mirror of
https://git.phreedom.club/localhost_frssoft/fediauth.git
synced 2024-11-16 21:23:18 +00:00
1326 lines
55 KiB
Lua
1326 lines
55 KiB
Lua
|
--- The qrcode library is licensed under the 3-clause BSD license (aka "new BSD")
|
|||
|
--- To get in contact with the author, mail to <gundlach@speedata.de>.
|
|||
|
---
|
|||
|
--- Please report bugs on the [github project page](http://speedata.github.io/luaqrcode/).
|
|||
|
-- Copyright (c) 2012-2020, Patrick Gundlach and contributors, see https://github.com/speedata/luaqrcode
|
|||
|
-- All rights reserved.
|
|||
|
--
|
|||
|
-- Redistribution and use in source and binary forms, with or without
|
|||
|
-- modification, are permitted provided that the following conditions are met:
|
|||
|
-- * Redistributions of source code must retain the above copyright
|
|||
|
-- notice, this list of conditions and the following disclaimer.
|
|||
|
-- * Redistributions in binary form must reproduce the above copyright
|
|||
|
-- notice, this list of conditions and the following disclaimer in the
|
|||
|
-- documentation and/or other materials provided with the distribution.
|
|||
|
-- * Neither the name of SPEEDATA nor the
|
|||
|
-- names of its contributors may be used to endorse or promote products
|
|||
|
-- derived from this software without specific prior written permission.
|
|||
|
--
|
|||
|
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|||
|
-- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|||
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|||
|
-- DISCLAIMED. IN NO EVENT SHALL SPEEDATA GMBH BE LIABLE FOR ANY
|
|||
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|||
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|||
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|||
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|||
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|||
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
|
|||
|
|
|||
|
--- Overall workflow
|
|||
|
--- ================
|
|||
|
--- The steps to generate the qrcode, assuming we already have the codeword:
|
|||
|
---
|
|||
|
--- 1. Determine version, ec level and mode (=encoding) for codeword
|
|||
|
--- 1. Encode data
|
|||
|
--- 1. Arrange data and calculate error correction code
|
|||
|
--- 1. Generate 8 matrices with different masks and calculate the penalty
|
|||
|
--- 1. Return qrcode with least penalty
|
|||
|
---
|
|||
|
--- Each step is of course more or less complex and needs further description
|
|||
|
|
|||
|
--- Helper functions
|
|||
|
--- ================
|
|||
|
---
|
|||
|
--- We start with some helper functions
|
|||
|
|
|||
|
-- To calculate xor we need to do that bitwise. This helper table speeds up the num-to-bit
|
|||
|
-- part a bit (no pun intended)
|
|||
|
local cclxvi = {[0] = {0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {1,1,0,0,0,0,0,0},
|
|||
|
{0,0,1,0,0,0,0,0}, {1,0,1,0,0,0,0,0}, {0,1,1,0,0,0,0,0}, {1,1,1,0,0,0,0,0},
|
|||
|
{0,0,0,1,0,0,0,0}, {1,0,0,1,0,0,0,0}, {0,1,0,1,0,0,0,0}, {1,1,0,1,0,0,0,0},
|
|||
|
{0,0,1,1,0,0,0,0}, {1,0,1,1,0,0,0,0}, {0,1,1,1,0,0,0,0}, {1,1,1,1,0,0,0,0},
|
|||
|
{0,0,0,0,1,0,0,0}, {1,0,0,0,1,0,0,0}, {0,1,0,0,1,0,0,0}, {1,1,0,0,1,0,0,0},
|
|||
|
{0,0,1,0,1,0,0,0}, {1,0,1,0,1,0,0,0}, {0,1,1,0,1,0,0,0}, {1,1,1,0,1,0,0,0},
|
|||
|
{0,0,0,1,1,0,0,0}, {1,0,0,1,1,0,0,0}, {0,1,0,1,1,0,0,0}, {1,1,0,1,1,0,0,0},
|
|||
|
{0,0,1,1,1,0,0,0}, {1,0,1,1,1,0,0,0}, {0,1,1,1,1,0,0,0}, {1,1,1,1,1,0,0,0},
|
|||
|
{0,0,0,0,0,1,0,0}, {1,0,0,0,0,1,0,0}, {0,1,0,0,0,1,0,0}, {1,1,0,0,0,1,0,0},
|
|||
|
{0,0,1,0,0,1,0,0}, {1,0,1,0,0,1,0,0}, {0,1,1,0,0,1,0,0}, {1,1,1,0,0,1,0,0},
|
|||
|
{0,0,0,1,0,1,0,0}, {1,0,0,1,0,1,0,0}, {0,1,0,1,0,1,0,0}, {1,1,0,1,0,1,0,0},
