mirror of
https://github.com/SagerNet/sing-box.git
synced 2024-11-10 11:03:13 +00:00
360 lines
12 KiB
Go
360 lines
12 KiB
Go
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package tls
|
||
|
|
||
|
import (
|
||
|
"crypto"
|
||
|
"crypto/md5"
|
||
|
"crypto/rsa"
|
||
|
"crypto/sha1"
|
||
|
"crypto/x509"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
)
|
||
|
|
||
|
// a keyAgreement implements the client and server side of a TLS key agreement
|
||
|
// protocol by generating and processing key exchange messages.
|
||
|
type keyAgreement interface {
|
||
|
// On the server side, the first two methods are called in order.
|
||
|
|
||
|
// In the case that the key agreement protocol doesn't use a
|
||
|
// ServerKeyExchange message, generateServerKeyExchange can return nil,
|
||
|
// nil.
|
||
|
generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
|
||
|
processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
|
||
|
|
||
|
// On the client side, the next two methods are called in order.
|
||
|
|
||
|
// This method may not be called if the server doesn't send a
|
||
|
// ServerKeyExchange message.
|
||
|
processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
|
||
|
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
|
||
|
errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
|
||
|
)
|
||
|
|
||
|
// rsaKeyAgreement implements the standard TLS key agreement where the client
|
||
|
// encrypts the pre-master secret to the server's public key.
|
||
|
type rsaKeyAgreement struct{}
|
||
|
|
||
|
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
|
||
|
return nil, nil
|
||
|
}
|
||
|
|
||
|
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
|
||
|
if len(ckx.ciphertext) < 2 {
|
||
|
return nil, errClientKeyExchange
|
||
|
}
|
||
|
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
|
||
|
if ciphertextLen != len(ckx.ciphertext)-2 {
|
||
|
return nil, errClientKeyExchange
|
||
|
}
|
||
|
ciphertext := ckx.ciphertext[2:]
|
||
|
|
||
|
priv, ok := cert.PrivateKey.(crypto.Decrypter)
|
||
|
if !ok {
|
||
|
return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
|
||
|
}
|
||
|
// Perform constant time RSA PKCS #1 v1.5 decryption
|
||
|
preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
// We don't check the version number in the premaster secret. For one,
|
||
|
// by checking it, we would leak information about the validity of the
|
||
|
// encrypted pre-master secret. Secondly, it provides only a small
|
||
|
// benefit against a downgrade attack and some implementations send the
|
||
|
// wrong version anyway. See the discussion at the end of section
|
||
|
// 7.4.7.1 of RFC 4346.
|
||
|
return preMasterSecret, nil
|
||
|
}
|
||
|
|
||
|
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
|
||
|
return errors.New("tls: unexpected ServerKeyExchange")
|
||
|
}
|
||
|
|
||
|
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
|
||
|
preMasterSecret := make([]byte, 48)
|
||
|
preMasterSecret[0] = byte(clientHello.vers >> 8)
|
||
|
preMasterSecret[1] = byte(clientHello.vers)
|
||
|
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
rsaKey, ok := cert.PublicKey.(*rsa.PublicKey)
|
||
|
if !ok {
|
||
|
return nil, nil, errors.New("tls: server certificate contains incorrect key type for selected ciphersuite")
|
||
|
}
|
||
|
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), rsaKey, preMasterSecret)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
ckx := new(clientKeyExchangeMsg)
|
||
|
ckx.ciphertext = make([]byte, len(encrypted)+2)
|
||
|
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
|
||
|
ckx.ciphertext[1] = byte(len(encrypted))
|
||
|
copy(ckx.ciphertext[2:], encrypted)
|
||
|
return preMasterSecret, ckx, nil
|
||
|
}
|
||
|
|
||
|
// sha1Hash calculates a SHA1 hash over the given byte slices.
|
||
|
func sha1Hash(slices [][]byte) []byte {
|
||
|
hsha1 := sha1.New()
|
||
|
for _, slice := range slices {
|
||
|
hsha1.Write(slice)
|
||
|
}
|
||
|
return hsha1.Sum(nil)
|
||
|
}
|
||
|
|
||
|
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
|
||
|
// concatenation of an MD5 and SHA1 hash.
