selfprivacy-rest-api/selfprivacy_api/utils/monitoring.py

423 lines
14 KiB
Python

"""Prometheus monitoring queries."""
# pylint: disable=too-few-public-methods
import requests
import strawberry
from dataclasses import dataclass
from typing import Optional, Annotated, Union, List, Tuple
from datetime import datetime, timedelta
PROMETHEUS_URL = "http://localhost:9001"
@strawberry.type
@dataclass
class MonitoringValue:
timestamp: datetime
value: str
@strawberry.type
@dataclass
class MonitoringMetric:
metric_id: str
values: List[MonitoringValue]
@strawberry.type
class MonitoringQueryError:
error: str
@strawberry.type
class MonitoringValues:
values: List[MonitoringValue]
@strawberry.type
class MonitoringMetrics:
metrics: List[MonitoringMetric]
MonitoringValuesResult = Annotated[
Union[MonitoringValues, MonitoringQueryError],
strawberry.union("MonitoringValuesResult"),
]
MonitoringMetricsResult = Annotated[
Union[MonitoringMetrics, MonitoringQueryError],
strawberry.union("MonitoringMetricsResult"),
]
class MonitoringQueries:
@staticmethod
def _send_range_query(
query: str, start: int, end: int, step: int, result_type: Optional[str] = None
) -> Union[dict, MonitoringQueryError]:
try:
response = requests.get(
f"{PROMETHEUS_URL}/api/v1/query_range",
params={
"query": query,
"start": start,
"end": end,
"step": step,
},
)
if response.status_code != 200:
return MonitoringQueryError(
error=f"Prometheus returned unexpected HTTP status code. Error: {response.text}. The query was {query}"
)
json = response.json()
if result_type and json["data"]["resultType"] != result_type:
return MonitoringQueryError(
error="Unexpected resultType returned from Prometheus, request failed"
)
return json["data"]
except Exception as error:
return MonitoringQueryError(
error=f"Prometheus request failed! Error: {str(error)}"
)
@staticmethod
def _send_query(
query: str, result_type: Optional[str] = None
) -> Union[dict, MonitoringQueryError]:
try:
response = requests.get(
f"{PROMETHEUS_URL}/api/v1/query",
params={
"query": query,
},
)
if response.status_code != 200:
return MonitoringQueryError(
error=f"Prometheus returned unexpected HTTP status code. Error: {response.text}. The query was {query}"
)
json = response.json()
if result_type and json["data"]["resultType"] != result_type:
return MonitoringQueryError(
error="Unexpected resultType returned from Prometheus, request failed"
)
return json["data"]
except Exception as error:
return MonitoringQueryError(
error=f"Prometheus request failed! Error: {str(error)}"
)
@staticmethod
def _prometheus_value_to_monitoring_value(x: Tuple[int, str]):
return MonitoringValue(timestamp=datetime.fromtimestamp(x[0]), value=x[1])
@staticmethod
def _clean_slice_id(slice_id: str, clean_id: bool) -> str:
"""Slices come in form of `/slice_name.slice`, we need to remove the `.slice` and `/` part."""
if clean_id:
return slice_id.split(".")[0].split("/")[1]
return slice_id
@staticmethod
def _prometheus_response_to_monitoring_metrics(
response: dict, id_key: str, clean_id: bool = False
) -> List[MonitoringMetric]:
if response["resultType"] == "vector":
return list(
map(
lambda x: MonitoringMetric(
metric_id=MonitoringQueries._clean_slice_id(
x["metric"][id_key], clean_id=clean_id
),
values=[
MonitoringQueries._prometheus_value_to_monitoring_value(
x["value"]
)
],
),
response["result"],
)
)
else:
return list(
map(
lambda x: MonitoringMetric(
metric_id=MonitoringQueries._clean_slice_id(
x["metric"][id_key], clean_id=clean_id
),
values=list(
map(
MonitoringQueries._prometheus_value_to_monitoring_value,
x["values"],
)
),
),
response["result"],
)
)
@staticmethod
def _calculate_offset_and_duration(
start: datetime, end: datetime
) -> Tuple[int, int]:
"""Calculate the offset and duration for Prometheus queries.
They mast be in seconds.
"""
offset = int((datetime.now() - end).total_seconds())
duration = int((end - start).total_seconds())
return offset, duration
@staticmethod
def cpu_usage_overall(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
step: int = 60, # seconds
) -> MonitoringValuesResult:
"""
Get CPU information.
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
step (int): Interval in seconds for querying disk usage data.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
start_timestamp = int(start.timestamp())
end_timestamp = int(end.timestamp())
query = '100 - (avg by (instance) (rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)'
data = MonitoringQueries._send_range_query(
query, start_timestamp, end_timestamp, step, result_type="matrix"
)
if isinstance(data, MonitoringQueryError):
return data
return MonitoringValues(
values=list(
map(
MonitoringQueries._prometheus_value_to_monitoring_value,
data["result"][0]["values"],
)
)
)
@staticmethod
def memory_usage_overall(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
step: int = 60, # seconds
) -> MonitoringValuesResult:
"""
Get memory usage.