|
|||
|
{0,0,1,1,0,1,0,0}, {1,0,1,1,0,1,0,0}, {0,1,1,1,0,1,0,0}, {1,1,1,1,0,1,0,0},
|
|||
|
{0,0,0,0,1,1,0,0}, {1,0,0,0,1,1,0,0}, {0,1,0,0,1,1,0,0}, {1,1,0,0,1,1,0,0},
|
|||
|
{0,0,1,0,1,1,0,0}, {1,0,1,0,1,1,0,0}, {0,1,1,0,1,1,0,0}, {1,1,1,0,1,1,0,0},
|
|||
|
{0,0,0,1,1,1,0,0}, {1,0,0,1,1,1,0,0}, {0,1,0,1,1,1,0,0}, {1,1,0,1,1,1,0,0},
|
|||
|
{0,0,1,1,1,1,0,0}, {1,0,1,1,1,1,0,0}, {0,1,1,1,1,1,0,0}, {1,1,1,1,1,1,0,0},
|
|||
|
{0,0,0,0,0,0,1,0}, {1,0,0,0,0,0,1,0}, {0,1,0,0,0,0,1,0}, {1,1,0,0,0,0,1,0},
|
|||
|
{0,0,1,0,0,0,1,0}, {1,0,1,0,0,0,1,0}, {0,1,1,0,0,0,1,0}, {1,1,1,0,0,0,1,0},
|
|||
|
{0,0,0,1,0,0,1,0}, {1,0,0,1,0,0,1,0}, {0,1,0,1,0,0,1,0}, {1,1,0,1,0,0,1,0},
|
|||
|
{0,0,1,1,0,0,1,0}, {1,0,1,1,0,0,1,0}, {0,1,1,1,0,0,1,0}, {1,1,1,1,0,0,1,0},
|
|||
|
{0,0,0,0,1,0,1,0}, {1,0,0,0,1,0,1,0}, {0,1,0,0,1,0,1,0}, {1,1,0,0,1,0,1,0},
|
|||
|
{0,0,1,0,1,0,1,0}, {1,0,1,0,1,0,1,0}, {0,1,1,0,1,0,1,0}, {1,1,1,0,1,0,1,0},
|
|||
|
{0,0,0,1,1,0,1,0}, {1,0,0,1,1,0,1,0}, {0,1,0,1,1,0,1,0}, {1,1,0,1,1,0,1,0},
|
|||
|
{0,0,1,1,1,0,1,0}, {1,0,1,1,1,0,1,0}, {0,1,1,1,1,0,1,0}, {1,1,1,1,1,0,1,0},
|
|||
|
{0,0,0,0,0,1,1,0}, {1,0,0,0,0,1,1,0}, {0,1,0,0,0,1,1,0}, {1,1,0,0,0,1,1,0},
|
|||
|
{0,0,1,0,0,1,1,0}, {1,0,1,0,0,1,1,0}, {0,1,1,0,0,1,1,0}, {1,1,1,0,0,1,1,0},
|
|||
|
{0,0,0,1,0,1,1,0}, {1,0,0,1,0,1,1,0}, {0,1,0,1,0,1,1,0}, {1,1,0,1,0,1,1,0},
|
|||
|
{0,0,1,1,0,1,1,0}, {1,0,1,1,0,1,1,0}, {0,1,1,1,0,1,1,0}, {1,1,1,1,0,1,1,0},
|
|||
|
{0,0,0,0,1,1,1,0}, {1,0,0,0,1,1,1,0}, {0,1,0,0,1,1,1,0}, {1,1,0,0,1,1,1,0},
|
|||
|
{0,0,1,0,1,1,1,0}, {1,0,1,0,1,1,1,0}, {0,1,1,0,1,1,1,0}, {1,1,1,0,1,1,1,0},
|
|||
|
{0,0,0,1,1,1,1,0}, {1,0,0,1,1,1,1,0}, {0,1,0,1,1,1,1,0}, {1,1,0,1,1,1,1,0},
|
|||
|
{0,0,1,1,1,1,1,0}, {1,0,1,1,1,1,1,0}, {0,1,1,1,1,1,1,0}, {1,1,1,1,1,1,1,0},
|
|||
|
{0,0,0,0,0,0,0,1}, {1,0,0,0,0,0,0,1}, {0,1,0,0,0,0,0,1}, {1,1,0,0,0,0,0,1},
|
|||
|
{0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,0,1}, {0,1,1,0,0,0,0,1}, {1,1,1,0,0,0,0,1},
|
|||
|
{0,0,0,1,0,0,0,1}, {1,0,0,1,0,0,0,1}, {0,1,0,1,0,0,0,1}, {1,1,0,1,0,0,0,1},
|
|||
|
{0,0,1,1,0,0,0,1}, {1,0,1,1,0,0,0,1}, {0,1,1,1,0,0,0,1}, {1,1,1,1,0,0,0,1},
|
|||
|
{0,0,0,0,1,0,0,1}, {1,0,0,0,1,0,0,1}, {0,1,0,0,1,0,0,1}, {1,1,0,0,1,0,0,1},
|
|||
|
{0,0,1,0,1,0,0,1}, {1,0,1,0,1,0,0,1}, {0,1,1,0,1,0,0,1}, {1,1,1,0,1,0,0,1},
|
|||
|
{0,0,0,1,1,0,0,1}, {1,0,0,1,1,0,0,1}, {0,1,0,1,1,0,0,1}, {1,1,0,1,1,0,0,1},
|
|||
|
{0,0,1,1,1,0,0,1}, {1,0,1,1,1,0,0,1}, {0,1,1,1,1,0,0,1}, {1,1,1,1,1,0,0,1},
|
|||
|
{0,0,0,0,0,1,0,1}, {1,0,0,0,0,1,0,1}, {0,1,0,0,0,1,0,1}, {1,1,0,0,0,1,0,1},
|
|||
|
{0,0,1,0,0,1,0,1}, {1,0,1,0,0,1,0,1}, {0,1,1,0,0,1,0,1}, {1,1,1,0,0,1,0,1},
|
|||
|
{0,0,0,1,0,1,0,1}, {1,0,0,1,0,1,0,1}, {0,1,0,1,0,1,0,1}, {1,1,0,1,0,1,0,1},
|
|||
|
{0,0,1,1,0,1,0,1}, {1,0,1,1,0,1,0,1}, {0,1,1,1,0,1,0,1}, {1,1,1,1,0,1,0,1},
|
|||
|
{0,0,0,0,1,1,0,1}, {1,0,0,0,1,1,0,1}, {0,1,0,0,1,1,0,1}, {1,1,0,0,1,1,0,1},
|
|||
|
{0,0,1,0,1,1,0,1}, {1,0,1,0,1,1,0,1}, {0,1,1,0,1,1,0,1}, {1,1,1,0,1,1,0,1},
|
|||
|
{0,0,0,1,1,1,0,1}, {1,0,0,1,1,1,0,1}, {0,1,0,1,1,1,0,1}, {1,1,0,1,1,1,0,1},
|
|||
|
{0,0,1,1,1,1,0,1}, {1,0,1,1,1,1,0,1}, {0,1,1,1,1,1,0,1}, {1,1,1,1,1,1,0,1},
|
|||
|
{0,0,0,0,0,0,1,1}, {1,0,0,0,0,0,1,1}, {0,1,0,0,0,0,1,1}, {1,1,0,0,0,0,1,1},
|
|||
|
{0,0,1,0,0,0,1,1}, {1,0,1,0,0,0,1,1}, {0,1,1,0,0,0,1,1}, {1,1,1,0,0,0,1,1},
|
|||
|
{0,0,0,1,0,0,1,1}, {1,0,0,1,0,0,1,1}, {0,1,0,1,0,0,1,1}, {1,1,0,1,0,0,1,1},
|
|||
|
{0,0,1,1,0,0,1,1}, {1,0,1,1,0,0,1,1}, {0,1,1,1,0,0,1,1}, {1,1,1,1,0,0,1,1},
|
|||
|
{0,0,0,0,1,0,1,1}, {1,0,0,0,1,0,1,1}, {0,1,0,0,1,0,1,1}, {1,1,0,0,1,0,1,1},
|
|||
|
{0,0,1,0,1,0,1,1}, {1,0,1,0,1,0,1,1}, {0,1,1,0,1,0,1,1}, {1,1,1,0,1,0,1,1},
|
|||
|
{0,0,0,1,1,0,1,1}, {1,0,0,1,1,0,1,1}, {0,1,0,1,1,0,1,1}, {1,1,0,1,1,0,1,1},
