sing-box/common/ja3/parser.go

358 lines
10 KiB
Go
Raw Normal View History

2024-07-07 07:45:50 +00:00
// Copyright (c) 2018, Open Systems AG. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
package ja3
import (
"encoding/binary"
"strconv"
)
const (
// Constants used for parsing
recordLayerHeaderLen int = 5
handshakeHeaderLen int = 6
randomDataLen int = 32
sessionIDHeaderLen int = 1
cipherSuiteHeaderLen int = 2
compressMethodHeaderLen int = 1
extensionsHeaderLen int = 2
extensionHeaderLen int = 4
sniExtensionHeaderLen int = 5
ecExtensionHeaderLen int = 2
ecpfExtensionHeaderLen int = 1
versionExtensionHeaderLen int = 1
signatureAlgorithmsExtensionHeaderLen int = 2
contentType uint8 = 22
handshakeType uint8 = 1
sniExtensionType uint16 = 0
sniNameDNSHostnameType uint8 = 0
ecExtensionType uint16 = 10
ecpfExtensionType uint16 = 11
versionExtensionType uint16 = 43
signatureAlgorithmsExtensionType uint16 = 13
// Versions
// The bitmask covers the versions SSL3.0 to TLS1.2
tlsVersionBitmask uint16 = 0xFFFC
tls13 uint16 = 0x0304
// GREASE values
// The bitmask covers all GREASE values
GreaseBitmask uint16 = 0x0F0F
// Constants used for marshalling
dashByte = byte(45)
commaByte = byte(44)
)
// parseSegment to populate the corresponding ClientHello object or return an error
func (j *ClientHello) parseSegment(segment []byte) error {
// Check if we can decode the next fields
if len(segment) < recordLayerHeaderLen {
return &ParseError{LengthErr, 1}
}
// Check if we have "Content Type: Handshake (22)"
contType := uint8(segment[0])
if contType != contentType {
return &ParseError{errType: ContentTypeErr}
}
// Check if TLS record layer version is supported
tlsRecordVersion := uint16(segment[1])<<8 | uint16(segment[2])
if tlsRecordVersion&tlsVersionBitmask != 0x0300 && tlsRecordVersion != tls13 {
return &ParseError{VersionErr, 1}
}
// Check that the Handshake is as long as expected from the length field
segmentLen := uint16(segment[3])<<8 | uint16(segment[4])
if len(segment[recordLayerHeaderLen:]) < int(segmentLen) {
return &ParseError{LengthErr, 2}
}
// Keep the Handshake messege, ignore any additional following record types
hs := segment[recordLayerHeaderLen : recordLayerHeaderLen+int(segmentLen)]
err := j.parseHandshake(hs)
return err
}
// parseHandshake body
func (j *ClientHello) parseHandshake(hs []byte) error {
// Check if we can decode the next fields
if len(hs) < handshakeHeaderLen+randomDataLen+sessionIDHeaderLen {
return &ParseError{LengthErr, 3}
}
// Check if we have "Handshake Type: Client Hello (1)"
handshType := uint8(hs[0])
if handshType != handshakeType {
return &ParseError{errType: HandshakeTypeErr}
}
// Check if actual length of handshake matches (this is a great exclusion criterion for false positives,
// as these fields have to match the actual length of the rest of the segment)
handshakeLen := uint32(hs[1])<<16 | uint32(hs[2])<<8 | uint32(hs[3])
if len(hs[4:]) != int(handshakeLen) {
return &ParseError{LengthErr, 4}
}
// Check if Client Hello version is supported
tlsVersion := uint16(hs[4])<<8 | uint16(hs[5])
if tlsVersion&tlsVersionBitmask != 0x0300 && tlsVersion != tls13 {
return &ParseError{VersionErr, 2}
}
j.Version = tlsVersion
// Check if we can decode the next fields
