sing-box/transport/shadowtls/tls_go119/tls.go
2023-02-18 14:55:47 +08:00

357 lines
12 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tls partially implements TLS 1.2, as specified in RFC 5246,
// and TLS 1.3, as specified in RFC 8446.
package tls
// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
import (
"bytes"
"context"
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"net"
"os"
"strings"
)
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(conn net.Conn, config *Config) *Conn {
c := &Conn{
conn: conn,
config: config,
}
c.handshakeFn = c.serverHandshake
return c
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
c := &Conn{
conn: conn,
config: config,
isClient: true,
}
c.handshakeFn = c.clientHandshake
return c
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return Server(c, l.config), nil
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
if config == nil || len(config.Certificates) == 0 &&
config.GetCertificate == nil && config.GetConfigForClient == nil {
return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of Config for the defaults.
//
// DialWithDialer uses context.Background internally; to specify the context,
// use Dialer.DialContext with NetDialer set to the desired dialer.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
return dial(context.Background(), dialer, network, addr, config)
}
func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
if netDialer.Timeout != 0 {
var cancel context.CancelFunc
ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
defer cancel()
}
if !netDialer.Deadline.IsZero() {
var cancel context.CancelFunc
ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
defer cancel()
}
rawConn, err := netDialer.DialContext(ctx, network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := config.Clone()
c.ServerName = hostname
config = c
}
conn := Client(rawConn, config)
if err := conn.HandshakeContext(ctx); err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config)
}
// Dialer dials TLS connections given a configuration and a Dialer for the
// underlying connection.
type Dialer struct {
// NetDialer is the optional dialer to use for the TLS connections'
// underlying TCP connections.
// A nil NetDialer is equivalent to the net.Dialer zero value.
NetDialer *net.Dialer
// Config is the TLS configuration to use for new connections.
// A nil configuration is equivalent to the zero
// configuration; see the documentation of Config for the
// defaults.
Config *Config
}
// Dial connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The returned Conn, if any, will always be of type *Conn.
//
// Dial uses context.Background internally; to specify the context,
// use DialContext.
func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
return d.DialContext(context.Background(), network, addr)
}
func (d *Dialer) netDialer() *net.Dialer {
if d.NetDialer != nil {
return d.NetDialer
}
return new(net.Dialer)
}
// DialContext connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// The returned Conn, if any, will always be of type *Conn.
func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
if err != nil {
// Don't return c (a typed nil) in an interface.
return nil, err
}
return c, nil
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair
// of files. The files must contain PEM encoded data. The certificate file
// may contain intermediate certificates following the leaf certificate to
// form a certificate chain. On successful return, Certificate.Leaf will
// be nil because the parsed form of the certificate is not retained.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := os.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := os.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be nil because
// the parsed form of the certificate is not retained.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
fail := func(err error) (Certificate, error) { return Certificate{}, err }
var cert Certificate
var skippedBlockTypes []string
for {
var certDERBlock *pem.Block
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
} else {
skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
}
}
if len(cert.Certificate) == 0 {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in certificate input"))
}
if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
}
return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
skippedBlockTypes = skippedBlockTypes[:0]
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in key input"))
}
if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
}
return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case ed25519.PublicKey:
priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
return fail(errors.New("tls: private key does not match public key"))
}
default:
return fail(errors.New("tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
return key, nil
default:
return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("tls: failed to parse private key")
}