|
|||
|
{0,0,1,1,1,0,1,1}, {1,0,1,1,1,0,1,1}, {0,1,1,1,1,0,1,1}, {1,1,1,1,1,0,1,1},
|
|||
|
{0,0,0,0,0,1,1,1}, {1,0,0,0,0,1,1,1}, {0,1,0,0,0,1,1,1}, {1,1,0,0,0,1,1,1},
|
|||
|
{0,0,1,0,0,1,1,1}, {1,0,1,0,0,1,1,1}, {0,1,1,0,0,1,1,1}, {1,1,1,0,0,1,1,1},
|
|||
|
{0,0,0,1,0,1,1,1}, {1,0,0,1,0,1,1,1}, {0,1,0,1,0,1,1,1}, {1,1,0,1,0,1,1,1},
|
|||
|
{0,0,1,1,0,1,1,1}, {1,0,1,1,0,1,1,1}, {0,1,1,1,0,1,1,1}, {1,1,1,1,0,1,1,1},
|
|||
|
{0,0,0,0,1,1,1,1}, {1,0,0,0,1,1,1,1}, {0,1,0,0,1,1,1,1}, {1,1,0,0,1,1,1,1},
|
|||
|
{0,0,1,0,1,1,1,1}, {1,0,1,0,1,1,1,1}, {0,1,1,0,1,1,1,1}, {1,1,1,0,1,1,1,1},
|
|||
|
{0,0,0,1,1,1,1,1}, {1,0,0,1,1,1,1,1}, {0,1,0,1,1,1,1,1}, {1,1,0,1,1,1,1,1},
|
|||
|
{0,0,1,1,1,1,1,1}, {1,0,1,1,1,1,1,1}, {0,1,1,1,1,1,1,1}, {1,1,1,1,1,1,1,1}}
|
|||
|
|
|||
|
-- Return a number that is the result of interpreting the table tbl (msb first)
|
|||
|
local function tbl_to_number(tbl)
|
|||
|
local n = #tbl
|
|||
|
local rslt = 0
|
|||
|
local power = 1
|
|||
|
for i = 1, n do
|
|||
|
rslt = rslt + tbl[i]*power
|
|||
|
power = power*2
|
|||
|
end
|
|||
|
return rslt
|
|||
|
end
|
|||
|
|
|||
|
-- Calculate bitwise xor of bytes m and n. 0 <= m,n <= 256.
|
|||
|
local function bit_xor(m, n)
|
|||
|
local tbl_m = cclxvi[m]
|
|||
|
local tbl_n = cclxvi[n]
|
|||
|
local tbl = {}
|
|||
|
for i = 1, 8 do
|
|||
|
if(tbl_m[i] ~= tbl_n[i]) then
|
|||
|
tbl[i] = 1
|
|||
|
else
|
|||
|
tbl[i] = 0
|
|||
|
end
|
|||
|
end
|
|||
|
return tbl_to_number(tbl)
|
|||
|
end
|
|||
|
|
|||
|
-- Return the binary representation of the number x with the width of `digits`.
|
|||
|
local function binary(x,digits)
|
|||
|
local s=string.format("%o",x)
|
|||
|
local a={["0"]="000",["1"]="001", ["2"]="010",["3"]="011",
|
|||
|
["4"]="100",["5"]="101", ["6"]="110",["7"]="111"}
|
|||
|
s=string.gsub(s,"(.)",function (d) return a[d] end)
|
|||
|
-- remove leading 0s
|
|||
|
s = string.gsub(s,"^0*(.*)$","%1")
|
|||
|
local fmtstring = string.format("%%%ds",digits)
|
|||
|
local ret = string.format(fmtstring,s)
|
|||
|
return string.gsub(ret," ","0")
|
|||
|
end
|
|||
|
|
|||
|
-- A small helper function for add_typeinfo_to_matrix() and add_version_information()
|
|||
|
-- Add a 2 (black by default) / -2 (blank by default) to the matrix at position x,y
|
|||
|
-- depending on the bitstring (size 1!) where "0"=blank and "1"=black.
|
|||
|
local function fill_matrix_position(matrix,bitstring,x,y)
|
|||
|
if bitstring == "1" then
|
|||
|
matrix[x][y] = 2
|
|||
|
else
|
|||
|
matrix[x][y] = -2
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
--- Step 1: Determine version, ec level and mode for codeword
|
|||
|
--- ========================================================
|
|||
|
---
|
|||
|
--- First we need to find out the version (= size) of the QR code. This depends on
|
|||
|
--- the input data (the mode to be used), the requested error correction level
|
|||
|
--- (normally we use the maximum level that fits into the minimal size).
|
|||
|
|
|||
|
-- Return the mode for the given string `str`.
|
|||
|
-- See table 2 of the spec. We only support mode 1, 2 and 4.
|
|||
|
-- That is: numeric, alaphnumeric and binary.
|
|||
|
local function get_mode( str )
|
|||
|
if string.match(str,"^[0-9]+$") then
|
|||
|
return 1
|
|||
|
elseif string.match(str,"^[0-9A-Z $%%*./:+-]+$") then
|
|||
|
return 2
|
|||
|
else
|
|||
|
return 4
|
|||
|
end
|
|||
|
assert(false,"never reached") -- luacheck: ignore
|
|||
|
return nil
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
|
|||
|
--- Capacity of QR codes
|
|||
|
--- --------------------
|
|||
|
--- The capacity is calculated as follow: \\(\text{Number of data bits} = \text{number of codewords} * 8\\).