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
step (int): Interval in seconds for querying memory usage data.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
start_timestamp = int(start.timestamp())
end_timestamp = int(end.timestamp())
query = "100 - (100 * (node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes))"
data = MonitoringQueries._send_range_query(
query, start_timestamp, end_timestamp, step, result_type="matrix"
)
if isinstance(data, MonitoringQueryError):
return data
return MonitoringValues(
values=list(
map(
MonitoringQueries._prometheus_value_to_monitoring_value,
data["result"][0]["values"],
)
)
)
@staticmethod
def memory_usage_max_by_slice(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
) -> MonitoringMetricsResult:
"""
Get maximum memory usage for each service (i.e. systemd slice).
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
offset, duration = MonitoringQueries._calculate_offset_and_duration(start, end)
if offset == 0:
query = f'max_over_time((container_memory_rss{{id!~".*slice.*slice", id=~".*slice"}}+container_memory_swap{{id!~".*slice.*slice", id=~".*slice"}})[{duration}s:])'
else:
query = f'max_over_time((container_memory_rss{{id!~".*slice.*slice", id=~".*slice"}}+container_memory_swap{{id!~".*slice.*slice", id=~".*slice"}})[{duration}s:] offset {offset}s)'
data = MonitoringQueries._send_query(query, result_type="vector")
if isinstance(data, MonitoringQueryError):
return data
return MonitoringMetrics(
metrics=MonitoringQueries._prometheus_response_to_monitoring_metrics(
data, "id", clean_id=True
)
)
@staticmethod
def memory_usage_average_by_slice(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
) -> MonitoringMetricsResult:
"""
Get average memory usage for each service (i.e. systemd slice).
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
offset, duration = MonitoringQueries._calculate_offset_and_duration(start, end)
if offset == 0:
query = f'avg_over_time((container_memory_rss{{id!~".*slice.*slice", id=~".*slice"}}+container_memory_swap{{id!~".*slice.*slice", id=~".*slice"}})[{duration}s:])'
else:
query = f'avg_over_time((container_memory_rss{{id!~".*slice.*slice", id=~".*slice"}}+container_memory_swap{{id!~".*slice.*slice", id=~".*slice"}})[{duration}s:] offset {offset}s)'
data = MonitoringQueries._send_query(query, result_type="vector")
if isinstance(data, MonitoringQueryError):
return data
return MonitoringMetrics(
metrics=MonitoringQueries._prometheus_response_to_monitoring_metrics(
data, "id", clean_id=True
)
)
@staticmethod
def disk_usage_overall(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
step: int = 60, # seconds
) -> MonitoringMetricsResult:
"""
Get disk usage information.
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
step (int): Interval in seconds for querying disk usage data.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
start_timestamp = int(start.timestamp())
end_timestamp = int(end.timestamp())
query = """100 - (100 * sum by (device) (node_filesystem_avail_bytes{fstype!="rootfs",fstype!="ramfs",fstype!="tmpfs",mountpoint!="/efi"}) / sum by (device) (node_filesystem_size_bytes{fstype!="rootfs",fstype!="ramfs",fstype!="tmpfs",mountpoint!="/efi"}))"""
data = MonitoringQueries._send_range_query(
query, start_timestamp, end_timestamp, step, result_type="matrix"
)
if isinstance(data, MonitoringQueryError):
return data
return MonitoringMetrics(
metrics=MonitoringQueries._prometheus_response_to_monitoring_metrics(
data, "device"
)
)
@staticmethod
def network_usage_overall(
start: Optional[datetime] = None,
end: Optional[datetime] = None,
step: int = 60, # seconds
) -> MonitoringMetricsResult:
"""
Get network usage information for both download and upload.
Args:
start (datetime, optional): The start time.
Defaults to 20 minutes ago if not provided.
end (datetime, optional): The end time.
Defaults to current time if not provided.
step (int): Interval in seconds for querying network data.
"""
if start is None:
start = datetime.now() - timedelta(minutes=20)
if end is None:
end = datetime.now()
start_timestamp = int(start.timestamp())
end_timestamp = int(end.timestamp())
query = """
label_replace(rate(node_network_receive_bytes_total{device!="lo"}[5m]), "direction", "receive", "device", ".*")
or
label_replace(rate(node_network_transmit_bytes_total{device!="lo"}[5m]), "direction", "transmit", "device", ".*")
"""
data = MonitoringQueries._send_range_query(
query, start_timestamp, end_timestamp, step, result_type="matrix"
)
if isinstance(data, MonitoringQueryError):
return data
return MonitoringMetrics(
metrics=MonitoringQueries._prometheus_response_to_monitoring_metrics(
data, "direction"
)
)