index.community/backend/scraper/management/commands/scrape.py
2019-02-21 10:38:49 +00:00

226 lines
12 KiB
Python

"""
This script starts at a seed instance and loads the list of connected
peers. From there, it scrapes the peers of all instances it finds,
gradually mapping the fediverse.
"""
import json
import multiprocessing as mp
import requests
import time
import os
from dateutil.parser import parse as datetime_parser
from datetime import datetime, timedelta, timezone
from functional import seq
from django_bulk_update.helper import bulk_update
from django.core.management.base import BaseCommand
from django import db
from django.conf import settings
from django.utils import timezone
from scraper.models import Instance, PeerRelationship
from scraper.management.commands._util import require_lock, InvalidResponseException, get_key, log, validate_int, PersonalInstanceException
# TODO: use the /api/v1/server/followers and /api/v1/server/following endpoints in peertube instances
SEED = 'mastodon.social'
TIMEOUT = 20 # seconds
NUM_THREADS = 16 # roughly 40MB each
PERSONAL_INSTANCE_THRESHOLD = 5 # instances with < this many users won't be scraped
STATUS_SCRAPE_LIMIT = 100
class Command(BaseCommand):
help = "Scrapes the entire fediverse"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.scraped_count = 0
f = open(os.path.join(settings.BASE_DIR, '../whitelist.txt'), 'r')
self.whitelist = seq(f.readlines()).map(lambda i: i.lower().strip()).to_list()
f.close()
@staticmethod
def get_instance_info(instance_name: str):
"""Collect info about instance"""
url = 'https://' + instance_name + '/api/v1/instance'
response = requests.get(url, timeout=TIMEOUT)
json = response.json()
if response.status_code != 200 or get_key(json, ['error']):
raise InvalidResponseException("Could not get info for {}".format(instance_name))
return json
@staticmethod
def get_instance_peers(instance_name: str):
"""Collect connected instances"""
# The peers endpoint returns a "list of all domain names known to this instance"
# (https://github.com/tootsuite/mastodon/pull/6125)
url = 'https://' + instance_name + '/api/v1/instance/peers'
response = requests.get(url, timeout=TIMEOUT)
peers = response.json()
if response.status_code != 200 or not isinstance(peers, list) or get_key(peers, ['error']):
raise InvalidResponseException("Could not get peers for {}".format(instance_name))
# Get rid of peers that just say "null" and the instance itself
return [peer for peer in peers if peer and peer != instance_name]
@staticmethod
def get_statuses(instance_name: str):
"""Collect all statuses that mention users on other instances"""
mentions = []
datetime_threshold = datetime.now(timezone.utc) - timedelta(days=31)
statuses_seen = 0
# We'll ask for 1000 statuses, but Mastodon never returns more than 40. Some Pleroma instances will ignore
# the limit and return 20.
url = 'https://' + instance_name + '/api/v1/timelines/public?local=true&limit=1000'
while True:
response = requests.get(url, timeout=TIMEOUT)
statuses = response.json()
if response.status_code != 200 or get_key(statuses, ['error']):
raise InvalidResponseException("Could not get statuses for {}".format(instance_name))
elif len(statuses) == 0:
break
# Get mentions from this instance
mentions.extend((seq(statuses)
.filter(lambda s: datetime_parser(s['created_at']) > datetime_threshold)
.flat_map(lambda s: s['mentions']))) # map to mentions
# Find out if we should stop here
earliest_status = statuses[-1]
earliest_time_seen = datetime_parser(earliest_status['created_at'])
statuses_seen += len(statuses)
# Mastodon returns max 40 statuses; if we ever see less than that we know there aren't any more
if earliest_time_seen < datetime_threshold or statuses_seen >= STATUS_SCRAPE_LIMIT:
break
# Continuing, so get url for next page
min_id = earliest_status['id']
url = 'https://' + instance_name + '/api/v1/timelines/public?local=true&limit=1000&max_id=' + min_id
time.sleep(2) # Sleep to avoid overloading the instance
mentions_seq = (seq(mentions)
.filter(lambda m: not m['acct'].endswith(instance_name) and '@' in m['acct'])
.map(lambda m: m['acct'].split('@')[-1]) # map to instance name
.map(lambda m: (m, 1))
.reduce_by_key(lambda x, y: x+y)) # sequence of tuples (instance, count)
mentions_by_instance = {t[0]: t[1] for t in mentions_seq} # dict of instance -> number of mentions
return mentions_by_instance, statuses_seen
def process_instance(self, instance: Instance):
"""Given an instance, get all the data we're interested in"""
data = dict()
try:
data['instance_name'] = instance.name
data['info'] = self.get_instance_info(instance.name)
# Check if this is a personal instance before continuing
user_count = get_key(data, ['info', 'stats', 'user_count'])
if isinstance(user_count, int)\
and user_count < PERSONAL_INSTANCE_THRESHOLD\
and instance.name not in self.whitelist:
raise PersonalInstanceException
data['peers'] = self.get_instance_peers(instance.name)
if not data['info'] and not data['peers']:
