSUPP: return DRMP3_INVALID_OPERATION; + #endif + #ifdef EPFNOSUPPORT + case EPFNOSUPPORT: return DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EAFNOSUPPORT + case EAFNOSUPPORT: return DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EADDRINUSE + case EADDRINUSE: return DRMP3_ALREADY_IN_USE; + #endif + #ifdef EADDRNOTAVAIL + case EADDRNOTAVAIL: return DRMP3_ERROR; + #endif + #ifdef ENETDOWN + case ENETDOWN: return DRMP3_NO_NETWORK; + #endif + #ifdef ENETUNREACH + case ENETUNREACH: return DRMP3_NO_NETWORK; + #endif + #ifdef ENETRESET + case ENETRESET: return DRMP3_NO_NETWORK; + #endif + #ifdef ECONNABORTED + case ECONNABORTED: return DRMP3_NO_NETWORK; + #endif + #ifdef ECONNRESET + case ECONNRESET: return DRMP3_CONNECTION_RESET; + #endif + #ifdef ENOBUFS + case ENOBUFS: return DRMP3_NO_SPACE; + #endif + #ifdef EISCONN + case EISCONN: return DRMP3_ALREADY_CONNECTED; + #endif + #ifdef ENOTCONN + case ENOTCONN: return DRMP3_NOT_CONNECTED; + #endif + #ifdef ESHUTDOWN + case ESHUTDOWN: return DRMP3_ERROR; + #endif + #ifdef ETOOMANYREFS + case ETOOMANYREFS: return DRMP3_ERROR; + #endif + #ifdef ETIMEDOUT + case ETIMEDOUT: return DRMP3_TIMEOUT; + #endif + #ifdef ECONNREFUSED + case ECONNREFUSED: return DRMP3_CONNECTION_REFUSED; + #endif + #ifdef EHOSTDOWN + case EHOSTDOWN: return DRMP3_NO_HOST; + #endif + #ifdef EHOSTUNREACH + case EHOSTUNREACH: return DRMP3_NO_HOST; + #endif + #ifdef EALREADY + case EALREADY: return DRMP3_IN_PROGRESS; + #endif + #ifdef EINPROGRESS + case EINPROGRESS: return DRMP3_IN_PROGRESS; + #endif + #ifdef ESTALE + case ESTALE: return DRMP3_INVALID_FILE; + #endif + #ifdef EUCLEAN + case EUCLEAN: return DRMP3_ERROR; + #endif + #ifdef ENOTNAM + case ENOTNAM: return DRMP3_ERROR; + #endif + #ifdef ENAVAIL + case ENAVAIL: return DRMP3_ERROR; + #endif + #ifdef EISNAM + case EISNAM: return DRMP3_ERROR; + #endif + #ifdef EREMOTEIO + case EREMOTEIO: return DRMP3_IO_ERROR; + #endif + #ifdef EDQUOT + case EDQUOT: return DRMP3_NO_SPACE; + #endif + #ifdef ENOMEDIUM + case ENOMEDIUM: return DRMP3_DOES_NOT_EXIST; + #endif + #ifdef EMEDIUMTYPE + case EMEDIUMTYPE: return DRMP3_ERROR; + #endif + #ifdef ECANCELED + case ECANCELED: return DRMP3_CANCELLED; + #endif + #ifdef ENOKEY + case ENOKEY: return DRMP3_ERROR; + #endif + #ifdef EKEYEXPIRED + case EKEYEXPIRED: return DRMP3_ERROR; + #endif + #ifdef EKEYREVOKED + case EKEYREVOKED: return DRMP3_ERROR; + #endif + #ifdef EKEYREJECTED + case EKEYREJECTED: return DRMP3_ERROR; + #endif + #ifdef EOWNERDEAD + case EOWNERDEAD: return DRMP3_ERROR; + #endif + #ifdef ENOTRECOVERABLE + case ENOTRECOVERABLE: return DRMP3_ERROR; + #endif + #ifdef ERFKILL + case ERFKILL: return DRMP3_ERROR; + #endif + #ifdef EHWPOISON + case EHWPOISON: return DRMP3_ERROR; + #endif + default: return DRMP3_ERROR; + } +} +static drmp3_result drmp3_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) +{ +#if _MSC_VER && _MSC_VER >= 1400 + errno_t err; +#endif + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRMP3_INVALID_ARGS; + } +#if _MSC_VER && _MSC_VER >= 1400 + err = fopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drmp3_result_from_errno(err); + } +#else +#if defined(_WIN32) || defined(__APPLE__) + *ppFile = fopen(pFilePath, pOpenMode); +#else + #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) + *ppFile = fopen64(pFilePath, pOpenMode); + #else + *ppFile = fopen(pFilePath, pOpenMode); + #endif +#endif + if (*ppFile == NULL) { + drmp3_result result = drmp3_result_from_errno(errno); + if (result == DRMP3_SUCCESS) { + result = DRMP3_ERROR; + } + return result; + } +#endif + return DRMP3_SUCCESS; +} +#if defined(_WIN32) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) + #define DRMP3_HAS_WFOPEN + #endif +#endif +static drmp3_result drmp3_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (ppFile != NULL) { + *ppFile = NULL; + } + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRMP3_INVALID_ARGS; + } +#if defined(DRMP3_HAS_WFOPEN) + { + #if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drmp3_result_from_errno(err); + } + #else + *ppFile = _wfopen(pFilePath, pOpenMode); + if (*ppFile == NULL) { + return drmp3_result_from_errno(errno); + } + #endif + (void)pAllocationCallbacks; + } +#else + { + mbstate_t mbs; + size_t lenMB; + const wchar_t* pFilePathTemp = pFilePath; + char* pFilePathMB = NULL; + char pOpenModeMB[32] = {0}; + DRMP3_ZERO_OBJECT(&mbs); + lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); + if (lenMB == (size_t)-1) { + return drmp3_result_from_errno(errno); + } + pFilePathMB = (char*)drmp3__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); + if (pFilePathMB == NULL) { + return DRMP3_OUT_OF_MEMORY; + } + pFilePathTemp = pFilePath; + DRMP3_ZERO_OBJECT(&mbs); + wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); + { + size_t i = 0; + for (;;) { + if (pOpenMode[i] == 0) { + pOpenModeMB[i] = '\0'; + break; + } + pOpenModeMB[i] = (char)pOpenMode[i]; + i += 1; + } + } + *ppFile = fopen(pFilePathMB, pOpenModeMB); + drmp3__free_from_callbacks(pFilePathMB, pAllocationCallbacks); + } + if (*ppFile == NULL) { + return DRMP3_ERROR; + } +#endif + return DRMP3_SUCCESS; +} +static size_t drmp3__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); +} +static drmp3_bool32 drmp3__on_seek_stdio(void* pUserData, int offset, drmp3_seek_origin origin) +{ + return fseek((FILE*)pUserData, offset, (origin == drmp3_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} +DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3_bool32 result; + FILE* pFile; + if (drmp3_fopen(&pFile, pFilePath, "rb") != DRMP3_SUCCESS) { + return DRMP3_FALSE; + } + result = drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRMP3_TRUE) { + fclose(pFile); + return result; + } + return DRMP3_TRUE; +} +DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3_bool32 result; + FILE* pFile; + if (drmp3_wfopen(&pFile, pFilePath, L"rb", pAllocationCallbacks) != DRMP3_SUCCESS) { + return DRMP3_FALSE; + } + result = drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRMP3_TRUE) { + fclose(pFile); + return result; + } + return DRMP3_TRUE; +} +#endif +DRMP3_API void drmp3_uninit(drmp3* pMP3) +{ + if (pMP3 == NULL) { + return; + } +#ifndef DR_MP3_NO_STDIO + if (pMP3->onRead == drmp3__on_read_stdio) { + FILE* pFile = (FILE*)pMP3->pUserData; + if (pFile != NULL) { + fclose(pFile); + pMP3->pUserData = NULL; + } + } +#endif + drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks); +} +#if defined(DR_MP3_FLOAT_OUTPUT) +static void drmp3_f32_to_s16(drmp3_int16* dst, const float* src, drmp3_uint64 sampleCount) +{ + drmp3_uint64 i; + drmp3_uint64 i4; + drmp3_uint64 sampleCount4; + i = 0; + sampleCount4 = sampleCount >> 2; + for (i4 = 0; i4 < sampleCount4; i4 += 1) { + float x0 = src[i+0]; + float x1 = src[i+1]; + float x2 = src[i+2]; + float x3 = src[i+3]; + x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0)); + x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1)); + x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2)); + x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3)); + x0 = x0 * 32767.0f; + x1 = x1 * 32767.0f; + x2 = x2 * 32767.0f; + x3 = x3 * 32767.0f; + dst[i+0] = (drmp3_int16)x0; + dst[i+1] = (drmp3_int16)x1; + dst[i+2] = (drmp3_int16)x2; + dst[i+3] = (drmp3_int16)x3; + i += 4; + } + for (; i < sampleCount; i += 1) { + float x = src[i]; + x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + x = x * 32767.0f; + dst[i] = (drmp3_int16)x; + } +} +#endif +#if !defined(DR_MP3_FLOAT_OUTPUT) +static void drmp3_s16_to_f32(float* dst, const drmp3_int16* src, drmp3_uint64 sampleCount) +{ + drmp3_uint64 i; + for (i = 0; i < sampleCount; i += 1) { + float x = (float)src[i]; + x = x * 0.000030517578125f; + dst[i] = x; + } +} +#endif +static drmp3_uint64 drmp3_read_pcm_frames_raw(drmp3* pMP3, drmp3_uint64 framesToRead, void* pBufferOut) +{ + drmp3_uint64 totalFramesRead = 0; + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->onRead != NULL); + while (framesToRead > 0) { + drmp3_uint32 framesToConsume = (drmp3_uint32)DRMP3_MIN(pMP3->pcmFramesRemainingInMP3Frame, framesToRead); + if (pBufferOut != NULL) { + #if defined(DR_MP3_FLOAT_OUTPUT) + float* pFramesOutF32 = (float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalFramesRead * pMP3->channels); + float* pFramesInF32 = (float*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(float) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels); + DRMP3_COPY_MEMORY(pFramesOutF32, pFramesInF32, sizeof(float) * framesToConsume * pMP3->channels); + #else + drmp3_int16* pFramesOutS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalFramesRead * pMP3->channels); + drmp3_int16* pFramesInS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(drmp3_int16) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels); + DRMP3_COPY_MEMORY(pFramesOutS16, pFramesInS16, sizeof(drmp3_int16) * framesToConsume * pMP3->channels); + #endif + } + pMP3->currentPCMFrame += framesToConsume; + pMP3->pcmFramesConsumedInMP3Frame += framesToConsume; + pMP3->pcmFramesRemainingInMP3Frame -= framesToConsume; + totalFramesRead += framesToConsume; + framesToRead -= framesToConsume; + if (framesToRead == 0) { + break; + } + DRMP3_ASSERT(pMP3->pcmFramesRemainingInMP3Frame == 0); + if (drmp3_decode_next_frame(pMP3) == 0) { + break; + } + } + return totalFramesRead; +} +DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut) +{ + if (pMP3 == NULL || pMP3->onRead == NULL) { + return 0; + } +#if defined(DR_MP3_FLOAT_OUTPUT) + return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut); +#else + { + drmp3_int16 pTempS16[8192]; + drmp3_uint64 totalPCMFramesRead = 0; + while (totalPCMFramesRead < framesToRead) { + drmp3_uint64 framesJustRead; + drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead; + drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempS16) / pMP3->channels; + if (framesToReadNow > framesRemaining) { + framesToReadNow = framesRemaining; + } + framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempS16); + if (framesJustRead == 0) { + break; + } + drmp3_s16_to_f32((float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalPCMFramesRead * pMP3->channels), pTempS16, framesJustRead * pMP3->channels); + totalPCMFramesRead += framesJustRead; + } + return totalPCMFramesRead; + } +#endif +} +DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut) +{ + if (pMP3 == NULL || pMP3->onRead == NULL) { + return 0; + } +#if !defined(DR_MP3_FLOAT_OUTPUT) + return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut); +#else + { + float pTempF32[4096]; + drmp3_uint64 totalPCMFramesRead = 0; + while (totalPCMFramesRead < framesToRead) { + drmp3_uint64 framesJustRead; + drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead; + drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempF32) / pMP3->channels; + if (framesToReadNow > framesRemaining) { + framesToReadNow = framesRemaining; + } + framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempF32); + if (framesJustRead == 0) { + break; + } + drmp3_f32_to_s16((drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempF32, framesJustRead * pMP3->channels); + totalPCMFramesRead += framesJustRead; + } + return totalPCMFramesRead; + } +#endif +} +static void drmp3_reset(drmp3* pMP3) +{ + DRMP3_ASSERT(pMP3 != NULL); + pMP3->pcmFramesConsumedInMP3Frame = 0; + pMP3->pcmFramesRemainingInMP3Frame = 0; + pMP3->currentPCMFrame = 0; + pMP3->dataSize = 0; + pMP3->atEnd = DRMP3_FALSE; + drmp3dec_init(&pMP3->decoder); +} +static drmp3_bool32 drmp3_seek_to_start_of_stream(drmp3* pMP3) +{ + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->onSeek != NULL); + if (!drmp3__on_seek(pMP3, 0, drmp3_seek_origin_start)) { + return DRMP3_FALSE; + } + drmp3_reset(pMP3); + return DRMP3_TRUE; +} +static drmp3_bool32 drmp3_seek_forward_by_pcm_frames__brute_force(drmp3* pMP3, drmp3_uint64 frameOffset) +{ + drmp3_uint64 framesRead; +#if defined(DR_MP3_FLOAT_OUTPUT) + framesRead = drmp3_read_pcm_frames_f32(pMP3, frameOffset, NULL); +#else + framesRead = drmp3_read_pcm_frames_s16(pMP3, frameOffset, NULL); +#endif + if (framesRead != frameOffset) { + return DRMP3_FALSE; + } + return DRMP3_TRUE; +} +static drmp3_bool32 drmp3_seek_to_pcm_frame__brute_force(drmp3* pMP3, drmp3_uint64 frameIndex) +{ + DRMP3_ASSERT(pMP3 != NULL); + if (frameIndex == pMP3->currentPCMFrame) { + return DRMP3_TRUE; + } + if (frameIndex < pMP3->currentPCMFrame) { + if (!drmp3_seek_to_start_of_stream(pMP3)) { + return DRMP3_FALSE; + } + } + DRMP3_ASSERT(frameIndex >= pMP3->currentPCMFrame); + return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, (frameIndex - pMP3->currentPCMFrame)); +} +static drmp3_bool32 drmp3_find_closest_seek_point(drmp3* pMP3, drmp3_uint64 frameIndex, drmp3_uint32* pSeekPointIndex) +{ + drmp3_uint32 iSeekPoint; + DRMP3_ASSERT(pSeekPointIndex != NULL); + *pSeekPointIndex = 0; + if (frameIndex < pMP3->pSeekPoints[0].pcmFrameIndex) { + return DRMP3_FALSE; + } + for (iSeekPoint = 0; iSeekPoint < pMP3->seekPointCount; ++iSeekPoint) { + if (pMP3->pSeekPoints[iSeekPoint].pcmFrameIndex > frameIndex) { + break; + } + *pSeekPointIndex = iSeekPoint; + } + return DRMP3_TRUE; +} +static drmp3_bool32 drmp3_seek_to_pcm_frame__seek_table(drmp3* pMP3, drmp3_uint64 frameIndex) +{ + drmp3_seek_point seekPoint; + drmp3_uint32 priorSeekPointIndex; + drmp3_uint16 iMP3Frame; + drmp3_uint64 leftoverFrames; + DRMP3_ASSERT(pMP3 != NULL); + DRMP3_ASSERT(pMP3->pSeekPoints != NULL); + DRMP3_ASSERT(pMP3->seekPointCount > 0); + if (drmp3_find_closest_seek_point(pMP3, frameIndex, &priorSeekPointIndex)) { + seekPoint = pMP3->pSeekPoints[priorSeekPointIndex]; + } else { + seekPoint.seekPosInBytes = 0; + seekPoint.pcmFrameIndex = 0; + seekPoint.mp3FramesToDiscard = 0; + seekPoint.pcmFramesToDiscard = 0; + } + if (!drmp3__on_seek_64(pMP3, seekPoint.seekPosInBytes, drmp3_seek_origin_start)) { + return