|
|||
|
--- The number of data bits is now reduced by 4 (the mode indicator) and the length string,
|
|||
|
--- that varies between 8 and 16, depending on the version and the mode (see method `get_length()`). The
|
|||
|
--- remaining capacity is multiplied by the amount of data per bit string (numeric: 3, alphanumeric: 2, other: 1)
|
|||
|
--- and divided by the length of the bit string (numeric: 10, alphanumeric: 11, binary: 8, kanji: 13).
|
|||
|
--- Then the floor function is applied to the result:
|
|||
|
--- $$\Big\lfloor \frac{( \text{#data bits} - 4 - \text{length string}) * \text{data per bit string}}{\text{length of the bit string}} \Big\rfloor$$
|
|||
|
---
|
|||
|
--- There is one problem remaining. The length string depends on the version,
|
|||
|
--- and the version depends on the length string. But we take this into account when calculating the
|
|||
|
--- the capacity, so this is not really a problem here.
|
|||
|
|
|||
|
-- The capacity (number of codewords) of each version (1-40) for error correction levels 1-4 (LMQH).
|
|||
|
-- The higher the ec level, the lower the capacity of the version. Taken from spec, tables 7-11.
|
|||
|
local capacity = {
|
|||
|
{ 19, 16, 13, 9},{ 34, 28, 22, 16},{ 55, 44, 34, 26},{ 80, 64, 48, 36},
|
|||
|
{ 108, 86, 62, 46},{ 136, 108, 76, 60},{ 156, 124, 88, 66},{ 194, 154, 110, 86},
|
|||
|
{ 232, 182, 132, 100},{ 274, 216, 154, 122},{ 324, 254, 180, 140},{ 370, 290, 206, 158},
|
|||
|
{ 428, 334, 244, 180},{ 461, 365, 261, 197},{ 523, 415, 295, 223},{ 589, 453, 325, 253},
|
|||
|
{ 647, 507, 367, 283},{ 721, 563, 397, 313},{ 795, 627, 445, 341},{ 861, 669, 485, 385},
|
|||
|
{ 932, 714, 512, 406},{1006, 782, 568, 442},{1094, 860, 614, 464},{1174, 914, 664, 514},
|
|||
|
{1276, 1000, 718, 538},{1370, 1062, 754, 596},{1468, 1128, 808, 628},{1531, 1193, 871, 661},
|
|||
|
{1631, 1267, 911, 701},{1735, 1373, 985, 745},{1843, 1455, 1033, 793},{1955, 1541, 1115, 845},
|
|||
|
{2071, 1631, 1171, 901},{2191, 1725, 1231, 961},{2306, 1812, 1286, 986},{2434, 1914, 1354, 1054},
|
|||
|
{2566, 1992, 1426, 1096},{2702, 2102, 1502, 1142},{2812, 2216, 1582, 1222},{2956, 2334, 1666, 1276}}
|
|||
|
|
|||
|
|
|||
|
--- Return the smallest version for this codeword. If `requested_ec_level` is supplied,
|
|||
|
--- then the ec level (LMQH - 1,2,3,4) must be at least the requested level.
|
|||
|
-- mode = 1,2,4,8
|
|||
|
local function get_version_eclevel(len,mode,requested_ec_level)
|
|||
|
local local_mode = mode
|
|||
|
if mode == 4 then
|
|||
|
local_mode = 3
|
|||
|
elseif mode == 8 then
|
|||
|
local_mode = 4
|
|||
|
end
|
|||
|
assert( local_mode <= 4 )
|
|||
|
|
|||
|
local bits, digits, modebits, c
|
|||
|
local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} }
|
|||
|
local minversion = 40
|
|||
|
local maxec_level = requested_ec_level or 1
|
|||
|
local min,max = 1, 4
|
|||
|
if requested_ec_level and requested_ec_level >= 1 and requested_ec_level <= 4 then
|
|||
|
min = requested_ec_level
|
|||
|
max = requested_ec_level
|
|||
|
end
|
|||
|
for ec_level=min,max do
|
|||
|
for version=1,#capacity do
|
|||
|
bits = capacity[version][ec_level] * 8
|
|||
|
bits = bits - 4 -- the mode indicator
|
|||
|
if version < 10 then
|
|||
|
digits = tab[1][local_mode]
|
|||
|
elseif version < 27 then
|
|||
|
digits = tab[2][local_mode]
|
|||
|
elseif version <= 40 then
|
|||
|
digits = tab[3][local_mode]
|
|||
|
end
|
|||
|
modebits = bits - digits
|
|||
|
if local_mode == 1 then -- numeric
|
|||
|
c = math.floor(modebits * 3 / 10)
|
|||
|
elseif local_mode == 2 then -- alphanumeric
|
|||
|
c = math.floor(modebits * 2 / 11)
|
|||
|
elseif local_mode == 3 then -- binary
|
|||
|
c = math.floor(modebits * 1 / 8)
|
|||
|
else
|
|||
|
c = math.floor(modebits * 1 / 13)
|
|||
|
end
|
|||
|
if c >= len then
|
|||
|
if version <= minversion then
|
|||
|
minversion = version
|
|||
|
maxec_level = ec_level
|
|||
|
end
|
|||
|
break
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
return minversion, maxec_level
|
|||
|
end
|
|||
|
|
|||
|
-- Return a bit string of 0s and 1s that includes the length of the code string.
|
|||
|
-- The modes are numeric = 1, alphanumeric = 2, binary = 4, and japanese = 8
|
|||
|
local function get_length(str,version,mode)
|
|||
|
local i = mode
|
|||
|
if mode == 4 then
|
|||
|
i = 3
|
|||
|
elseif mode == 8 then
|
|||
|
i = 4
|
|||
|
end
|
|||
|
assert( i <= 4 )
|
|||
|
local tab = { {10,9,8,8},{12,11,16,10},{14,13,16,12} }
|
|||
|
local digits
|
|||
|
if version < 10 then
|
|||
|
digits = tab[1][i]
|
|||
|
elseif version < 27 then
|
|||
|
digits = tab[2][i]
|
|||
|
elseif version <= 40 then
|
|||
|
digits = tab[3][i]
|
|||
|
else
|
|||
|
assert(false, "get_length, version > 40 not supported")
|
|||
|
end
|
|||
|
local len = binary(#str,digits)
|
|||
|
return len
|
|||
|
end
|
|||
|
|
|||
|
--- If the `requested_ec_level` or the `mode` are provided, this will be used if possible.
