#include "physics.h" #include "math/quat.h" #include #include static void defaultNearCallback(void* data, dGeomID a, dGeomID b) { lovrWorldCollide((World*) data, dGeomGetData(a), dGeomGetData(b), -1, -1); } static void customNearCallback(void* data, dGeomID shapeA, dGeomID shapeB) { World* world = data; vec_push(&world->overlaps, dGeomGetData(shapeA)); vec_push(&world->overlaps, dGeomGetData(shapeB)); } static void raycastCallback(void* data, dGeomID a, dGeomID b) { RaycastCallback callback = ((RaycastData*) data)->callback; void* userdata = ((RaycastData*) data)->userdata; Shape* shape = dGeomGetData(b); if (!shape) { return; } dContact contact; if (dCollide(a, b, MAX_CONTACTS, &contact.geom, sizeof(dContact))) { dContactGeom g = contact.geom; callback(shape, g.pos[0], g.pos[1], g.pos[2], g.normal[0], g.normal[1], g.normal[2], userdata); } } static bool initialized = false; void lovrPhysicsInit() { if (initialized) return; dInitODE(); initialized = true; } void lovrPhysicsDestroy() { if (!initialized) return; dCloseODE(); initialized = false; } World* lovrWorldCreate(float xg, float yg, float zg, bool allowSleep, const char** tags, int tagCount) { World* world = lovrAlloc(World, lovrWorldDestroy); if (!world) return NULL; world->id = dWorldCreate(); world->space = dHashSpaceCreate(0); dHashSpaceSetLevels(world->space, -4, 8); world->contactGroup = dJointGroupCreate(0); vec_init(&world->overlaps); lovrWorldSetGravity(world, xg, yg, zg); lovrWorldSetSleepingAllowed(world, allowSleep); map_init(&world->tags); for (int i = 0; i < tagCount; i++) { map_set(&world->tags, tags[i], i); } for (int i = 0; i < MAX_TAGS; i++) { world->masks[i] = ~0; } return world; } void lovrWorldDestroy(void* ref) { World* world = ref; lovrWorldDestroyData(world); vec_deinit(&world->overlaps); map_deinit(&world->tags); free(world); } void lovrWorldDestroyData(World* world) { if (world->contactGroup) { dJointGroupEmpty(world->contactGroup); world->contactGroup = NULL; } if (world->space) { dSpaceDestroy(world->space); world->space = NULL; } if (world->id) { dWorldDestroy(world->id); world->id = NULL; } } void lovrWorldUpdate(World* world, float dt, CollisionResolver resolver, void* userdata) { if (resolver) { resolver(world, userdata); } else { dSpaceCollide(world->space, world, defaultNearCallback); } if (dt > 0) { dWorldQuickStep(world->id, dt); } dJointGroupEmpty(world->contactGroup); } void lovrWorldComputeOverlaps(World* world) { vec_clear(&world->overlaps); dSpaceCollide(world->space, world, customNearCallback); } int lovrWorldGetNextOverlap(World* world, Shape** a, Shape** b) { if (world->overlaps.length == 0) { *a = *b = NULL; return 0; } *a = vec_pop(&world->overlaps); *b = vec_pop(&world->overlaps); return 1; } int lovrWorldCollide(World* world, Shape* a, Shape* b, float friction, float restitution) { if (!a || !b) { return false; } Collider* colliderA = a->collider; Collider* colliderB = b->collider; int tag1 = colliderA->tag; int tag2 = colliderB->tag; if (tag1 != NO_TAG && tag2 != NO_TAG && !