DRMP3_FALSE; + } + drmp3_reset(pMP3); + for (iMP3Frame = 0; iMP3Frame < seekPoint.mp3FramesToDiscard; ++iMP3Frame) { + drmp3_uint32 pcmFramesRead; + drmp3d_sample_t* pPCMFrames; + pPCMFrames = NULL; + if (iMP3Frame == seekPoint.mp3FramesToDiscard-1) { + pPCMFrames = (drmp3d_sample_t*)pMP3->pcmFrames; + } + pcmFramesRead = drmp3_decode_next_frame_ex(pMP3, pPCMFrames); + if (pcmFramesRead == 0) { + return DRMP3_FALSE; + } + } + pMP3->currentPCMFrame = seekPoint.pcmFrameIndex - seekPoint.pcmFramesToDiscard; + leftoverFrames = frameIndex - pMP3->currentPCMFrame; + return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, leftoverFrames); +} +DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex) +{ + if (pMP3 == NULL || pMP3->onSeek == NULL) { + return DRMP3_FALSE; + } + if (frameIndex == 0) { + return drmp3_seek_to_start_of_stream(pMP3); + } + if (pMP3->pSeekPoints != NULL && pMP3->seekPointCount > 0) { + return drmp3_seek_to_pcm_frame__seek_table(pMP3, frameIndex); + } else { + return drmp3_seek_to_pcm_frame__brute_force(pMP3, frameIndex); + } +} +DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount) +{ + drmp3_uint64 currentPCMFrame; + drmp3_uint64 totalPCMFrameCount; + drmp3_uint64 totalMP3FrameCount; + if (pMP3 == NULL) { + return DRMP3_FALSE; + } + if (pMP3->onSeek == NULL) { + return DRMP3_FALSE; + } + currentPCMFrame = pMP3->currentPCMFrame; + if (!drmp3_seek_to_start_of_stream(pMP3)) { + return DRMP3_FALSE; + } + totalPCMFrameCount = 0; + totalMP3FrameCount = 0; + for (;;) { + drmp3_uint32 pcmFramesInCurrentMP3Frame; + pcmFramesInCurrentMP3Frame = drmp3_decode_next_frame_ex(pMP3, NULL); + if (pcmFramesInCurrentMP3Frame == 0) { + break; + } + totalPCMFrameCount += pcmFramesInCurrentMP3Frame; + totalMP3FrameCount += 1; + } + if (!drmp3_seek_to_start_of_stream(pMP3)) { + return DRMP3_FALSE; + } + if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) { + return DRMP3_FALSE; + } + if (pMP3FrameCount != NULL) { + *pMP3FrameCount = totalMP3FrameCount; + } + if (pPCMFrameCount != NULL) { + *pPCMFrameCount = totalPCMFrameCount; + } + return DRMP3_TRUE; +} +DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3) +{ + drmp3_uint64 totalPCMFrameCount; + if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, NULL, &totalPCMFrameCount)) { + return 0; + } + return totalPCMFrameCount; +} +DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3) +{ + drmp3_uint64 totalMP3FrameCount; + if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, NULL)) { + return 0; + } + return totalMP3FrameCount; +} +static void drmp3__accumulate_running_pcm_frame_count(drmp3* pMP3, drmp3_uint32 pcmFrameCountIn, drmp3_uint64* pRunningPCMFrameCount, float* pRunningPCMFrameCountFractionalPart) +{ + float srcRatio; + float pcmFrameCountOutF; + drmp3_uint32 pcmFrameCountOut; + srcRatio = (float)pMP3->mp3FrameSampleRate / (float)pMP3->sampleRate; + DRMP3_ASSERT(srcRatio > 0); + pcmFrameCountOutF = *pRunningPCMFrameCountFractionalPart + (pcmFrameCountIn / srcRatio); + pcmFrameCountOut = (drmp3_uint32)pcmFrameCountOutF; + *pRunningPCMFrameCountFractionalPart = pcmFrameCountOutF - pcmFrameCountOut; + *pRunningPCMFrameCount += pcmFrameCountOut; +} +typedef struct +{ + drmp3_uint64 bytePos; + drmp3_uint64 pcmFrameIndex; +} drmp3__seeking_mp3_frame_info; +DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints) +{ + drmp3_uint32 seekPointCount; + drmp3_uint64 currentPCMFrame; + drmp3_uint64 totalMP3FrameCount; + drmp3_uint64 totalPCMFrameCount; + if (pMP3 == NULL || pSeekPointCount == NULL || pSeekPoints == NULL) { + return DRMP3_FALSE; + } + seekPointCount = *pSeekPointCount; + if (seekPointCount == 0) { + return DRMP3_FALSE; + } + currentPCMFrame = pMP3->currentPCMFrame; + if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, &totalPCMFrameCount)) { + return DRMP3_FALSE; + } + if (totalMP3FrameCount < DRMP3_SEEK_LEADING_MP3_FRAMES+1) { + seekPointCount = 1; + pSeekPoints[0].seekPosInBytes = 0; + pSeekPoints[0].pcmFrameIndex = 0; + pSeekPoints[0].mp3FramesToDiscard = 0; + pSeekPoints[0].pcmFramesToDiscard = 0; + } else { + drmp3_uint64 pcmFramesBetweenSeekPoints; + drmp3__seeking_mp3_frame_info mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES+1]; + drmp3_uint64 runningPCMFrameCount = 0; + float runningPCMFrameCountFractionalPart = 0; + drmp3_uint64 nextTargetPCMFrame; + drmp3_uint32 iMP3Frame; + drmp3_uint32 iSeekPoint; + if (seekPointCount > totalMP3FrameCount-1) { + seekPointCount = (drmp3_uint32)totalMP3FrameCount-1; + } + pcmFramesBetweenSeekPoints = totalPCMFrameCount / (seekPointCount+1); + if (!drmp3_seek_to_start_of_stream(pMP3)) { + return DRMP3_FALSE; + } + for (iMP3Frame = 0; iMP3Frame < DRMP3_SEEK_LEADING_MP3_FRAMES+1; ++iMP3Frame) { + drmp3_uint32 pcmFramesInCurrentMP3FrameIn; + DRMP3_ASSERT(pMP3->streamCursor >= pMP3->dataSize); + mp3FrameInfo[iMP3Frame].bytePos = pMP3->streamCursor - pMP3->dataSize; + mp3FrameInfo[iMP3Frame].pcmFrameIndex = runningPCMFrameCount; + pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL); + if (pcmFramesInCurrentMP3FrameIn == 0) { + return DRMP3_FALSE; + } + drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart); + } + nextTargetPCMFrame = 0; + for (iSeekPoint = 0; iSeekPoint < seekPointCount; ++iSeekPoint) { + nextTargetPCMFrame += pcmFramesBetweenSeekPoints; + for (;;) { + if (nextTargetPCMFrame < runningPCMFrameCount) { + pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos; + pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame; + pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES; + pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex); + break; + } else { + size_t i; + drmp3_uint32 pcmFramesInCurrentMP3FrameIn; + for (i = 0; i < DRMP3_COUNTOF(mp3FrameInfo)-1; ++i) { + mp3FrameInfo[i] = mp3FrameInfo[i+1]; + } + mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].bytePos = pMP3->streamCursor - pMP3->dataSize; + mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].pcmFrameIndex = runningPCMFrameCount; + pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL); + if (pcmFramesInCurrentMP3FrameIn == 0) { + pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos; + pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame; + pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES; + pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex); + break; + } + drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart); + } + } + } + if (!drmp3_seek_to_start_of_stream(pMP3)) { + return DRMP3_FALSE; + } + if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) { + return DRMP3_FALSE; + } + } + *pSeekPointCount = seekPointCount; + return DRMP3_TRUE; +} +DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints) +{ + if (pMP3 == NULL) { + return DRMP3_FALSE; + } + if (seekPointCount == 0 || pSeekPoints == NULL) { + pMP3->seekPointCount = 0; + pMP3->pSeekPoints = NULL; + } else { + pMP3->seekPointCount = seekPointCount; + pMP3->pSeekPoints = pSeekPoints; + } + return DRMP3_TRUE; +} +static float* drmp3__full_read_and_close_f32(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount) +{ + drmp3_uint64 totalFramesRead = 0; + drmp3_uint64 framesCapacity = 0; + float* pFrames = NULL; + float temp[4096]; + DRMP3_ASSERT(pMP3 != NULL); + for (;;) { + drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels; + drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_f32(pMP3, framesToReadRightNow, temp); + if (framesJustRead == 0) { + break; + } + if (framesCapacity < totalFramesRead + framesJustRead) { + drmp3_uint64 oldFramesBufferSize; + drmp3_uint64 newFramesBufferSize; + drmp3_uint64 newFramesCap; + float* pNewFrames; + newFramesCap = framesCapacity * 2; + if (newFramesCap < totalFramesRead + framesJustRead) { + newFramesCap = totalFramesRead + framesJustRead; + } + oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(float); + newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(float); + if (newFramesBufferSize > DRMP3_SIZE_MAX) { + break; + } + pNewFrames = (float*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks); + if (pNewFrames == NULL) { + drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks); + break; + } + pFrames = pNewFrames; + framesCapacity = newFramesCap; + } + DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(float))); + totalFramesRead += framesJustRead; + if (framesJustRead != framesToReadRightNow) { + break; + } + } + if (pConfig != NULL) { + pConfig->channels = pMP3->channels; + pConfig->sampleRate = pMP3->sampleRate; + } + drmp3_uninit(pMP3); + if (pTotalFrameCount) { + *pTotalFrameCount = totalFramesRead; + } + return pFrames; +} +static drmp3_int16* drmp3__full_read_and_close_s16(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount) +{ + drmp3_uint64 totalFramesRead = 0; + drmp3_uint64 framesCapacity = 0; + drmp3_int16* pFrames = NULL; + drmp3_int16 temp[4096]; + DRMP3_ASSERT(pMP3 != NULL); + for (;;) { + drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels; + drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_s16(pMP3, framesToReadRightNow, temp); + if (framesJustRead == 0) { + break; + } + if (framesCapacity < totalFramesRead + framesJustRead) { + drmp3_uint64 newFramesBufferSize; + drmp3_uint64 oldFramesBufferSize; + drmp3_uint64 newFramesCap; + drmp3_int16* pNewFrames; + newFramesCap = framesCapacity * 2; + if (newFramesCap < totalFramesRead + framesJustRead) { + newFramesCap = totalFramesRead + framesJustRead; + } + oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(drmp3_int16); + newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(drmp3_int16); + if (newFramesBufferSize > DRMP3_SIZE_MAX) { + break; + } + pNewFrames = (drmp3_int16*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks); + if (pNewFrames == NULL) { + drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks); + break; + } + pFrames = pNewFrames; + framesCapacity = newFramesCap; + } + DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(drmp3_int16))); + totalFramesRead += framesJustRead; + if (framesJustRead != framesToReadRightNow) { + break; + } + } + if (pConfig != NULL) { + pConfig->channels = pMP3->channels; + pConfig->sampleRate = pMP3->sampleRate; + } + drmp3_uninit(pMP3); + if (pTotalFrameCount) { + *pTotalFrameCount = totalFramesRead; + } + return pFrames; +} +DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); +} +DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); +} +DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); +} +DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); +} +#ifndef DR_MP3_NO_STDIO +DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); +} +DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + drmp3 mp3; + if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) { + return NULL; + } + return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); +} +#endif +DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + return drmp3__malloc_from_callbacks(sz, pAllocationCallbacks); + } else { + return drmp3__malloc_default(sz, NULL); + } +} +DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + drmp3__free_from_callbacks(p, pAllocationCallbacks); + } else { + drmp3__free_default(p, NULL); + } +} +#endif +/* dr_mp3_c end */ +#endif /* DRMP3_IMPLEMENTATION */ +#endif /* MA_NO_MP3 */ + /* End globally disabled warnings. */ #if defined(_MSC_VER) #pragma warning(pop) #endif +#endif /* miniaudio_c */ #endif /* MINIAUDIO_IMPLEMENTATION */ /* -MAJOR CHANGES IN VERSION 0.9 -============================ -Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into -detail about the major changes I would like to apologize. I know it's annoying dealing with breaking API changes, but I think -it's best to get these changes out of the way now while the library is still relatively young and unknown. +RELEASE NOTES - VERSION 0.10.x +============================== +Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert +audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies +to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign. -There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in -advance for this. You may want to hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for -you, and you don't need full-duplex support, you can avoid upgrading (though you won't be getting future bug fixes). + +Changes to Data Conversion +-------------------------- +The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other +situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a +pointer to the input data directly rather than dealing with a callback. + +The following are the data conversion APIs that have been removed and their replacements: + + - ma_format_converter -> ma_convert_pcm_frames_format() + - ma_channel_router -> ma_channel_converter + - ma_src -> ma_resampler + - ma_pcm_converter -> ma_data_converter + +The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the +`*_process_pcm_frames()` function as a pointer to a buffer. + +The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel +conversion is also simple which you can do with `ma_channel_converter` via `ma_channel_converter_process_pcm_frames()`. + +Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you +call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to +output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated. + +The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably +makes it the best option if you need to do data conversion. + +In addition to changes to the API design, a few other changes have been made to the data conversion pipeline: + + - The sinc resampler has been removed. This was completely broken and never actually worked properly. + - The linear resampler now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with the + `lpfOrder` option, which has a maximum value of MA_MAX_FILTER_ORDER. + - Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before + processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however + `ma_data_converter` will handle this for you. + + +Custom Memory Allocators +------------------------ +miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more +flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the +`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure. + +The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by +`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same +way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults. + +The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults. +Otherwise they will use the relevant callback in the structure. + + - ma_malloc() + - ma_realloc() + - ma_free() + - ma_aligned_malloc() + - ma_aligned_free() + - ma_rb_init() / ma_rb_init_ex() + - ma_pcm_rb_init() / ma_pcm_rb_init_ex() + +Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom +allocation callbacks. + + +Buffer and Period Configuration Changes +--------------------------------------- +The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables +`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by +the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine +latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called +`periodSizeInFrames` and `periodSizeInMilliseconds`. + +These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is +that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to +configure latency. + +The following unused APIs have been removed: + + ma_get_default_buffer_size_in_milliseconds() + ma_get_default_buffer_size_in_frames() + +The following macros have been removed: + + MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY + MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE + + +Other API Changes +----------------- +Other less major API changes have also been made in version 0.10. + +`ma_device_set_stop_callback()` has been removed. If you require a stop callback, you must now set it via the device config just like the data callback. + +The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including +sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes a configuration +object called `ma_waveform_config` which defines the properties of the waveform. Use `ma_waveform_config_init()` to initialize a `ma_waveform_config` object. +Use `ma_waveform_read_pcm_frames()` in place of `ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`. + +`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies +the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to +take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it more flexible, to +prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added. + +`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API. + + +Filters +------- +The following filters have been added: + + |-------------|-------------------------------------------------------------------| + | API | Description | + |-------------|-------------------------------------------------------------------| + | ma_biquad | Biquad filter (transposed direct form 2) | + | ma_lpf1 | First order low-pass filter | + | ma_lpf2 | Second order low-pass filter | + | ma_lpf | High order low-pass filter (Butterworth) | + | ma_hpf1 | First order high-pass filter | + | ma_hpf2 | Second order high-pass filter | + | ma_hpf | High order high-pass filter (Butterworth) | + | ma_bpf2 | Second order band-pass filter | + | ma_bpf | High order band-pass filter | + | ma_peak2 | Second order peaking filter | + | ma_notch2 | Second order notching filter | + | ma_loshelf2 | Second order low shelf filter | + | ma_hishelf2 | Second order high shelf filter | + |-------------|-------------------------------------------------------------------| + +These filters all support 32-bit floating point and 16-bit signed integer formats natively. Other formats need to be converted beforehand. + + +Sine, Square, Triangle and Sawtooth Waveforms +--------------------------------------------- +Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old +`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_config_init()` to initialize a config object, and then pass it +into `ma_waveform_init()`. Then use `ma_waveform_read_pcm_frames()` to read PCM data. + + +Noise Generation +---------------- +A noise generation API has been added. This is used via the `ma_noise` API. Currently white, pink and Brownian noise is supported. The `ma_noise` API is +similar to the waveform API. Use `ma_noise_config_init()` to initialize a config object, and then pass it into `ma_noise_init()` to initialize a `ma_noise` +object. Then use `ma_noise_read_pcm_frames()` to read PCM data. + + +Miscellaneous Changes +--------------------- +The MA_NO_STDIO option has been removed. This would disable file I/O APIs, however this has proven to be too hard to maintain for it's perceived value and was +therefore removed. + +Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report. + +The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on +the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it +was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work, +this has been removed from all structures. + +Results codes have been overhauled. Unnecessary result codes have been removed, and some have been renumbered for organisation purposes. If you are are binding +maintainer you will need to update your result codes. Support has also been added for retrieving a human readable description of a given result code via the +`ma_result_description()` API. + +ALSA: The automatic format conversion, channel conversion and resampling performed by ALSA is now disabled by default as they were causing some compatibility +issues with certain devices and configurations. These can be individually enabled via the device config: + + ```c + deviceConfig.alsa.noAutoFormat = MA_TRUE; + deviceConfig.alsa.noAutoChannels = MA_TRUE; + deviceConfig.alsa.noAutoResample = MA_TRUE; + ``` +*/ + +/* +RELEASE NOTES - VERSION 0.9.x +============================= +Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into detail about the major changes I +would like to apologize. I know it's annoying dealing with breaking API changes, but I think it's best to get these changes out of the way now while the +library is still relatively young and unknown. + +There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in advance for this. You may want to +hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for you, and you don't need full-duplex support, you can avoid upgrading +(though you won't be getting future bug fixes). Rebranding to "miniaudio" @@ -42293,39 +64508,36 @@ The decision was made to rename mini_al to miniaudio. Don't worry, it's the same 1) Having the word "audio" in the title makes it immediately clear that the library is related to audio; and 2) I don't like the look of the underscore. -This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's -better to get this out of the road now rather than later. Also, since there are necessary API changes for full-duplex support -I think it's better to just get the namespace change over and done with at the same time as the full-duplex changes. I'm hoping -this will be the last of the major API changes. Fingers crossed! +This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's better to get this out of the road +now rather than later. Also, since there are necessary API changes for full-duplex support I think it's better to just get the namespace change over and done +with at the same time as the full-duplex changes. I'm hoping this will be the last of the major API changes. Fingers crossed! -The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's -your preference. +The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's your preference. Full-Duplex Support ------------------- The major feature added to version 0.9 is full-duplex. This has necessitated a few API changes. -1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted - to avoid a third callback just for full-duplex so the decision was made to break this API and unify the callbacks. Now, - there is just one callback which is the same for all three modes (playback, capture, duplex). The new callback looks like - the following: +1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted to avoid a third callback just + for full-duplex so the decision was made to break this API and unify the callbacks. Now, there is just one callback which is the same for all three modes + (playback, capture, duplex). The new callback looks like the following: void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount); - This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In - playback-only mode, pInput will be null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer - returned from the callback since it's not necessary for miniaudio anymore. + This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In playback-only mode, pInput will be + null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer returned from the callback since it's not necessary for miniaudio + anymore. -2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client - to choose a different PCM format for the playback and capture sides. The old ma_device_config object simply did not allow - this and needed to change. With these changes you now specify the device ID, format, channels, channel map and share mode - on a per-playback and per-capture basis (see example below). The sample rate must be the same for playback and capture. +2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client to choose a different PCM format + for the playback and capture sides. The old ma_device_config object simply did not allow this and needed to change. With these changes you now specify the + device ID, format, channels, channel map and share mode on a per-playback and per-capture basis (see example below). The sample rate must be the same for + playback and capture. - Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now, - the device ID, device type and callback user data are set in the config. ma_device_init() is now simplified down to taking - just the context, device config and a pointer to the device object being initialized. The rationale for this change is that - it just makes more sense to me that these are set as part of the config like everything else. + Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now, the device ID, device type and + callback user data are set in the config. ma_device_init() is now simplified down to taking just the context, device config and a pointer to the device + object being initialized. The rationale for this change is that it just makes more sense to me that these are set as part of the config like everything + else. Example device initialization: @@ -42345,20 +64557,18 @@ The major feature added to version 0.9 is full-duplex. This has necessitated a f ... handle error ... } - Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has - been renamed to "stopCallback". + Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has been renamed to "stopCallback". -This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample -rate conversion is required for the playback device: +This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample rate conversion is required for +the playback device: - Core Audio - JACK - AAudio - OpenSL - WebAudio -In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such -thorough testing. If you experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample -program that reproduces the issue if possible). +In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such thorough testing. If you +experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample program that reproduces the issue if possible). Other API Changes @@ -42381,35 +64591,242 @@ In addition to the above, the following API changes have been made: - mal_src_set_input_sample_rate() - mal_src_set_output_sample_rate() - Error codes have been rearranged. If you're a binding maintainer you will need to update. -- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection - and to make it easier to see the priority. If you're a binding maintainer you will need to update. -- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with - some future planned high-level APIs. -- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that - the pointer comes before the count. The rationale for this is to keep it consistent with things like memcpy(). +- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection and to make it easier to see + the priority. If you're a binding maintainer you will need to update. +- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with some future planned high-level + APIs. +- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that the pointer comes before the + count. The rationale for this is to keep it consistent with things like memcpy(). Miscellaneous Changes --------------------- The following miscellaneous changes have also been made. -- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the - record, this is one of the nicest audio APIs out there, just behind the BSD audio APIs). +- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the record, this is one of the nicest + audio APIs out there, just behind the BSD audio APIs). - The WebAudio backend has been added. This is based on ScriptProcessorNode. This removes the need for SDL. -- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio - was not explicitly supported. These are no longer needed and have therefore been removed. -- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an - exclusive mode device, or an error. The rationale for this change is to give the client more control over how to handle cases - when the desired shared