sessionIDLen := uint8(hs[38])
if len(hs) < handshakeHeaderLen+randomDataLen+sessionIDHeaderLen+int(sessionIDLen) {
return &ParseError{LengthErr, 5}
}
// Cipher Suites
cs := hs[handshakeHeaderLen+randomDataLen+sessionIDHeaderLen+int(sessionIDLen):]
// Check if we can decode the next fields
if len(cs) < cipherSuiteHeaderLen {
return &ParseError{LengthErr, 6}
}
csLen := uint16(cs[0])<<8 | uint16(cs[1])
numCiphers := int(csLen / 2)
cipherSuites := make([]uint16, 0, numCiphers)
// Check if we can decode the next fields
if len(cs) < cipherSuiteHeaderLen+int(csLen)+compressMethodHeaderLen {
return &ParseError{LengthErr, 7}
}
for i := 0; i < numCiphers; i++ {
cipherSuite := uint16(cs[2+i<<1])<<8 | uint16(cs[3+i<<1])
cipherSuites = append(cipherSuites, cipherSuite)
}
j.CipherSuites = cipherSuites
// Check if we can decode the next fields
compressMethodLen := uint16(cs[cipherSuiteHeaderLen+int(csLen)])
if len(cs) < cipherSuiteHeaderLen+int(csLen)+compressMethodHeaderLen+int(compressMethodLen) {
return &ParseError{LengthErr, 8}
}
// Extensions
exs := cs[cipherSuiteHeaderLen+int(csLen)+compressMethodHeaderLen+int(compressMethodLen):]
err := j.parseExtensions(exs)
return err
}
// parseExtensions of the handshake
func (j *ClientHello) parseExtensions(exs []byte) error {
// Check for no extensions, this fields header is nonexistent if no body is used
if len(exs) == 0 {
return nil
}
// Check if we can decode the next fields
if len(exs) < extensionsHeaderLen {
return &ParseError{LengthErr, 9}
}
exsLen := uint16(exs[0])<<8 | uint16(exs[1])
exs = exs[extensionsHeaderLen:]
// Check if we can decode the next fields
if len(exs) < int(exsLen) {
return &ParseError{LengthErr, 10}
}
var sni []byte
var extensions, ellipticCurves []uint16
var ellipticCurvePF []uint8
var versions []uint16
var signatureAlgorithms []uint16
for len(exs) > 0 {
// Check if we can decode the next fields
if len(exs) < extensionHeaderLen {
return &ParseError{LengthErr, 11}
}
exType := uint16(exs[0])<<8 | uint16(exs[1])
exLen := uint16(exs[2])<<8 | uint16(exs[3])
// Ignore any GREASE extensions
extensions = append(extensions, exType)
// Check if we can decode the next fields
if len(exs) < extensionHeaderLen+int(exLen) {
return &ParseError{LengthErr, 12}
}
sex := exs[extensionHeaderLen : extensionHeaderLen+int(exLen)]
switch exType {
case sniExtensionType: // Extensions: server_name
// Check if we can decode the next fields
if len(sex) < sniExtensionHeaderLen {
return &ParseError{LengthErr, 13}
}
sniType := uint8(sex[2])
sniLen := uint16(sex[3])<<8 | uint16(sex[4])
sex = sex[sniExtensionHeaderLen:]
// Check if we can decode the next fields
if len(sex) != int(sniLen) {
return &ParseError{LengthErr, 14}
}
switch sniType {
case sniNameDNSHostnameType:
sni = sex
default:
return &ParseError{errType: SNITypeErr}
}
case ecExtensionType: // Extensions: supported_groups
// Check if we can decode the next fields
if len(sex) < ecExtensionHeaderLen {
return &ParseError{LengthErr, 15}
}
ecsLen := uint16(sex[0])<<8 | uint16(sex[1])
numCurves := int(ecsLen / 2)
ellipticCurves = make([]uint16, 0, numCurves)
sex = sex[ecExtensionHeaderLen:]
// Check if we can decode the next fields
if len(sex) != int(ecsLen) {
return &ParseError{LengthErr, 16}
}
for i := 0; i < numCurves; i++ {