|
||
|
func md5SHA1Hash(slices [][]byte) []byte {
|
||
|
md5sha1 := make([]byte, md5.Size+sha1.Size)
|
||
|
hmd5 := md5.New()
|
||
|
for _, slice := range slices {
|
||
|
hmd5.Write(slice)
|
||
|
}
|
||
|
copy(md5sha1, hmd5.Sum(nil))
|
||
|
copy(md5sha1[md5.Size:], sha1Hash(slices))
|
||
|
return md5sha1
|
||
|
}
|
||
|
|
||
|
// hashForServerKeyExchange hashes the given slices and returns their digest
|
||
|
// using the given hash function (for >= TLS 1.2) or using a default based on
|
||
|
// the sigType (for earlier TLS versions). For Ed25519 signatures, which don't
|
||
|
// do pre-hashing, it returns the concatenation of the slices.
|
||
|
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) []byte {
|
||
|
if sigType == signatureEd25519 || circlSchemeBySigType(sigType) != nil {
|
||
|
var signed []byte
|
||
|
for _, slice := range slices {
|
||
|
signed = append(signed, slice...)
|
||
|
}
|
||
|
return signed
|
||
|
}
|
||
|
if version >= VersionTLS12 {
|
||
|
h := hashFunc.New()
|
||
|
for _, slice := range slices {
|
||
|
h.Write(slice)
|
||
|
}
|
||
|
digest := h.Sum(nil)
|
||
|
return digest
|
||
|
}
|
||
|
if sigType == signatureECDSA {
|
||
|
return sha1Hash(slices)
|
||
|
}
|
||
|
return md5SHA1Hash(slices)
|
||
|
}
|
||
|
|
||
|
// ecdheKeyAgreement implements a TLS key agreement where the server
|
||
|
// generates an ephemeral EC public/private key pair and signs it. The
|
||
|
// pre-master secret is then calculated using ECDH. The signature may
|
||
|
// be ECDSA, Ed25519 or RSA.
|
||
|
type ecdheKeyAgreement struct {
|
||
|
version uint16
|
||
|
isRSA bool
|
||
|
params ecdheParameters
|
||
|
|
||
|
// ckx and preMasterSecret are generated in processServerKeyExchange
|
||
|
// and returned in generateClientKeyExchange.
|
||
|
ckx *clientKeyExchangeMsg
|
||
|
preMasterSecret []byte
|
||
|
}
|
||
|
|
||
|
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
|
||
|
var curveID CurveID
|
||
|
for _, c := range clientHello.supportedCurves {
|
||
|
if config.supportsCurve(c) && curveIdToCirclScheme(c) == nil {
|
||
|
curveID = c
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if curveID == 0 {
|
||
|
return nil, errors.New("tls: no supported elliptic curves offered")
|
||
|
}
|
||
|
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
|
||
|
return nil, errors.New("tls: CurvePreferences includes unsupported curve")
|
||
|
}
|
||
|
|
||
|
params, err := generateECDHEParameters(config.rand(), curveID)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
ka.params = params
|
||
|
|
||
|
// See RFC 4492, Section 5.4.
|
||
|
ecdhePublic := params.PublicKey()
|
||
|
serverECDHEParams := make([]byte, 1+2+1+len(ecdhePublic))
|
||
|
serverECDHEParams[0] = 3 // named curve
|
||
|
serverECDHEParams[1] = byte(curveID >> 8)
|
||
|
serverECDHEParams[2] = byte(curveID)
|
||
|
serverECDHEParams[3] = byte(len(ecdhePublic))
|
||
|
copy(serverECDHEParams[4:], ecdhePublic)
|
||
|
|
||
|
priv, ok := cert.PrivateKey.(crypto.Signer)
|
||
|
if !ok {
|
||
|
return nil, fmt.Errorf("tls: certificate private key of type %T does not implement crypto.Signer", cert.PrivateKey)
|
||
|
}
|
||
|
|
||
|
var signatureAlgorithm SignatureScheme
|
||
|
var sigType uint8
|
||
|
var sigHash crypto.Hash
|
||
|
if ka.version >= VersionTLS12 {
|
||
|
signatureAlgorithm, err = selectSignatureScheme(ka.version, cert, clientHello.supportedSignatureAlgorithms)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
} else {
|
||
|
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(priv.Public())
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
}
|
||
|
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
|
||
|
return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
|
||
|
}
|
||
|
|
||
|
signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, hello.random, serverECDHEParams)
|
||
|
|
||
|
signOpts := crypto.SignerOpts(sigHash)
|
||
|
if sigType == signatureRSAPSS {
|
||