mode is unavailable. -- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb" - operates on PCM frames. -- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but - removes the attribution requirement. The rationale for this is to support countries that don't recognize public domain. +- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio was not explicitly + supported. These are no longer needed and have therefore been removed. +- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an exclusive mode device, or an + error. The rationale for this change is to give the client more control over how to handle cases when the desired shared mode is unavailable. +- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb" operates on PCM frames. +- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but removes the attribution + requirement. The rationale for this is to support countries that don't recognize public domain. */ /* REVISION HISTORY ================ +v0.10.27 - 2020-12-04 + - Add support for dynamically configuring some properties of `ma_noise` objects post-initialization. + - Add support for configuring the channel mixing mode in the device config. + - Fix a bug with simple channel mixing mode (drop or silence excess channels). + - Fix some bugs with trying to access uninitialized variables. + - Fix some errors with stopping devices for synchronous backends where the backend's stop callback would get fired twice. + - Fix a bug in the decoder due to using an uninitialized variable. + - Fix some data race errors. + + +v0.10.26 - 2020-11-24 + - WASAPI: Fix a bug where the exclusive mode format may not be retrieved correctly due to accessing freed memory. + - Fix a bug with ma_waveform where glitching occurs after changing frequency. + - Fix compilation with OpenWatcom. + - Fix compilation with TCC. + - Fix compilation with Digital Mars. + - Fix compilation warnings. + - Remove bitfields from public structures to aid in binding maintenance. + +v0.10.25 - 2020-11-15 + - PulseAudio: Fix a bug where the stop callback isn't fired. + - WebAudio: Fix an error that occurs when Emscripten increases the size of it's heap. + - Custom Backends: Change the onContextInit and onDeviceInit callbacks to take a parameter which is a pointer to the config that was + passed into ma_context_init() and ma_device_init(). This replaces the deviceType parameter of onDeviceInit. + - Fix compilation warnings on older versions of GCC. + +v0.10.24 - 2020-11-10 + - Fix a bug where initialization of a backend can fail due to some bad state being set from a prior failed attempt at initializing a + lower priority backend. + +v0.10.23 - 2020-11-09 + - AAudio: Add support for configuring a playback stream's usage. + - Fix a compilation error when all built-in asynchronous backends are disabled at compile time. + - Fix compilation errors when compiling as C++. + +v0.10.22 - 2020-11-08 + - Add support for custom backends. + - Add support for detecting default devices during device enumeration and with `ma_context_get_device_info()`. + - Refactor to the PulseAudio backend. This simplifies the implementation and fixes a capture bug. + - ALSA: Fix a bug in `ma_context_get_device_info()` where the PCM handle is left open in the event of an error. + - Core Audio: Further improvements to sample rate selection. + - Core Audio: Fix some bugs with capture mode. + - OpenSL: Add support for configuring stream types and recording presets. + - AAudio: Add support for configuring content types and input presets. + - Fix bugs in `ma_decoder_init_file*()` where the file handle is not closed after a decoding error. + - Fix some compilation warnings on GCC and Clang relating to the Speex resampler. + - Fix a compilation error for the Linux build when the ALSA and JACK backends are both disabled. + - Fix a compilation error for the BSD build. + - Fix some compilation errors on older versions of GCC. + - Add documentation for `MA_NO_RUNTIME_LINKING`. + +v0.10.21 - 2020-10-30 + - Add ma_is_backend_enabled() and ma_get_enabled_backends() for retrieving enabled backends at run-time. + - WASAPI: Fix a copy and paste bug relating to loopback mode. + - Core Audio: Fix a bug when using multiple contexts. + - Core Audio: Fix a compilation warning. + - Core Audio: Improvements to sample rate selection. + - Core Audio: Improvements to format/channels/rate selection when requesting defaults. + - Core Audio: Add notes regarding the Apple notarization process. + - Fix some bugs due to null pointer dereferences. + +v0.10.20 - 2020-10-06 + - Fix build errors with UWP. + - Minor documentation updates. + +v0.10.19 - 2020-09-22 + - WASAPI: Return an error when exclusive mode is requested, but the native format is not supported by miniaudio. + - Fix a bug where ma_decoder_seek_to_pcm_frames() never returns MA_SUCCESS even though it was successful. + - Store the sample rate in the `ma_lpf` and `ma_hpf` structures. + +v0.10.18 - 2020-08-30 + - Fix build errors with VC6. + - Fix a bug in channel converter for s32 format. + - Change channel converter configs to use the default channel map instead of a blank channel map when no channel map is specified when initializing the + config. This fixes an issue where the optimized mono expansion path would never get used. + - Use a more appropriate default format for FLAC decoders. This will now use ma_format_s16 when the FLAC is encoded as 16-bit. + - Update FLAC decoder. + - Update links to point to the new repository location (https://github.com/mackron/miniaudio). + +v0.10.17 - 2020-08-28 + - Fix an error where the WAV codec is incorrectly excluded from the build depending on which compile time options are set. + - Fix a bug in ma_audio_buffer_read_pcm_frames() where it isn't returning the correct number of frames processed. + - Fix compilation error on Android. + - Core Audio: Fix a bug with full-duplex mode. + - Add ma_decoder_get_cursor_in_pcm_frames(). + - Update WAV codec. + +v0.10.16 - 2020-08-14 + - WASAPI: Fix a potential crash due to using an uninitialized variable. + - OpenSL: Enable runtime linking. + - OpenSL: Fix a multithreading bug when initializing and uninitializing multiple contexts at the same time. + - iOS: Improvements to device enumeration. + - Fix a crash in ma_data_source_read_pcm_frames() when the output frame count parameter is NULL. + - Fix a bug in ma_data_source_read_pcm_frames() where looping doesn't work. + - Fix some compilation warnings on Windows when both DirectSound and WinMM are disabled. + - Fix some compilation warnings when no decoders are enabled. + - Add ma_audio_buffer_get_available_frames(). + - Add ma_decoder_get_available_frames(). + - Add sample rate to ma_data_source_get_data_format(). + - Change volume APIs to take 64-bit frame counts. + - Updates to documentation. + +v0.10.15 - 2020-07-15 + - Fix a bug when converting bit-masked channel maps to miniaudio channel maps. This