|
|||
|
--- The mode depends on the characters used in the string `str`. It seems to be
|
|||
|
--- possible to split the QR code to handle multiple modes, but we don't do that.
|
|||
|
local function get_version_eclevel_mode_bistringlength(str,requested_ec_level,mode)
|
|||
|
local local_mode
|
|||
|
if mode then
|
|||
|
assert(false,"not implemented")
|
|||
|
-- check if the mode is OK for the string
|
|||
|
local_mode = mode
|
|||
|
else
|
|||
|
local_mode = get_mode(str)
|
|||
|
end
|
|||
|
local version, ec_level
|
|||
|
version, ec_level = get_version_eclevel(#str,local_mode,requested_ec_level)
|
|||
|
local length_string = get_length(str,version,local_mode)
|
|||
|
return version,ec_level,binary(local_mode,4),local_mode,length_string
|
|||
|
end
|
|||
|
|
|||
|
--- Step 2: Encode data
|
|||
|
--- ===================
|
|||
|
|
|||
|
--- There are several ways to encode the data. We currently support only numeric, alphanumeric and binary.
|
|||
|
--- We already chose the encoding (a.k.a. mode) in the first step, so we need to apply the mode to the
|
|||
|
--- codeword.
|
|||
|
---
|
|||
|
--- **Numeric**: take three digits and encode them in 10 bits
|
|||
|
--- **Alphanumeric**: take two characters and encode them in 11 bits
|
|||
|
--- **Binary**: take one octet and encode it in 8 bits
|
|||
|
|
|||
|
local asciitbl = {
|
|||
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x01-0x0f
|
|||
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -- 0x10-0x1f
|
|||
|
36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, -- 0x20-0x2f
|
|||
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, -- 0x30-0x3f
|
|||
|
-1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, -- 0x40-0x4f
|
|||
|
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, -- 0x50-0x5f
|
|||
|
}
|
|||
|
|
|||
|
-- Return a binary representation of the numeric string `str`. This must contain only digits 0-9.
|
|||
|
local function encode_string_numeric(str)
|
|||
|
local bitstring = ""
|
|||
|
local int
|
|||
|
string.gsub(str,"..?.?",function(a)
|
|||
|
int = tonumber(a)
|
|||
|
if #a == 3 then
|
|||
|
bitstring = bitstring .. binary(int,10)
|
|||
|
elseif #a == 2 then
|
|||
|
bitstring = bitstring .. binary(int,7)
|
|||
|
else
|
|||
|
bitstring = bitstring .. binary(int,4)
|
|||
|
end
|
|||
|
end)
|
|||
|
return bitstring
|
|||
|
end
|
|||
|
|
|||
|
-- Return a binary representation of the alphanumeric string `str`. This must contain only
|
|||
|
-- digits 0-9, uppercase letters A-Z, space and the following chars: $%*./:+-.
|
|||
|
local function encode_string_ascii(str)
|
|||
|
local bitstring = ""
|
|||
|
local int
|
|||
|
local b1, b2
|
|||
|
string.gsub(str,"..?",function(a)
|
|||
|
if #a == 2 then
|
|||
|
b1 = asciitbl[string.byte(string.sub(a,1,1))]
|
|||
|
b2 = asciitbl[string.byte(string.sub(a,2,2))]
|
|||
|
int = b1 * 45 + b2
|
|||
|
bitstring = bitstring .. binary(int,11)
|
|||
|
else
|
|||
|
int = asciitbl[string.byte(a)]
|
|||
|
bitstring = bitstring .. binary(int,6)
|
|||
|
end
|
|||
|
end)
|
|||
|
return bitstring
|
|||
|
end
|
|||
|
|
|||
|
-- Return a bitstring representing string str in binary mode.
|
|||
|
-- We don't handle UTF-8 in any special way because we assume the
|
|||
|
-- scanner recognizes UTF-8 and displays it correctly.
|
|||
|
local function encode_string_binary(str)
|
|||
|
local ret = {}
|
|||
|
string.gsub(str,".",function(x)
|
|||
|
ret[#ret + 1] = binary(string.byte(x),8)
|
|||
|
end)
|
|||
|
return table.concat(ret)
|
|||
|
end
|
|||
|
|
|||
|
-- Return a bitstring representing string str in the given mode.
|
|||
|
local function encode_data(str,mode)
|
|||
|
if mode == 1 then
|
|||
|
return encode_string_numeric(str)
|
|||
|
elseif mode == 2 then
|
|||
|
return encode_string_ascii(str)
|
|||
|
elseif mode == 4 then
|
|||
|
return encode_string_binary(str)
|
|||
|
else
|
|||
|
assert(false,"not implemented yet")
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
-- Encoding the codeword is not enough. We need to make sure that
|
|||
|
-- the length of the binary string is equal to the number of codewords of the version.
|
|||
|
local function add_pad_data(version,ec_level,data)
|
|||
|
local count_to_pad, missing_digits
|
|||
|
local cpty = capacity[version][ec_level] * 8
|
|||
|
count_to_pad = math.min(4,cpty - #data)
|
|||
|
if count_to_pad > 0 then
|
|||
|
data = data .. string.rep("0",count_to_pad)
|
|||
|
end
|
|||
|
if math.fmod(#data,8) ~= 0 then
|
|||
|
missing_digits = 8 - math.fmod(#data,8)
|
|||
|
data = data .. string.rep("0",missing_digits)
|
|||
|
end
|
|||
|
assert(math.fmod(#data,8) == 0)
|
|||
|
-- add "11101100" and "00010001" until enough data
|
|||
|
while #data < cpty do
|
|||
|
data = data .. "11101100"
|
|||
|
if #data < cpty then
|
|||
|
data = data .. "00010001"
|
|||
|
end
|
|||
|
end
|
|||
|
return data
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
|
|||
|
--- Step 3: Organize data and calculate error correction code
|
|||
|
--- =======================================================
|
|||
|
--- The data in the qrcode is not encoded linearly. For example code 5-H has four blocks, the first two blocks
|
|||
|
--- contain 11 codewords and 22 error correction codes each, the second block contain 12 codewords and 22 ec codes each.
|
|||
|
--- We just take the table from the spec and don't calculate the blocks ourself. The table `ecblocks` contains this info.
