initial commit

This commit is contained in:
Inex Code 2021-12-03 23:09:15 +03:00
commit 06af1dbb7c
2 changed files with 134 additions and 0 deletions

53
sat.py Normal file
View file

@ -0,0 +1,53 @@
from PIL import Image
import requests
from sat7_pointer import *
# Load Landsat 7 band 1, 2, 3 TIF images and create a composite image
# from the three bands.
#
# The composite image is a greyscale image with a red, green and blue
# channel.
#
# The red channel is the red channel of band 3, the green channel is the
# green channel of band 2 and the blue channel is the blue channel of band 1.
#
# The composite image is saved as a PNG file.
band1 = Image.open('LE07_L1TP_177025_20210723_20210818_02_T1_B1.TIF')
band2 = Image.open('LE07_L1TP_177025_20210723_20210818_02_T1_B2.TIF')
band3 = Image.open('LE07_L1TP_177025_20210723_20210818_02_T1_B3.TIF')
composite = Image.merge('RGB', (band3, band2, band1))
# Load corner coordinates of the image.
#
# The coordinates are stored in a MTL text file.
mtl_data = load_metadata('LE07_L1TP_177025_20210723_20210818_02_T1_MTL.txt')
# Fetch coordinates of a city.
#
# The coordinates of a city are fetched from the OpenStreetMap API.
#
# The coordinates are used to calculate the corner coordinates of the
# composite image.
#
# # City is Belgorod, Russia.
url = 'http://nominatim.openstreetmap.org/search?q=Belgorod,+Russia&format=json'
response = requests.get(url)
data = response.json()
# Convert bounding box coordinates to image coordinates.
x0, y1 = lat_lot_to_pixel(data[0]['boundingbox'][0], data[0]['boundingbox'][2], mtl_data)
x1, y0 = lat_lot_to_pixel(data[0]['boundingbox'][1], data[0]['boundingbox'][3], mtl_data)
print(x0, y0)
print(x1, y1)
print(composite.size)
# Crop the image to the bounding box coordinates.
cropped = composite.crop((x0, y0, x1, y1))
cropped.save('cropped.png')

81
sat7_pointer/__init__.py Normal file
View file

@ -0,0 +1,81 @@
import os
import re
import csv
import pyproj
import math
import numpy as np
def load_metadata(mtl_file):
mtl_data = {}
with open(mtl_file) as f:
mtl = csv.reader(f, delimiter='=')
try:
for row in mtl:
mtl_data[row[0].strip()] = row[1]
except IndexError:
pass
mtl_data['width'] = float(mtl_data['REFLECTIVE_SAMPLES'])
mtl_data['height'] = float(mtl_data['REFLECTIVE_LINES'])
mtl_data['lat_lon_corners'] = np.array([
[float(mtl_data['CORNER_UL_LAT_PRODUCT']), float(mtl_data['CORNER_UL_LON_PRODUCT']), 0],
[float(mtl_data['CORNER_UR_LAT_PRODUCT']), float(mtl_data['CORNER_UR_LON_PRODUCT']), 0],
[float(mtl_data['CORNER_LR_LAT_PRODUCT']), float(mtl_data['CORNER_LR_LON_PRODUCT']), 0],
[float(mtl_data['CORNER_LL_LAT_PRODUCT']), float(mtl_data['CORNER_LL_LON_PRODUCT']), 0]
])
mtl_data['ecef'] = pyproj.Proj(proj='geocent', ellps='WGS84', datum='WGS84')
mtl_data['lla'] = pyproj.Proj(proj='latlong', ellps='WGS84', datum='WGS84')
x, y, z = pyproj.transform(mtl_data['lla'], mtl_data['ecef'],
mtl_data['lat_lon_corners'][:, 1],
mtl_data['lat_lon_corners'][:, 0],
mtl_data['lat_lon_corners'][:, 2],
radians=False)
mtl_data['ecef_corners'] = np.array([x, y, z]).T
vector_a = mtl_data['vector_a'] = mtl_data['ecef_corners'][1, :] - mtl_data['ecef_corners'][0, :]
vector_b = mtl_data['vector_b'] = mtl_data['ecef_corners'][2, :] - mtl_data['ecef_corners'][0, :]
vector_c = mtl_data['vector_c'] = mtl_data['ecef_corners'][3, :] - mtl_data['ecef_corners'][0, :]
altitude = mtl_data['altitude'] = 710e3
vector_s = mtl_data['vector_s'] = (vector_a + vector_c) / 2 - altitude * np.cross(vector_a, vector_c) / np.linalg.norm(np.cross(vector_a, vector_c))
b = np.array([vector_b - (vector_a + vector_c)])
A = np.array([vector_a - vector_s, vector_c - vector_s, vector_b - vector_s])
mnt = np.linalg.solve(A.T, b.T)
print(mnt)
mtl_data['mu'], mtl_data['nu'] = mnt[0][0], mnt[1][0]
return mtl_data
def lat_lot_to_pixel(lat, lon, mtl_data):
target_vector = np.array([lat, lon, 0])
x1, y1, z1 = pyproj.transform(mtl_data['lla'], mtl_data['ecef'],
target_vector[1], target_vector[0], target_vector[2], radians=False)
x2, y2, z2 = pyproj.transform(mtl_data['lla'], mtl_data['ecef'],
mtl_data['lat_lon_corners'][0, 1], mtl_data['lat_lon_corners'][0, 0], mtl_data['lat_lon_corners'][0, 2], radians=False)
x = np.array([x1-x2, y1-y2, z1-z2])
v = np.cross(mtl_data['vector_c'], mtl_data['vector_a'])
xh = np.divide(np.dot(v.T, x), np.linalg.norm(v))
x1, y1, z1 = pyproj.transform(mtl_data['lla'], mtl_data['ecef'],
target_vector[1], target_vector[0], -xh, radians=False)
x = np.array([x1-x2, y1-y2, z1-z2])
A = np.array([
(1+mtl_data['mu'])*mtl_data['vector_a'] - mtl_data['mu']*mtl_data['vector_s'],
(1+mtl_data['nu'])*mtl_data['vector_c'] - mtl_data['nu']*mtl_data['vector_s'],
x-mtl_data['vector_s']
]).T
z = np.linalg.solve(A, x.T)
k = round(z[0], 4)
r = round(z[1], 4)
target_x = min([max([1, round(k*mtl_data['width'] + 0.5)]), mtl_data['width']])
target_y = min([max([1, round(r*mtl_data['height'] + 0.5)]), mtl_data['height']])
return target_x, target_y