|
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
|
||
|
}
|
||
|
sig, err := priv.Sign(config.rand(), signed, signOpts)
|
||
|
if err != nil {
|
||
|
return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
|
||
|
}
|
||
|
|
||
|
skx := new(serverKeyExchangeMsg)
|
||
|
sigAndHashLen := 0
|
||
|
if ka.version >= VersionTLS12 {
|
||
|
sigAndHashLen = 2
|
||
|
}
|
||
|
skx.key = make([]byte, len(serverECDHEParams)+sigAndHashLen+2+len(sig))
|
||
|
copy(skx.key, serverECDHEParams)
|
||
|
k := skx.key[len(serverECDHEParams):]
|
||
|
if ka.version >= VersionTLS12 {
|
||
|
k[0] = byte(signatureAlgorithm >> 8)
|
||
|
k[1] = byte(signatureAlgorithm)
|
||
|
k = k[2:]
|
||
|
}
|
||
|
k[0] = byte(len(sig) >> 8)
|
||
|
k[1] = byte(len(sig))
|
||
|
copy(k[2:], sig)
|
||
|
|
||
|
return skx, nil
|
||
|
}
|
||
|
|
||
|
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
|
||
|
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
|
||
|
return nil, errClientKeyExchange
|
||
|
}
|
||
|
|
||
|
preMasterSecret := ka.params.SharedKey(ckx.ciphertext[1:])
|
||
|
if preMasterSecret == nil {
|
||
|
return nil, errClientKeyExchange
|
||
|
}
|
||
|
|
||
|
return preMasterSecret, nil
|
||
|
}
|
||
|
|
||
|
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
|
||
|
if len(skx.key) < 4 {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
if skx.key[0] != 3 { // named curve
|
||
|
return errors.New("tls: server selected unsupported curve")
|
||
|
}
|
||
|
curveID := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
|
||
|
|
||
|
publicLen := int(skx.key[3])
|
||
|
if publicLen+4 > len(skx.key) {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
serverECDHEParams := skx.key[:4+publicLen]
|
||
|
publicKey := serverECDHEParams[4:]
|
||
|
|
||
|
sig := skx.key[4+publicLen:]
|
||
|
if len(sig) < 2 {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
|
||
|
if _, ok := curveForCurveID(curveID); curveID != X25519 && !ok {
|
||
|
return errors.New("tls: server selected unsupported curve")
|
||
|
}
|
||
|
|
||
|
params, err := generateECDHEParameters(config.rand(), curveID)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
ka.params = params
|
||
|
|
||
|
ka.preMasterSecret = params.SharedKey(publicKey)
|
||
|
if ka.preMasterSecret == nil {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
|
||
|
ourPublicKey := params.PublicKey()
|
||
|
ka.ckx = new(clientKeyExchangeMsg)
|
||
|
ka.ckx.ciphertext = make([]byte, 1+len(ourPublicKey))
|
||
|
ka.ckx.ciphertext[0] = byte(len(ourPublicKey))
|
||
|
copy(ka.ckx.ciphertext[1:], ourPublicKey)
|
||
|
|
||
|
var sigType uint8
|
||
|
var sigHash crypto.Hash
|
||
|
if ka.version >= VersionTLS12 {
|
||
|
signatureAlgorithm := SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
|
||
|
sig = sig[2:]
|
||
|
if len(sig) < 2 {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
|
||
|
if !isSupportedSignatureAlgorithm(signatureAlgorithm, clientHello.supportedSignatureAlgorithms) {
|
||
|
return errors.New("tls: certificate used with invalid signature algorithm")
|
||
|
}
|
||
|
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
} else {
|
||
|
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(cert.PublicKey)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
|
||
|
sigLen := int(sig[0])<<8 | int(sig[1])
|
||
|
if sigLen+2 != len(sig) {
|
||
|
return errServerKeyExchange
|
||
|
}
|
||
|
sig = sig[2:]
|
||
|
|
||
|
signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, serverHello.random, serverECDHEParams)
|
||
|
if err := verifyHandshakeSignature(sigType, cert.PublicKey, sigHash, signed, sig); err != nil {
|
||
|
return errors.New("tls: invalid signature by the server certificate: " + err.Error())
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
|
||
|
if ka.ckx == nil {
|
||
|
return nil, nil, errors.New("tls: missing ServerKeyExchange message")
|
||
|
}
|
||
|
|
||
|
return ka.preMasterSecret, ka.ckx, nil
|
||
|
}
|