((world->masks[tag1] & (1 << tag2)) && (world->masks[tag2] & (1 << tag1)))) { return false; } if (friction < 0) { friction = sqrt(colliderA->friction * colliderB->friction); } if (restitution < 0) { restitution = MAX(colliderA->restitution, colliderB->restitution); } dContact contacts[MAX_CONTACTS]; for (int i = 0; i < MAX_CONTACTS; i++) { contacts[i].surface.mode = 0; contacts[i].surface.mu = friction; contacts[i].surface.bounce = restitution; contacts[i].surface.mu = dInfinity; if (restitution > 0) { contacts[i].surface.mode |= dContactBounce; } } int contactCount = dCollide(a->id, b->id, MAX_CONTACTS, &contacts[0].geom, sizeof(dContact)); for (int i = 0; i < contactCount; i++) { dJointID joint = dJointCreateContact(world->id, world->contactGroup, &contacts[i]); dJointAttach(joint, colliderA->body, colliderB->body); } return contactCount; } void lovrWorldGetGravity(World* world, float* x, float* y, float* z) { dReal gravity[3]; dWorldGetGravity(world->id, gravity); *x = gravity[0]; *y = gravity[1]; *z = gravity[2]; } void lovrWorldSetGravity(World* world, float x, float y, float z) { dWorldSetGravity(world->id, x, y, z); } void lovrWorldGetLinearDamping(World* world, float* damping, float* threshold) { *damping = dWorldGetLinearDamping(world->id); *threshold = dWorldGetLinearDampingThreshold(world->id); } void lovrWorldSetLinearDamping(World* world, float damping, float threshold) { dWorldSetLinearDamping(world->id, damping); dWorldSetLinearDampingThreshold(world->id, threshold); } void lovrWorldGetAngularDamping(World* world, float* damping, float* threshold) { *damping = dWorldGetAngularDamping(world->id); *threshold = dWorldGetAngularDampingThreshold(world->id); } void lovrWorldSetAngularDamping(World* world, float damping, float threshold) { dWorldSetAngularDamping(world->id, damping); dWorldSetAngularDampingThreshold(world->id, threshold); } bool lovrWorldIsSleepingAllowed(World* world) { return dWorldGetAutoDisableFlag(world->id); } void lovrWorldSetSleepingAllowed(World* world, bool allowed) { dWorldSetAutoDisableFlag(world->id, allowed); } void lovrWorldRaycast(World* world, float x1, float y1, float z1, float x2, float y2, float z2, RaycastCallback callback, void* userdata) { RaycastData data = { .callback = callback, .userdata = userdata }; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float length = sqrt(dx * dx + dy * dy + dz * dz); dGeomID ray = dCreateRay(world->space, length); dGeomRaySet(ray, x1, y1, z1, dx, dy, dz); dSpaceCollide2(ray, (dGeomID) world->space, &data, raycastCallback); dGeomDestroy(ray); } const char* lovrWorldGetTagName(World* world, int tag) { if (tag == NO_TAG) { return NULL; } const char* key; map_iter_t iter = map_iter(&world->tags); while ((key = map_next(&world->tags, &iter))) { if (*map_get(&world->tags, key) == tag) { return key; } } return NULL; } int lovrWorldDisableCollisionBetween(World* world, const char* tag1, const char* tag2) { int* index1 = map_get(&world->tags, tag1); int* index2 = map_get(&world->tags, tag2); if (!index1 || !index2) { return NO_TAG; } world->masks[*index1] &= ~(1 << *index2); world->masks[*index2] &= ~(1 << *index1); return 0; } int lovrWorldEnableCollisionBetween(World* world, const char* tag1, const char* tag2) { int* index1 = map_get(&world->tags, tag1); int* index2 = map_get(&world->tags, tag2); if (!index1 || !index2) { return NO_TAG; } world->masks[*index1] |= (1 << *index2); world->masks[*index2] |= (1 << *index1); return 0; } int lovrWorldIsCollisionEnabledBetween(World* world, const char* tag1, const char* tag2) { int* index1 = map_get(&world->tags, tag1); int* index2 = map_get(&world->tags, tag2); if (!index1 || !index2) { return NO_TAG; } return (world->masks[*index1] & (1 << *index2)) && (world->masks[*index2] & (1 << *index1)); } Collider* lovrColliderCreate(World* world, float x, float y, float z) { lovrAssert(world, "No world specified"); Collider* collider = lovrAlloc(Collider, lovrColliderDestroy); if (!collider) return NULL; collider->body = dBodyCreate(world->id); collider->world = world; collider->friction = 0; collider->restitution = 0; collider->tag = NO_TAG; dBodySetData(collider->body, collider); vec_init(&collider->shapes); vec_init(&collider->joints); lovrColliderSetPosition(collider, x, y, z); return collider; } void lovrColliderDestroy(void* ref) { Collider* collider = ref; vec_deinit(&collider->shapes); vec_deinit(&collider->joints); lovrColliderDestroyData(collider); free(collider); } void lovrColliderDestroyData(Collider* collider) { if (collider->body) { dBodyDestroy(collider->body); collider->body = NULL; } } World* lovrColliderGetWorld(Collider* collider) { return collider->world; } void lovrColliderAddShape(Collider* collider, Shape* shape) { shape->collider = collider; dGeomSetBody(shape->id, collider->body); dSpaceID oldSpace = dGeomGetSpace(shape->id); dSpaceID newSpace = collider->world->space; if (oldSpace && oldSpace != newSpace) { dSpaceRemove(oldSpace, shape->id); } dSpaceAdd(newSpace, shape->id); } void lovrColliderRemoveShape(Collider* collider, Shape* shape) { if (shape->collider == collider) { dSpaceRemove(collider->world->space, shape->id); dGeomSetBody(shape->id, 0); } } vec_void_t* lovrColliderGetShapes(Collider* collider) { vec_clear(&collider->shapes); for (dGeomID geom = dBodyGetFirstGeom(collider->body); geom; geom = dBodyGetNextGeom(geom)) { Shape* shape = dGeomGetData(geom); if (shape) { vec_push(&collider->shapes, shape); } } return &collider->shapes; } vec_void_t* lovrColliderGetJoints(Collider* collider) { vec_clear(&collider->joints); int jointCount = dBodyGetNumJoints(collider->body); for (int i = 0; i < jointCount; i++) { Joint* joint = dJointGetData(dBodyGetJoint(collider->body, i)); if (joint) { vec_push(&collider->joints, joint); } } return &collider->joints; } void* lovrColliderGetUserData(Collider* collider) { return collider->userdata; } void lovrColliderSetUserData(Collider* collider, void* data) { collider->userdata = data; } const char* lovrColliderGetTag(Collider* collider) { return lovrWorldGetTagName(collider->world, collider->tag); } int lovrColliderSetTag(Collider* collider, const char* tag) { if (tag == NULL) { collider->tag = NO_TAG; return 0; } int* index = map_get(&collider->world->tags, tag); if (!index) { return NO_TAG; } collider->tag = *index; return 0; } float lovrColliderGetFriction(Collider* collider) { return collider->friction; } void lovrColliderSetFriction(Collider* collider, float friction) { collider->friction = friction; } float lovrColliderGetRestitution(Collider* collider) { return collider->restitution; } void lovrColliderSetRestitution(Collider* collider, float restitution) { collider->restitution = restitution; } bool lovrColliderIsKinematic(Collider* collider) { return dBodyIsKinematic(collider->body); } void lovrColliderSetKinematic(Collider* collider, bool kinematic) { if (kinematic) { dBodySetKinematic(collider->body); } else { dBodySetDynamic(collider->body); } } bool lovrColliderIsGravityIgnored(Collider* collider) { return !dBodyGetGravityMode(collider->body); } void lovrColliderSetGravityIgnored(Collider* collider, bool ignored) { dBodySetGravityMode(collider->body, !ignored); } bool lovrColliderIsSleepingAllowed(Collider* collider) { return dBodyGetAutoDisableFlag(collider->body); } void lovrColliderSetSleepingAllowed(Collider* collider, bool allowed) { dBodySetAutoDisableFlag(collider->body, allowed); } bool lovrColliderIsAwake(Collider* collider) { return dBodyIsEnabled(collider->body); } void