affects the WASAPI and OpenSL backends. + +v0.10.14 - 2020-07-14 + - Fix compilation errors on Android. + - Fix compilation errors with -march=armv6. + - Updates to the documentation. + +v0.10.13 - 2020-07-11 + - Fix some potential buffer overflow errors with channel maps when channel counts are greater than MA_MAX_CHANNELS. + - Fix compilation error on Emscripten. + - Silence some unused function warnings. + - Increase the default buffer size on the Web Audio backend. This fixes glitching issues on some browsers. + - Bring FLAC decoder up-to-date with dr_flac. + - Bring MP3 decoder up-to-date with dr_mp3. + +v0.10.12 - 2020-07-04 + - Fix compilation errors on the iOS build. + +v0.10.11 - 2020-06-28 + - Fix some bugs with device tracking on Core Audio. + - Updates to documentation. + +v0.10.10 - 2020-06-26 + - Add include guard for the implementation section. + - Mark ma_device_sink_info_callback() as static. + - Fix compilation errors with MA_NO_DECODING and MA_NO_ENCODING. + - Fix compilation errors with MA_NO_DEVICE_IO + +v0.10.9 - 2020-06-24 + - Amalgamation of dr_wav, dr_flac and dr_mp3. With this change, including the header section of these libraries before the implementation of miniaudio is no + longer required. Decoding of WAV, FLAC and MP3 should be supported seamlessly without any additional libraries. Decoders can be excluded from the build + with the following options: + - MA_NO_WAV + - MA_NO_FLAC + - MA_NO_MP3 + If you get errors about multiple definitions you need to either enable the options above, move the implementation of dr_wav, dr_flac and/or dr_mp3 to before + the implementation of miniaudio, or update dr_wav, dr_flac and/or dr_mp3. + - Changes to the internal atomics library. This has been replaced with c89atomic.h which is embedded within this file. + - Fix a bug when a decoding backend reports configurations outside the limits of miniaudio's decoder abstraction. + - Fix the UWP build. + - Fix the Core Audio build. + - Fix the -std=c89 build on GCC. + +v0.10.8 - 2020-06-22 + - Remove dependency on ma_context from mutexes. + - Change ma_data_source_read_pcm_frames() to return a result code and output the frames read as an output parameter. + - Change ma_data_source_seek_pcm_frames() to return a result code and output the frames seeked as an output parameter. + - Change ma_audio_buffer_unmap() to return MA_AT_END when the end has been reached. This should be considered successful. + - Change playback.pDeviceID and capture.pDeviceID to constant pointers in ma_device_config. + - Add support for initializing decoders from a virtual file system object. This is achieved via the ma_vfs API and allows the application to customize file + IO for the loading and reading of raw audio data. Passing in NULL for the VFS will use defaults. New APIs: + - ma_decoder_init_vfs() + - ma_decoder_init_vfs_wav() + - ma_decoder_init_vfs_flac() + - ma_decoder_init_vfs_mp3() + - ma_decoder_init_vfs_vorbis() + - ma_decoder_init_vfs_w() + - ma_decoder_init_vfs_wav_w() + - ma_decoder_init_vfs_flac_w() + - ma_decoder_init_vfs_mp3_w() + - ma_decoder_init_vfs_vorbis_w() + - Add support for memory mapping to ma_data_source. + - ma_data_source_map() + - ma_data_source_unmap() + - Add ma_offset_pcm_frames_ptr() and ma_offset_pcm_frames_const_ptr() which can be used for offsetting a pointer by a specified number of PCM frames. + - Add initial implementation of ma_yield() which is useful for spin locks which will be used in some upcoming work. + - Add documentation for log levels. + - The ma_event API has been made public in preparation for some uncoming work. + - Fix a bug in ma_decoder_seek_to_pcm_frame() where the internal sample rate is not being taken into account for determining the seek location. + - Fix some bugs with the linear resampler when dynamically changing the sample rate. + - Fix compilation errors with MA_NO_DEVICE_IO. + - Fix some warnings with GCC and -std=c89. + - Fix some formatting warnings with GCC and -Wall and -Wpedantic. + - Fix some warnings with VC6. + - Minor optimization to ma_copy_pcm_frames(). This is now a no-op when the input and output buffers are the same. + +v0.10.7 - 2020-05-25 + - Fix a compilation error in the C++ build. + - Silence a warning. + +v0.10.6 - 2020-05-24 + - Change ma_clip_samples_f32() and ma_clip_pcm_frames_f32() to take a 64-bit sample/frame count. + - Change ma_zero_pcm_frames() to clear to 128 for ma_format_u8. + - Add ma_silence_pcm_frames() which replaces ma_zero_pcm_frames(). ma_zero_pcm_frames() will be removed in version 0.11. + - Add support for u8, s24 and s32 formats to ma_channel_converter. + - Add compile-time and run-time version querying. + - MA_VERSION_MINOR + - MA_VERSION_MAJOR + - MA_VERSION_REVISION + - MA_VERSION_STRING + - ma_version() + - ma_version_string() + - Add ma_audio_buffer for reading raw audio data directly from memory. + - Fix a bug in shuffle mode in ma_channel_converter. + - Fix compilation errors in certain configurations for ALSA and PulseAudio. + - The data callback now initializes the output buffer to 128 when the playback sample format is ma_format_u8. + +v0.10.5 - 2020-05-05 + - Change ma_zero_pcm_frames() to take a 64-bit frame count. + - Add ma_copy_pcm_frames(). + - Add MA_NO_GENERATION build option to exclude the `ma_waveform` and `ma_noise` APIs from the build. + - Add support for formatted logging to the VC6 build. + - Fix a crash in the linear resampler when LPF order is 0. + - Fix compilation errors and warnings with older versions of Visual Studio. + - Minor documentation updates. + v0.10.4 - 2020-04-12 - Fix a data conversion bug when converting from the client format to the native device format. diff --git a/src/modules/audio/audio.c b/src/modules/audio/audio.c index 600d8c17..c0023370 100644 --- a/src/modules/audio/audio.c +++ b/src/modules/audio/audio.c @@ -70,8 +70,8 @@ static bool mix(Source* source, float* output, uint32_t count) { // ^^^ Note need to min `count` with 'capacity of aux buffer' and 'capacity of mix buffer' // could skip min-ing with one of the buffers if you can guarantee that one is bigger/equal to the other (you can because their formats are known) - uint64_t framesIn = source->sound->read(source->sound, source->offset, chunk, raw); - uint64_t framesOut = sizeof(aux) / (sizeof(float) * outputChannelCountForSource(source)); + ma_uint64 framesIn = source->sound->read(source->sound, source->offset, chunk, raw); + ma_uint64 framesOut = sizeof(aux) / (sizeof(float) * outputChannelCountForSource(source)); ma_data_converter_process_pcm_frames(source->converter, raw, &framesIn, aux, &framesOut); @@ -158,7 +158,7 @@ bool lovrAudioInit(AudioConfig config[2]) { return false; } - int mutexStatus = ma_mutex_init(&state.context, &state.playbackLock); + int mutexStatus = ma_mutex_init(&state.playbackLock); lovrAssert(mutexStatus == MA_SUCCESS, "Failed to create audio mutex"); lovrAudioReset();