1
0
Fork 0
mirror of https://github.com/Horhik/dotfiles.git synced 2024-11-30 03:51:28 +00:00
Dotfiles/.config/cava/config

167 lines
5.5 KiB
Plaintext
Raw Normal View History

2020-07-27 04:59:00 +00:00
## Configuration file for CAVA. Default values are commented out. Use either ';' or '#' for commenting.
[general]
# Smoothing mode. Can be 'normal', 'scientific' or 'waves'. DEPRECATED as of 0.6.0
2020-07-27 07:02:48 +00:00
mode = scientific
2020-07-27 04:59:00 +00:00
# Accepts only non-negative values.
; framerate = 60
# 'autosens' will attempt to decrease sensitivity if the bars peak. 1 = on, 0 = off
# new as of 0.6.0 autosens of low values (dynamic range)
# 'overshoot' allows bars to overshoot (in % of terminal height) without initiating autosens. DEPRECATED as of 0.6.0
; autosens = 1
; overshoot = 20
# Manual sensitivity in %. Autosens must be turned off for this to take effect.
# 200 means double height. Accepts only non-negative values.
; sensitivity = 100
# The number of bars (0-200). 0 sets it to auto (fill up console).
# Bars' width and space between bars in number of characters.
; bars = 0
; bar_width = 2
; bar_spacing = 1
# Lower and higher cutoff frequencies for lowest and highest bars
# the bandwidth of the visualizer.
# Note: there is a minimum total bandwidth of 43Mhz x number of bars.
# Cava will automatically increase the higher cutoff if a too low band is specified.
; lower_cutoff_freq = 50
; higher_cutoff_freq = 10000
# FFT buffer is set in the exponent of 2 and must be between 8 - 16, 8 = 256, 16 = 65536
# this is the audio buffer used to create the spectrum
# increasing the will improve the accuracy of the visualization,
# but will also make it slower and increase CPU usage
# anything below 10 and above 13 is considered experimental.
; FFTbufferSize = 12;
[input]
# Audio capturing method. Possible methods are: 'pulse', 'alsa', 'fifo', 'sndio' or 'shmem'
# Defaults to 'pulse', 'alsa' or 'fifo', in that order, dependent on what support cava was built with.
#
# All input methods uses the same config variable 'source'
# to define where it should get the audio.
#
# For pulseaudio 'source' will be the source. Default: 'auto', which uses the monitor source of the default sink
# (all pulseaudio sinks(outputs) have 'monitor' sources(inputs) associated with them).
#
# For alsa 'source' will be the capture device.
# For fifo 'source' will be the path to fifo-file.
# For shmem 'source' will be /squeezelite-AA:BB:CC:DD:EE:FF where 'AA:BB:CC:DD:EE:FF' will be squeezelite's MAC address
; method = pulse
; source = auto
; method = alsa
; source = hw:Loopback,1
; method = fifo
; source = /tmp/mpd.fifo
; sample_rate = 44100
; sample_bits = 16
; method = shmem
; source = /squeezelite-AA:BB:CC:DD:EE:FF
; method = portaudio
; source = auto
[output]
# Output method. Can be 'ncurses', 'noncurses' or 'raw'.
# 'noncurses' uses a custom framebuffer technique and draws only changes
# from frame to frame. As of version 0.7.0 'noncurses' is default.
#
# 'raw' is an 8 or 16 bit (configurable via the 'bit_format' option) data
# stream of the bar heights that can be used to send to other applications.
# 'raw' defaults to 200 bars, which can be adjusted in the 'bars' option above.
method = ncurses
# Visual channels. Can be 'stereo' or 'mono'.
# 'stereo' mirrors both channels with low frequencies in center.
# 'mono' outputs left to right lowest to highest frequencies.
# 'mono_option' set mono to either take input from 'left', 'right' or 'average'.
; channels = stereo
; mono_option = average
# Raw output target. A fifo will be created if target does not exist.
; raw_target = /dev/stdout
# Raw data format. Can be 'binary' or 'ascii'.
; data_format = binary
# Binary bit format, can be '8bit' (0-255) or '16bit' (0-65530).
; bit_format = 16bit
# Ascii max value. In 'ascii' mode range will run from 0 to value specified here
; ascii_max_range = 1000
# Ascii delimiters. In ascii format each bar and frame is separated by a delimiters.
# Use decimal value in ascii table (i.e. 59 = ';' and 10 = '\n' (line feed)).
; bar_delimiter = 59
; frame_delimiter = 10
[color]
# Colors can be one of seven predefined: black, blue, cyan, green, magenta, red, white, yellow.
# Or defined by hex code '#xxxxxx' (hex code must be within ''). User defined colors requires
# ncurses output method and a terminal that can change color definitions such as Gnome-terminal or rxvt.
# default is to keep current terminal color
2020-07-27 07:02:48 +00:00
background = default
2020-07-27 04:59:00 +00:00
foreground = cyan
# Gradient mode, only hex defined colors (and thereby ncurses mode) are supported,
# background must also be defined in hex or remain commented out. 1 = on, 0 = off.
# You can define as many as 8 different colors. They range from bottom to top of screen
2020-07-27 07:02:48 +00:00
gradient = 7
gradient_count = 7
gradient_color_1 = '#8be9fd'
gradient_color_2 = '#50fa7b'
gradient_color_3 = '#f1fa8c'
gradient_color_4 = '#ffb86c'
gradient_color_5 = '#bd93f9'
gradient_color_6 = '#ff79c6'
gradient_color_7 = '#ff5555'
2020-07-27 04:59:00 +00:00
[smoothing]
# Percentage value for integral smoothing. Takes values from 0 - 100.
# Higher values means smoother, but less precise. 0 to disable.
; integral = 77
# Disables or enables the so-called "Monstercat smoothing" with or without "waves". Set to 0 to disable.
monstercat = 2
waves = 5
# Set gravity percentage for "drop off". Higher values means bars will drop faster.
# Accepts only non-negative values. 50 means half gravity, 200 means double. Set to 0 to disable "drop off".
; gravity = 100
# In bar height, bars that would have been lower that this will not be drawn.
; ignore = 0
[eq]
# This one is tricky. You can have as much keys as you want.
# Remember to uncomment more then one key! More keys = more precision.
# Look at readme.md on github for further explanations and examples.
; 1 = 1 # bass
; 2 = 1
; 3 = 1 # midtone
; 4 = 1
; 5 = 1 # treble