lovrColliderSetAwake(Collider* collider, bool awake) { if (awake) { dBodyEnable(collider->body); } else { dBodyDisable(collider->body); } } float lovrColliderGetMass(Collider* collider) { dMass m; dBodyGetMass(collider->body, &m); return m.mass; } void lovrColliderSetMass(Collider* collider, float mass) { dMass m; dBodyGetMass(collider->body, &m); dMassAdjust(&m, mass); dBodySetMass(collider->body, &m); } void lovrColliderGetMassData(Collider* collider, float* cx, float* cy, float* cz, float* mass, float inertia[6]) { dMass m; dBodyGetMass(collider->body, &m); *cx = m.c[0]; *cy = m.c[1]; *cz = m.c[2]; *mass = m.mass; // Diagonal inertia[0] = m.I[0]; inertia[1] = m.I[5]; inertia[2] = m.I[10]; // Lower triangular inertia[3] = m.I[4]; inertia[4] = m.I[8]; inertia[5] = m.I[9]; } void lovrColliderSetMassData(Collider* collider, float cx, float cy, float cz, float mass, float inertia[]) { dMass m; dBodyGetMass(collider->body, &m); dMassSetParameters(&m, mass, cx, cy, cz, inertia[0], inertia[1], inertia[2], inertia[3], inertia[4], inertia[5]); dBodySetMass(collider->body, &m); } void lovrColliderGetPosition(Collider* collider, float* x, float* y, float* z) { const dReal* position = dBodyGetPosition(collider->body); *x = position[0]; *y = position[1]; *z = position[2]; } void lovrColliderSetPosition(Collider* collider, float x, float y, float z) { dBodySetPosition(collider->body, x, y, z); } void lovrColliderGetOrientation(Collider* collider, float* angle, float* x, float* y, float* z) { const dReal* q = dBodyGetQuaternion(collider->body); float quaternion[4] = { q[1], q[2], q[3], q[0] }; quat_getAngleAxis(quaternion, angle, x, y, z); } void lovrColliderSetOrientation(Collider* collider, float angle, float x, float y, float z) { float quaternion[4]; float axis[3] = { x, y, z }; quat_fromAngleAxis(quaternion, angle, axis); float q[4] = { quaternion[3], quaternion[0], quaternion[1], quaternion[2] }; dBodySetQuaternion(collider->body, q); } void lovrColliderGetLinearVelocity(Collider* collider, float* x, float* y, float* z) { const dReal* velocity = dBodyGetLinearVel(collider->body); *x = velocity[0]; *y = velocity[1]; *z = velocity[2]; } void lovrColliderSetLinearVelocity(Collider* collider, float x, float y, float z) { dBodySetLinearVel(collider->body, x, y, z); } void lovrColliderGetAngularVelocity(Collider* collider, float* x, float* y, float* z) { const dReal* velocity = dBodyGetAngularVel(collider->body); *x = velocity[0]; *y = velocity[1]; *z = velocity[2]; } void lovrColliderSetAngularVelocity(Collider* collider, float x, float y, float z) { dBodySetAngularVel(collider->body, x, y, z); } void lovrColliderGetLinearDamping(Collider* collider, float* damping, float* threshold) { *damping = dBodyGetLinearDamping(collider->body); *threshold = dBodyGetLinearDampingThreshold(collider->body); } void lovrColliderSetLinearDamping(Collider* collider, float damping, float threshold) { dBodySetLinearDamping(collider->body, damping); dBodySetLinearDampingThreshold(collider->body, threshold); } void lovrColliderGetAngularDamping(Collider* collider, float* damping, float* threshold) { *damping = dBodyGetAngularDamping(collider->body); *threshold = dBodyGetAngularDampingThreshold(collider->body); } void lovrColliderSetAngularDamping(Collider* collider, float damping, float threshold) { dBodySetAngularDamping(collider->body, damping); dBodySetAngularDampingThreshold(collider->body, threshold); } void lovrColliderApplyForce(Collider* collider, float x, float y, float z) { dBodyAddForce(collider->body, x, y, z); } void