|
|||
|
---
|
|||
|
--- During the phase of splitting the data into codewords, we do the calculation for error correction codes. This step involves
|
|||
|
--- polynomial division. Find a math book from school and follow the code here :)
|
|||
|
|
|||
|
--- ### Reed Solomon error correction
|
|||
|
--- Now this is the slightly ugly part of the error correction. We start with log/antilog tables
|
|||
|
-- https://codyplanteen.com/assets/rs/gf256_log_antilog.pdf
|
|||
|
local alpha_int = {
|
|||
|
[0] = 1,
|
|||
|
2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76,
|
|||
|
152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157,
|
|||
|
39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70,
|
|||
|
140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95,
|
|||
|
190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253,
|
|||
|
231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217,
|
|||
|
175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129,
|
|||
|
31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133,
|
|||
|
23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168,
|
|||
|
77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230,
|
|||
|
209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227,
|
|||
|
219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130,
|
|||
|
25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81,
|
|||
|
162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18,
|
|||
|
36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44,
|
|||
|
88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 0, 0
|
|||
|
}
|
|||
|
|
|||
|
local int_alpha = {
|
|||
|
[0] = 256, -- special value
|
|||
|
0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4,
|
|||
|
100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5,
|
|||
|
138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29,
|
|||
|
181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6,
|
|||
|
191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54,
|
|||
|
208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30,
|
|||
|
66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202,
|
|||
|
94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7,
|
|||
|
112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227,
|
|||
|
165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55,
|
|||
|
63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242,
|
|||
|
86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31,
|
|||
|
45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108,
|
|||
|
161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203,
|
|||
|
89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79,
|
|||
|
174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175
|
|||
|
}
|
|||
|
|
|||
|
-- We only need the polynomial generators for block sizes 7, 10, 13, 15, 16, 17, 18, 20, 22, 24, 26, 28, and 30. Version
|
|||
|
-- 2 of the qr codes don't need larger ones (as opposed to version 1). The table has the format x^1*ɑ^21 + x^2*a^102 ...
|
|||
|
local generator_polynomial = {
|
|||
|
[7] = { 21, 102, 238, 149, 146, 229, 87, 0},
|
|||
|
[10] = { 45, 32, 94, 64, 70, 118, 61, 46, 67, 251, 0 },
|
|||
|
[13] = { 78, 140, 206, 218, 130, 104, 106, 100, 86, 100, 176, 152, 74, 0 },
|
|||
|
[15] = {105, 99, 5, 124, 140, 237, 58, 58, 51, 37, 202, 91, 61, 183, 8, 0},
|
|||
|
[16] = {120, 225, 194, 182, 169, 147, 191, 91, 3, 76, 161, 102, 109, 107, 104, 120, 0},
|
|||
|
[17] = {136, 163, 243, 39, 150, 99, 24, 147, 214, 206, 123, 239, 43, 78, 206, 139, 43, 0},
|
|||
|
[18] = {153, 96, 98, 5, 179, 252, 148, 152, 187, 79, 170, 118, 97, 184, 94, 158, 234, 215, 0},
|
|||
|
[20] = {190, 188, 212, 212, 164, 156, 239, 83, 225, 221, 180, 202, 187, 26, 163, 61, 50, 79, 60, 17, 0},
|
|||
|
[22] = {231, 165, 105, 160, 134, 219, 80, 98, 172, 8, 74, 200, 53, 221, 109, 14, 230, 93, 242, 247, 171, 210, 0},
|
|||
|
[24] = { 21, 227, 96, 87, 232, 117, 0, 111, 218, 228, 226, 192, 152, 169, 180, 159, 126, 251, 117, 211, 48, 135, 121, 229, 0},
|
|||
|
[26] = { 70, 218, 145, 153, 227, 48, 102, 13, 142, 245, 21, 161, 53, 165, 28, 111, 201, 145, 17, 118, 182, 103, 2, 158, 125, 173, 0},
|
|||
|
[28] = {123, 9, 37, 242, 119, 212, 195, 42, 87, 245, 43, 21, 201, 232, 27, 205, 147, 195, 190, 110, 180, 108, 234, 224, 104, 200, 223, 168, 0},
|
|||
|
[30] = {180, 192, 40, 238, 216, 251, 37, 156, 130, 224, 193, 226, 173, 42, 125, 222, 96, 239, 86, 110, 48, 50, 182, 179, 31, 216, 152, 145, 173, 41, 0}}
|
|||
|
|
|||
|
|
|||
|
-- Turn a binary string of length 8*x into a table size x of numbers.
|
|||
|
local function convert_bitstring_to_bytes(data)
|
|||
|
local msg = {}
|
|||
|
string.gsub(data,"(........)",function(x)
|
|||
|
msg[#msg+1] = tonumber(x,2)
|
|||
|
end)
|
|||
|
return msg
|
|||
|
end
|
|||
|
|
|||
|
-- Return a table that has 0's in the first entries and then the alpha
|
|||
|
-- representation of the generator polynominal
|
|||
|
local function get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent)
|
|||
|
local gp_alpha = {[0]=0}
|
|||
|
for i=0,highest_exponent - num_ec_codewords - 1 do
|
|||
|
gp_alpha[i] = 0
|
|||
|
end
|
|||
|
local gp = generator_polynomial[num_ec_codewords]
|
|||
|
for i=1,num_ec_codewords + 1 do
|
|||
|
gp_alpha[highest_exponent - num_ec_codewords + i - 1] = gp[i]
|
|||
|
end
|
|||
|
return gp_alpha
|
|||
|
end
|
|||
|
|
|||
|
--- These converter functions use the log/antilog table above.
|
|||
|
--- We could have created the table programatically, but I like fixed tables.
|
|||
|
-- Convert polynominal in int notation to alpha notation.
|
|||
|
local function convert_to_alpha( tab )
|
|||
|
local new_tab = {}
|
|||
|
for i=0,#tab do
|
|||
|
new_tab[i] = int_alpha[tab[i]]
|
|||
|
end
|
|||
|
return new_tab
|
|||
|
end
|
|||
|
|
|||
|
-- Convert polynominal in alpha notation to int notation.
|
|||
|
local function convert_to_int(tab)
|
|||
|
local new_tab = {}
|
|||
|
for i=0,#tab do
|
|||
|
new_tab[i] = alpha_int[tab[i]]
|
|||
|
end
|
|||
|
return new_tab
|
|||
|
end
|
|||
|
|
|||
|
-- That's the heart of the error correction calculation.