ecType := uint16(sex[i*2])<<8 | uint16(sex[1+i*2])
ellipticCurves = append(ellipticCurves, ecType)
}
case ecpfExtensionType: // Extensions: ec_point_formats
// Check if we can decode the next fields
if len(sex) < ecpfExtensionHeaderLen {
return &ParseError{LengthErr, 17}
}
ecpfsLen := uint8(sex[0])
numPF := int(ecpfsLen)
ellipticCurvePF = make([]uint8, numPF)
sex = sex[ecpfExtensionHeaderLen:]
// Check if we can decode the next fields
if len(sex) != numPF {
return &ParseError{LengthErr, 18}
}
for i := 0; i < numPF; i++ {
ellipticCurvePF[i] = uint8(sex[i])
}
case versionExtensionType:
if len(sex) < versionExtensionHeaderLen {
return &ParseError{LengthErr, 19}
}
versionsLen := int(sex[0])
for i := 0; i < versionsLen; i += 2 {
versions = append(versions, binary.BigEndian.Uint16(sex[1:][i:]))
}
case signatureAlgorithmsExtensionType:
if len(sex) < signatureAlgorithmsExtensionHeaderLen {
return &ParseError{LengthErr, 20}
}
ssaLen := binary.BigEndian.Uint16(sex)
for i := 0; i < int(ssaLen); i += 2 {
signatureAlgorithms = append(signatureAlgorithms, binary.BigEndian.Uint16(sex[2:][i:]))
}
}
exs = exs[4+exLen:]
}
j.ServerName = string(sni)
j.Extensions = extensions
j.EllipticCurves = ellipticCurves
j.EllipticCurvePF = ellipticCurvePF
j.Versions = versions
j.SignatureAlgorithms = signatureAlgorithms
return nil
}
// marshalJA3 into a byte string
func (j *ClientHello) marshalJA3() {
// An uint16 can contain numbers with up to 5 digits and an uint8 can contain numbers with up to 3 digits, but we
// also need a byte for each separating character, except at the end.
byteStringLen := 6*(1+len(j.CipherSuites)+len(j.Extensions)+len(j.EllipticCurves)) + 4*len(j.EllipticCurvePF) - 1
byteString := make([]byte, 0, byteStringLen)
// Version
byteString = strconv.AppendUint(byteString, uint64(j.Version), 10)
byteString = append(byteString, commaByte)
// Cipher Suites
if len(j.CipherSuites) != 0 {
for _, val := range j.CipherSuites {
if val&GreaseBitmask != 0x0A0A {
continue
}
byteString = strconv.AppendUint(byteString, uint64(val), 10)
byteString = append(byteString, dashByte)
}
// Replace last dash with a comma
byteString[len(byteString)-1] = commaByte
} else {
byteString = append(byteString, commaByte)
}
// Extensions
if len(j.Extensions) != 0 {
for _, val := range j.Extensions {
if val&GreaseBitmask != 0x0A0A {
continue
}
byteString = strconv.AppendUint(byteString, uint64(val), 10)
byteString = append(byteString, dashByte)
}
// Replace last dash with a comma
byteString[len(byteString)-1] = commaByte
} else {
byteString = append(byteString, commaByte)
}
// Elliptic curves
if len(j.EllipticCurves) != 0 {
for _, val := range j.EllipticCurves {
if val&GreaseBitmask != 0x0A0A {
continue
}
byteString = strconv.AppendUint(byteString, uint64(val), 10)
byteString = append(byteString, dashByte)
}
// Replace last dash with a comma
byteString[len(byteString)-1] = commaByte
} else {
byteString = append(byteString, commaByte)
}
// ECPF
if len(j.EllipticCurvePF) != 0 {
for _, val := range j.EllipticCurvePF {
byteString = strconv.AppendUint(byteString, uint64(val), 10)
byteString = append(byteString, dashByte)
}
// Remove last dash
byteString = byteString[:len(byteString)-1]
}
j.ja3ByteString = byteString
}