lovrColliderApplyForceAtPosition(Collider* collider, float x, float y, float z, float cx, float cy, float cz) { dBodyAddForceAtPos(collider->body, x, y, z, cx, cy, cz); } void lovrColliderApplyTorque(Collider* collider, float x, float y, float z) { dBodyAddTorque(collider->body, x, y, z); } void lovrColliderGetLocalCenter(Collider* collider, float* x, float* y, float* z) { dMass m; dBodyGetMass(collider->body, &m); *x = m.c[0]; *y = m.c[1]; *z = m.c[2]; } void lovrColliderGetLocalPoint(Collider* collider, float wx, float wy, float wz, float* x, float* y, float* z) { dReal local[3]; dBodyGetPosRelPoint(collider->body, wx, wy, wz, local); *x = local[0]; *y = local[1]; *z = local[2]; } void lovrColliderGetWorldPoint(Collider* collider, float x, float y, float z, float* wx, float* wy, float* wz) { dReal world[3]; dBodyGetRelPointPos(collider->body, x, y, z, world); *wx = world[0]; *wy = world[1]; *wz = world[2]; } void lovrColliderGetLocalVector(Collider* collider, float wx, float wy, float wz, float* x, float* y, float* z) { dReal local[3]; dBodyVectorFromWorld(collider->body, wx, wy, wz, local); *x = local[0]; *y = local[1]; *z = local[2]; } void lovrColliderGetWorldVector(Collider* collider, float x, float y, float z, float* wx, float* wy, float* wz) { dReal world[3]; dBodyVectorToWorld(collider->body, x, y, z, world); *wx = world[0]; *wy = world[1]; *wz = world[2]; } void lovrColliderGetLinearVelocityFromLocalPoint(Collider* collider, float x, float y, float z, float* vx, float* vy, float* vz) { dReal velocity[3]; dBodyGetRelPointVel(collider->body, x, y, z, velocity); *vx = velocity[0]; *vy = velocity[1]; *vz = velocity[2]; } void lovrColliderGetLinearVelocityFromWorldPoint(Collider* collider, float wx, float wy, float wz, float* vx, float* vy, float* vz) { dReal velocity[3]; dBodyGetPointVel(collider->body, wx, wy, wz, velocity); *vx = velocity[0]; *vy = velocity[1]; *vz = velocity[2]; } void lovrColliderGetAABB(Collider* collider, float aabb[6]) { dGeomID shape = dBodyGetFirstGeom(collider->body); if (!shape) { memset(aabb, 0, 6 * sizeof(float)); return; } dGeomGetAABB(shape, aabb); float otherAABB[6]; while ((shape = dBodyGetNextGeom(shape)) != NULL) { dGeomGetAABB(shape, otherAABB); aabb[0] = MIN(aabb[0], otherAABB[0]); aabb[1] = MAX(aabb[1], otherAABB[1]); aabb[2] = MIN(aabb[2], otherAABB[2]); aabb[3] = MAX(aabb[3], otherAABB[3]); aabb[4] = MIN(aabb[4], otherAABB[4]); aabb[5] = MAX(aabb[5], otherAABB[5]); } } void lovrShapeDestroy(void* ref) { Shape* shape = ref; lovrShapeDestroyData(shape); free(shape); } void lovrShapeDestroyData(Shape* shape) { if (shape->id) { dGeomDestroy(shape->id); shape->id = NULL; } } ShapeType lovrShapeGetType(Shape* shape) { return shape->type; } Collider* lovrShapeGetCollider(Shape* shape) { return shape->collider; } bool lovrShapeIsEnabled(Shape* shape) { return dGeomIsEnabled(shape->id); } void lovrShapeSetEnabled(Shape* shape, bool enabled) { if (enabled) { dGeomEnable(shape->id); } else { dGeomDisable(shape->id); } } void* lovrShapeGetUserData(Shape* shape) { return shape->userdata; } void lovrShapeSetUserData(Shape* shape, void* data) { shape->userdata = data; } void lovrShapeGetPosition(Shape* shape, float* x, float* y, float* z) { const dReal* position = dGeomGetOffsetPosition(shape->id); *x = position[0]; *y = position[1]; *z = position[2]; } void lovrShapeSetPosition(Shape* shape, float x, float y, float z) { dGeomSetOffsetPosition(shape->id, x, y, z); } void