|
|||
|
local function calculate_error_correction(data,num_ec_codewords)
|
|||
|
local mp
|
|||
|
if type(data)=="string" then
|
|||
|
mp = convert_bitstring_to_bytes(data)
|
|||
|
elseif type(data)=="table" then
|
|||
|
mp = data
|
|||
|
else
|
|||
|
assert(false,string.format("Unknown type for data: %s",type(data)))
|
|||
|
end
|
|||
|
local len_message = #mp
|
|||
|
|
|||
|
local highest_exponent = len_message + num_ec_codewords - 1
|
|||
|
local gp_alpha,tmp
|
|||
|
local he
|
|||
|
local gp_int, mp_alpha
|
|||
|
local mp_int = {}
|
|||
|
-- create message shifted to left (highest exponent)
|
|||
|
for i=1,len_message do
|
|||
|
mp_int[highest_exponent - i + 1] = mp[i]
|
|||
|
end
|
|||
|
for i=1,highest_exponent - len_message do
|
|||
|
mp_int[i] = 0
|
|||
|
end
|
|||
|
mp_int[0] = 0
|
|||
|
|
|||
|
mp_alpha = convert_to_alpha(mp_int)
|
|||
|
|
|||
|
while highest_exponent >= num_ec_codewords do
|
|||
|
gp_alpha = get_generator_polynominal_adjusted(num_ec_codewords,highest_exponent)
|
|||
|
|
|||
|
-- Multiply generator polynomial by first coefficient of the above polynomial
|
|||
|
|
|||
|
-- take the highest exponent from the message polynom (alpha) and add
|
|||
|
-- it to the generator polynom
|
|||
|
local exp = mp_alpha[highest_exponent]
|
|||
|
for i=highest_exponent,highest_exponent - num_ec_codewords,-1 do
|
|||
|
if exp ~= 256 then
|
|||
|
if gp_alpha[i] + exp >= 255 then
|
|||
|
gp_alpha[i] = math.fmod(gp_alpha[i] + exp,255)
|
|||
|
else
|
|||
|
gp_alpha[i] = gp_alpha[i] + exp
|
|||
|
end
|
|||
|
else
|
|||
|
gp_alpha[i] = 256
|
|||
|
end
|
|||
|
end
|
|||
|
for i=highest_exponent - num_ec_codewords - 1,0,-1 do
|
|||
|
gp_alpha[i] = 256
|
|||
|
end
|
|||
|
|
|||
|
gp_int = convert_to_int(gp_alpha)
|
|||
|
mp_int = convert_to_int(mp_alpha)
|
|||
|
|
|||
|
|
|||
|
tmp = {}
|
|||
|
for i=highest_exponent,0,-1 do
|
|||
|
tmp[i] = bit_xor(gp_int[i],mp_int[i])
|
|||
|
end
|
|||
|
-- remove leading 0's
|
|||
|
he = highest_exponent
|
|||
|
for i=he,0,-1 do
|
|||
|
-- We need to stop if the length of the codeword is matched
|
|||
|
if i < num_ec_codewords then break end
|
|||
|
if tmp[i] == 0 then
|
|||
|
tmp[i] = nil
|
|||
|
highest_exponent = highest_exponent - 1
|
|||
|
else
|
|||
|
break
|
|||
|
end
|
|||
|
end
|
|||
|
mp_int = tmp
|
|||
|
mp_alpha = convert_to_alpha(mp_int)
|
|||
|
end
|
|||
|
local ret = {}
|
|||
|
|
|||
|
-- reverse data
|
|||
|
for i=#mp_int,0,-1 do
|
|||
|
ret[#ret + 1] = mp_int[i]
|
|||
|
end
|
|||
|
return ret
|
|||
|
end
|
|||
|
|
|||
|
--- #### Arranging the data
|
|||
|
--- Now we arrange the data into smaller chunks. This table is taken from the spec.
|
|||
|
-- ecblocks has 40 entries, one for each version. Each version entry has 4 entries, for each LMQH
|
|||
|
-- ec level. Each entry has two or four fields, the odd files are the number of repetitions for the
|
|||
|
-- folowing block info. The first entry of the block is the total number of codewords in the block,
|
|||
|
-- the second entry is the number of data codewords. The third is not important.
|
|||
|
local ecblocks = {
|
|||
|
{{ 1,{ 26, 19, 2} }, { 1,{26,16, 4}}, { 1,{26,13, 6}}, { 1, {26, 9, 8} }},
|
|||
|
{{ 1,{ 44, 34, 4} }, { 1,{44,28, 8}}, { 1,{44,22,11}}, { 1, {44,16,14} }},
|
|||
|
{{ 1,{ 70, 55, 7} }, { 1,{70,44,13}}, { 2,{35,17, 9}}, { 2, {35,13,11} }},
|
|||
|
{{ 1,{100, 80,10} }, { 2,{50,32, 9}}, { 2,{50,24,13}}, { 4, {25, 9, 8} }},
|
|||
|
{{ 1,{134,108,13} }, { 2,{67,43,12}}, { 2,{33,15, 9}, 2,{34,16, 9}}, { 2, {33,11,11}, 2,{34,12,11}}},
|
|||
|
{{ 2,{ 86, 68, 9} }, { 4,{43,27, 8}}, { 4,{43,19,12}}, { 4, {43,15,14} }},
|
|||
|
{{ 2,{ 98, 78,10} }, { 4,{49,31, 9}}, { 2,{32,14, 9}, 4,{33,15, 9}}, { 4, {39,13,13}, 1,{40,14,13}}},
|
|||
|