# We got a response from the instance, but it didn't have any of the information we were expecting.
raise InvalidResponseException
data['mentions'], data['statuses_seen'] = self.get_statuses(instance.name)
data['status'] = 'success'
return data
except (InvalidResponseException,
PersonalInstanceException,
requests.exceptions.RequestException,
json.decoder.JSONDecodeError) as e:
data['instance_name'] = instance.name
data['status'] = type(e).__name__
return data
@db.transaction.atomic
@require_lock(Instance, 'ACCESS EXCLUSIVE')
def save_data(self, instance, data, queue, existing_instance_ids):
"""Save data"""
# Validate the ints. Some servers that appear to be fake instances have e.g. negative numbers here.
instance.domain_count = validate_int(get_key(data, ['info', 'stats', 'domain_count']))
instance.status_count = validate_int(get_key(data, ['info', 'stats', 'status_count']))
instance.user_count = validate_int(get_key(data, ['info', 'stats', 'user_count']))
instance.description = get_key(data, ['info', 'description'])
instance.version = get_key(data, ['info', 'version'])
instance.status = get_key(data, ['status'])
instance.last_updated = timezone.now()
instance.save()
if data['status'] == 'success' and data['peers']:
# TODO: handle a peer disappeer-ing
# Create instances for the peers we haven't seen before and add them to the queue
new_instance_ids = [peer_id for peer_id in data['peers'] if peer_id not in existing_instance_ids]
# bulk_create doesn't call save(), so the auto_now_add field won't get set automatically
new_instances = [Instance(name=id, first_seen=datetime.now(), last_updated=datetime.utcfromtimestamp(0))
for id in new_instance_ids]
existing_instance_ids.extend(new_instance_ids)
Instance.objects.bulk_create(new_instances)
for new_instance in new_instances:
queue.put(new_instance)
# Create relationships we haven't seen before
existing_peer_ids = PeerRelationship.objects.filter(source=instance).values_list('target', flat=True)
new_peer_ids = [peer_id for peer_id in data['peers'] if peer_id not in existing_peer_ids]
if new_peer_ids:
# new_peers = Instance.objects.filter(name__in=new_peer_ids)
new_relationships = [PeerRelationship(source=instance, target_id=new_peer, first_seen=datetime.now())
for new_peer in new_peer_ids]
PeerRelationship.objects.bulk_create(new_relationships)
if data['status'] == 'success' and data['mentions']:
# At this point, we can assume that a relationship exists for every peer that's mentioned in statuses
mentions = data['mentions']
relationships = PeerRelationship.objects.filter(source=instance,
target_id__in=list(mentions.keys()))
for relationship in relationships:
relationship.mention_count = mentions[relationship.target_id]
relationship.statuses_seen = data['statuses_seen']
relationship.last_updated = datetime.now()
bulk_update(relationships, update_fields=['mention_count', 'statuses_seen', 'last_updated'])
self.stdout.write(log("Processed {}: {}".format(data['instance_name'], data['status'])))
def worker(self, queue: mp.JoinableQueue, existing_instance_ids, scraped_ids):
"""The main worker that processes instances"""
db.connections.close_all() # https://stackoverflow.com/a/38356519/3697202
while True:
instance = queue.get()
if instance.name in scraped_ids:
# If we hit this branch, it's indicative of a bug
self.stderr.write(log("Skipping {}, already done. This should not have been added to the queue!"
.format(instance)))
queue.task_done()
else:
# Fetch data on instance
self.stdout.write(log("Processing {}".format(instance.name)))
data = self.process_instance(instance)
self.save_data(instance, data, queue, existing_instance_ids)
scraped_ids[instance.name] = 1
queue.task_done()
def handle(self, *args, **options):
start_time = time.time()
stale_instances = Instance.objects.filter(last_updated__lte=datetime.now()-timedelta(days=1))
with mp.Manager() as manager:
# Share the list of existing instances amongst all threads (to avoid each thread having to query
# for it on every instance it scrapes)
existing_instance_ids = manager.list(list(Instance.objects.values_list('name', flat=True)))
scraped_ids = manager.dict()
queue = mp.JoinableQueue()
if stale_instances:
for instance in stale_instances:
queue.put(instance)
elif not Instance.objects.exists():
instance, _ = Instance.objects.get_or_create(name=SEED)
existing_instance_ids.append(instance.name)
queue.put(instance)
pool = mp.Pool(NUM_THREADS, initializer=self.worker, initargs=(queue, existing_instance_ids, scraped_ids))
queue.join()
self.scraped_count = len(scraped_ids.keys())
end_time = time.time()
self.stdout.write(self.style.SUCCESS(log("Scraped {} instances in {:.0f}s"
.format(self.scraped_count, end_time - start_time))))