lovrShapeGetOrientation(Shape* shape, float* angle, float* x, float* y, float* z) { dReal q[4]; dGeomGetOffsetQuaternion(shape->id, q); float quaternion[4] = { q[1], q[2], q[3], q[0] }; quat_getAngleAxis(quaternion, angle, x, y, z); } void lovrShapeSetOrientation(Shape* shape, float angle, float x, float y, float z) { float quaternion[4]; float axis[3] = { x, y, z }; quat_fromAngleAxis(quaternion, angle, axis); float q[4] = { quaternion[3], quaternion[0], quaternion[1], quaternion[2] }; dGeomSetOffsetQuaternion(shape->id, q); } void lovrShapeGetMass(Shape* shape, float density, float* cx, float* cy, float* cz, float* mass, float inertia[6]) { dMass m; dMassSetZero(&m); switch (shape->type) { case SHAPE_SPHERE: { dMassSetSphere(&m, density, dGeomSphereGetRadius(shape->id)); break; } case SHAPE_BOX: { dReal lengths[3]; dGeomBoxGetLengths(shape->id, lengths); dMassSetBox(&m, density, lengths[0], lengths[1], lengths[2]); break; } case SHAPE_CAPSULE: { dReal radius, length; dGeomCapsuleGetParams(shape->id, &radius, &length); dMassSetCapsule(&m, density, 3, radius, length); break; } case SHAPE_CYLINDER: { dReal radius, length; dGeomCylinderGetParams(shape->id, &radius, &length); dMassSetCylinder(&m, density, 3, radius, length); break; } } const dReal* position = dGeomGetOffsetPosition(shape->id); dMassTranslate(&m, position[0], position[1], position[2]); const dReal* rotation = dGeomGetOffsetRotation(shape->id); dMassRotate(&m, rotation); *cx = m.c[0]; *cy = m.c[1]; *cz = m.c[2]; *mass = m.mass; // Diagonal inertia[0] = m.I[0]; inertia[1] = m.I[5]; inertia[2] = m.I[10]; // Lower triangular inertia[3] = m.I[4]; inertia[4] = m.I[8]; inertia[5] = m.I[9]; } void lovrShapeGetAABB(Shape* shape, float aabb[6]) { dGeomGetAABB(shape->id, aabb); } SphereShape* lovrSphereShapeCreate(float radius) { SphereShape* sphere = lovrAlloc(SphereShape, lovrShapeDestroy); if (!sphere) return NULL; sphere->type = SHAPE_SPHERE; sphere->id = dCreateSphere(0, radius); dGeomSetData(sphere->id, sphere); return sphere; } float lovrSphereShapeGetRadius(SphereShape* sphere) { return dGeomSphereGetRadius(sphere->id); } void lovrSphereShapeSetRadius(SphereShape* sphere, float radius) { dGeomSphereSetRadius(sphere->id, radius); } BoxShape* lovrBoxShapeCreate(float x, float y, float z) { BoxShape* box = lovrAlloc(BoxShape, lovrShapeDestroy); if (!box) return NULL; box->type = SHAPE_BOX; box->id = dCreateBox(0, x, y, z); dGeomSetData(box->id, box); return box; } void lovrBoxShapeGetDimensions(BoxShape* box, float* x, float* y, float* z) { float dimensions[3]; dGeomBoxGetLengths(box->id, dimensions); *x = dimensions[0]; *y = dimensions[1]; *z = dimensions[2]; } void lovrBoxShapeSetDimensions(BoxShape* box, float x, float y, float z) { dGeomBoxSetLengths(box->id, x, y, z); } CapsuleShape* lovrCapsuleShapeCreate(float radius, float length) { CapsuleShape* capsule = lovrAlloc(CapsuleShape, lovrShapeDestroy); if (!capsule) return NULL; capsule->type = SHAPE_CAPSULE; capsule->id = dCreateCapsule(0, radius, length); dGeomSetData(capsule->id, capsule); return capsule; } float lovrCapsuleShapeGetRadius(CapsuleShape* capsule) { float radius, length; dGeomCapsuleGetParams(capsule->id, &radius, &length); return radius; } void lovrCapsuleShapeSetRadius(CapsuleShape* capsule, float radius) { dGeomCapsuleSetParams(capsule->id, radius, lovrCapsuleShapeGetLength(capsule)); } float lovrCapsuleShapeGetLength(CapsuleShape* capsule) { float radius, length; dGeomCapsuleGetParams(capsule->id, &radius, &length); return length; } void lovrCapsuleShapeSetLength(CapsuleShape* capsule, float length) { dGeomCapsuleSetParams(capsule->id, lovrCapsuleShapeGetRadius(capsule), length); } CylinderShape* lovrCylinderShapeCreate(float radius, float length) { CylinderShape* cylinder = lovrAlloc(CylinderShape, lovrShapeDestroy); if (!cylinder) return NULL; cylinder->type = SHAPE_CYLINDER; cylinder->id = dCreateCylinder(0, radius, length); dGeomSetData(cylinder->id, cylinder); return cylinder; } float lovrCylinderShapeGetRadius(CylinderShape* cylinder) { float radius, length; dGeomCylinderGetParams(cylinder->id, &radius, &length); return radius; } void lovrCylinderShapeSetRadius(CylinderShape* cylinder, float radius) { dGeomCylinderSetParams(cylinder->id, radius, lovrCylinderShapeGetLength(cylinder)); } float lovrCylinderShapeGetLength(CylinderShape* cylinder) { float radius, length; dGeomCylinderGetParams(cylinder->id, &radius, &length); return length; } void lovrCylinderShapeSetLength(CylinderShape* cylinder, float length) { dGeomCylinderSetParams(cylinder->id, lovrCylinderShapeGetRadius(cylinder), length); } void lovrJointDestroy(void* ref) { Joint* joint = ref; lovrJointDestroyData(joint); free(joint); } void lovrJointDestroyData(Joint* joint) { if (joint->id) { dJointDestroy(joint->id); joint->id = NULL; } } JointType lovrJointGetType(Joint* joint) { return joint->type; } void lovrJointGetColliders(Joint* joint, Collider** a, Collider** b) { dBodyID bodyA = dJointGetBody(joint->id, 0); dBodyID bodyB = dJointGetBody(joint->id, 1); if (bodyA) { *a = dBodyGetData(bodyA); } if (bodyB) { *b = dBodyGetData(bodyB); } } void* lovrJointGetUserData(Joint* joint) { return joint->userdata; } void lovrJointSetUserData(Joint* joint, void* data) { joint->userdata = data; } BallJoint* lovrBallJointCreate(Collider* a, Collider* b, float x, float y, float z) { lovrAssert(a->world == b->world, "Joint bodies must exist in same World"); BallJoint* joint = lovrAlloc(BallJoint, lovrJointDestroy); if (!joint) return NULL; joint->type = JOINT_BALL; joint->id = dJointCreateBall(a->world->id, 0); dJointSetData(joint->id, joint); dJointAttach(joint->id, a->body, b->body); lovrBallJointSetAnchor(joint, x, y, z); return joint; } void lovrBallJointGetAnchors(BallJoint* joint, float* x1, float* y1, float* z1, float* x2, float* y2, float* z2) { float anchor[3]; dJointGetBallAnchor(joint->id, anchor); *x1 = anchor[0]; *y1 = anchor[1]; *z1 = anchor[2]; dJointGetBallAnchor2(joint->id, anchor); *x2 = anchor[0]; *y2 = anchor[1]; *z2 = anchor[2]; } void lovrBallJointSetAnchor(BallJoint* joint, float x, float y, float z) { dJointSetBallAnchor(joint->id, x, y, z); } DistanceJoint* lovrDistanceJointCreate(Collider* a, Collider* b, float x1, float y1, float z1, float x2, float y2, float z2) { lovrAssert(a->world == b->world, "Joint bodies must exist in same World"); DistanceJoint* joint = lovrAlloc(DistanceJoint, lovrJointDestroy); if (!joint) return NULL; joint->type = JOINT_DISTANCE; joint->id = dJointCreateDBall(a->world->id, 0); dJointSetData(joint->id, joint); dJointAttach(joint->id, a->body, b->body); lovrDistanceJointSetAnchors(joint, x1, y1, z1, x2, y2, z2); return joint; } void lovrDistanceJointGetAnchors(DistanceJoint* joint, float* x1, float* y1, float* z1, float* x2, float* y2, float* z2) { float anchor[3]; dJointGetDBallAnchor1(joint->id, anchor); *x1 = anchor[0]; *y1 = anchor[1]; *z1 = anchor[2]; dJointGetDBallAnchor2(joint->id, anchor); *x2 = anchor[0]; *y2 = anchor[1]; *z2 = anchor[2]; } void lovrDistanceJointSetAnchors(DistanceJoint* joint, float x1, float y1, float z1, float x2, float y2, float z2) { dJointSetDBallAnchor1(joint->id, x1, y1, z1); dJointSetDBallAnchor2(joint->id, x2, y2, z2); } float lovrDistanceJointGetDistance(DistanceJoint* joint) { return dJointGetDBallDistance(joint->id); } void lovrDistanceJointSetDistance(DistanceJoint* joint, float distance) { dJointSetDBallDistance(joint->id, distance); } HingeJoint* lovrHingeJointCreate(Collider* a, Collider* b, float x, float y, float z, float ax, float ay, float az) { lovrAssert(a->world == b->world, "Joint bodies must exist in same World"); HingeJoint* joint = lovrAlloc(HingeJoint, lovrJointDestroy); if (!joint) return NULL; joint->type = JOINT_HINGE; joint->id = dJointCreateHinge(a->world->id, 0); dJointSetData(joint->id, joint); dJointAttach(joint->id, a->body, b->body); lovrHingeJointSetAnchor(joint, x, y, z); lovrHingeJointSetAxis(joint, ax, ay, az); return joint; } void lovrHingeJointGetAnchors(HingeJoint* joint, float* x1, float* y1, float* z1, float* x2, float* y2, float* z2) { float anchor[3]; dJointGetHingeAnchor(joint->id, anchor); *x1 = anchor[0]; *y1 = anchor[1]; *z1 = anchor[2]; dJointGetHingeAnchor2(joint->id, anchor); *x2 = anchor[0]; *y2 = anchor[1]; *z2 = anchor[2]; } void lovrHingeJointSetAnchor(HingeJoint* joint, float x, float y, float z) { dJointSetHingeAnchor(joint->id, x, y, z); } void lovrHingeJointGetAxis(HingeJoint* joint, float* x, float* y, float* z) { float axis[3]; dJointGetHingeAxis(joint->id, axis); *x = axis[0]; *y = axis[1]; *z = axis[2]; } void lovrHingeJointSetAxis(HingeJoint* joint, float x, float y, float z) { dJointSetHingeAxis(joint->id, x, y, z); } float lovrHingeJointGetAngle(HingeJoint* joint) { return dJointGetHingeAngle(joint->id); } float lovrHingeJointGetLowerLimit(HingeJoint* joint) { return dJointGetHingeParam(joint->id, dParamLoStop); } void lovrHingeJointSetLowerLimit(HingeJoint* joint, float limit) { dJointSetHingeParam(joint->id, dParamLoStop, limit); } float lovrHingeJointGetUpperLimit(HingeJoint* joint) { return dJointGetHingeParam(joint->id, dParamHiStop); } void lovrHingeJointSetUpperLimit(HingeJoint* joint, float limit) { dJointSetHingeParam(joint->id, dParamHiStop, limit); } SliderJoint* lovrSliderJointCreate(Collider* a, Collider* b, float ax, float ay, float az) { lovrAssert(a->world == b->world, "Joint bodies must exist in the same world"); SliderJoint* joint = lovrAlloc(SliderJoint, lovrJointDestroy); if (!joint) return NULL; joint->type = JOINT_SLIDER; joint->id = dJointCreateSlider(a->world->id, 0); dJointSetData(joint->id, joint); dJointAttach(joint->id, a->body, b->body); lovrSliderJointSetAxis(joint, ax, ay, az); return joint; } void lovrSliderJointGetAxis(SliderJoint* joint, float* x, float* y, float* z) { float axis[3]; dJointGetSliderAxis(joint->id, axis); *x = axis[0]; *y = axis[1]; *z = axis[2]; } void lovrSliderJointSetAxis(SliderJoint* joint, float x, float y, float z) { dJointSetSliderAxis(joint->id, x, y, z); } float lovrSliderJointGetPosition(SliderJoint* joint) { return dJointGetSliderPosition(joint->id); } float lovrSliderJointGetLowerLimit(SliderJoint* joint) { return dJointGetSliderParam(joint->id, dParamLoStop); } void lovrSliderJointSetLowerLimit(SliderJoint* joint, float limit) { dJointSetSliderParam(joint->id, dParamLoStop, limit); } float lovrSliderJointGetUpperLimit(SliderJoint* joint) { return dJointGetSliderParam(joint->id, dParamHiStop); } void lovrSliderJointSetUpperLimit(SliderJoint* joint, float limit) { dJointSetSliderParam(joint->id, dParamHiStop, limit); }