{{ 2,{121, 97,12} }, { 2,{60,38,11}, 2,{61,39,11}}, { 4,{40,18,11}, 2,{41,19,11}}, { 4, {40,14,13}, 2,{41,15,13}}},
|
|||
|
{{ 2,{146,116,15} }, { 3,{58,36,11}, 2,{59,37,11}}, { 4,{36,16,10}, 4,{37,17,10}}, { 4, {36,12,12}, 4,{37,13,12}}},
|
|||
|
{{ 2,{ 86, 68, 9}, 2,{ 87, 69, 9}}, { 4,{69,43,13}, 1,{70,44,13}}, { 6,{43,19,12}, 2,{44,20,12}}, { 6, {43,15,14}, 2,{44,16,14}}},
|
|||
|
{{ 4,{101, 81,10} }, { 1,{80,50,15}, 4,{81,51,15}}, { 4,{50,22,14}, 4,{51,23,14}}, { 3, {36,12,12}, 8,{37,13,12}}},
|
|||
|
{{ 2,{116, 92,12}, 2,{117, 93,12}}, { 6,{58,36,11}, 2,{59,37,11}}, { 4,{46,20,13}, 6,{47,21,13}}, { 7, {42,14,14}, 4,{43,15,14}}},
|
|||
|
{{ 4,{133,107,13} }, { 8,{59,37,11}, 1,{60,38,11}}, { 8,{44,20,12}, 4,{45,21,12}}, { 12, {33,11,11}, 4,{34,12,11}}},
|
|||
|
{{ 3,{145,115,15}, 1,{146,116,15}}, { 4,{64,40,12}, 5,{65,41,12}}, { 11,{36,16,10}, 5,{37,17,10}}, { 11, {36,12,12}, 5,{37,13,12}}},
|
|||
|
{{ 5,{109, 87,11}, 1,{110, 88,11}}, { 5,{65,41,12}, 5,{66,42,12}}, { 5,{54,24,15}, 7,{55,25,15}}, { 11, {36,12,12}, 7,{37,13,12}}},
|
|||
|
{{ 5,{122, 98,12}, 1,{123, 99,12}}, { 7,{73,45,14}, 3,{74,46,14}}, { 15,{43,19,12}, 2,{44,20,12}}, { 3, {45,15,15}, 13,{46,16,15}}},
|
|||
|
{{ 1,{135,107,14}, 5,{136,108,14}}, { 10,{74,46,14}, 1,{75,47,14}}, { 1,{50,22,14}, 15,{51,23,14}}, { 2, {42,14,14}, 17,{43,15,14}}},
|
|||
|
{{ 5,{150,120,15}, 1,{151,121,15}}, { 9,{69,43,13}, 4,{70,44,13}}, { 17,{50,22,14}, 1,{51,23,14}}, { 2, {42,14,14}, 19,{43,15,14}}},
|
|||
|
{{ 3,{141,113,14}, 4,{142,114,14}}, { 3,{70,44,13}, 11,{71,45,13}}, { 17,{47,21,13}, 4,{48,22,13}}, { 9, {39,13,13}, 16,{40,14,13}}},
|
|||
|
{{ 3,{135,107,14}, 5,{136,108,14}}, { 3,{67,41,13}, 13,{68,42,13}}, { 15,{54,24,15}, 5,{55,25,15}}, { 15, {43,15,14}, 10,{44,16,14}}},
|
|||
|
{{ 4,{144,116,14}, 4,{145,117,14}}, { 17,{68,42,13}}, { 17,{50,22,14}, 6,{51,23,14}}, { 19, {46,16,15}, 6,{47,17,15}}},
|
|||
|
{{ 2,{139,111,14}, 7,{140,112,14}}, { 17,{74,46,14}}, { 7,{54,24,15}, 16,{55,25,15}}, { 34, {37,13,12} }},
|
|||
|
{{ 4,{151,121,15}, 5,{152,122,15}}, { 4,{75,47,14}, 14,{76,48,14}}, { 11,{54,24,15}, 14,{55,25,15}}, { 16, {45,15,15}, 14,{46,16,15}}},
|
|||
|
{{ 6,{147,117,15}, 4,{148,118,15}}, { 6,{73,45,14}, 14,{74,46,14}}, { 11,{54,24,15}, 16,{55,25,15}}, { 30, {46,16,15}, 2,{47,17,15}}},
|
|||
|
{{ 8,{132,106,13}, 4,{133,107,13}}, { 8,{75,47,14}, 13,{76,48,14}}, { 7,{54,24,15}, 22,{55,25,15}}, { 22, {45,15,15}, 13,{46,16,15}}},
|
|||
|
{{ 10,{142,114,14}, 2,{143,115,14}}, { 19,{74,46,14}, 4,{75,47,14}}, { 28,{50,22,14}, 6,{51,23,14}}, { 33, {46,16,15}, 4,{47,17,15}}},
|
|||
|
{{ 8,{152,122,15}, 4,{153,123,15}}, { 22,{73,45,14}, 3,{74,46,14}}, { 8,{53,23,15}, 26,{54,24,15}}, { 12, {45,15,15}, 28,{46,16,15}}},
|
|||
|
{{ 3,{147,117,15}, 10,{148,118,15}}, { 3,{73,45,14}, 23,{74,46,14}}, { 4,{54,24,15}, 31,{55,25,15}}, { 11, {45,15,15}, 31,{46,16,15}}},
|
|||
|
{{ 7,{146,116,15}, 7,{147,117,15}}, { 21,{73,45,14}, 7,{74,46,14}}, { 1,{53,23,15}, 37,{54,24,15}}, { 19, {45,15,15}, 26,{46,16,15}}},
|
|||
|
{{ 5,{145,115,15}, 10,{146,116,15}}, { 19,{75,47,14}, 10,{76,48,14}}, { 15,{54,24,15}, 25,{55,25,15}}, { 23, {45,15,15}, 25,{46,16,15}}},
|
|||
|
{{ 13,{145,115,15}, 3,{146,116,15}}, { 2,{74,46,14}, 29,{75,47,14}}, { 42,{54,24,15}, 1,{55,25,15}}, { 23, {45,15,15}, 28,{46,16,15}}},
|
|||
|
{{ 17,{145,115,15} }, { 10,{74,46,14}, 23,{75,47,14}}, { 10,{54,24,15}, 35,{55,25,15}}, { 19, {45,15,15}, 35,{46,16,15}}},
|
|||
|
{{ 17,{145,115,15}, 1,{146,116,15}}, { 14,{74,46,14}, 21,{75,47,14}}, { 29,{54,24,15}, 19,{55,25,15}}, { 11, {45,15,15}, 46,{46,16,15}}},
|
|||
|
{{ 13,{145,115,15}, 6,{146,116,15}}, { 14,{74,46,14}, 23,{75,47,14}}, { 44,{54,24,15}, 7,{55,25,15}}, { 59, {46,16,15}, 1,{47,17,15}}},
|
|||
|
{{ 12,{151,121,15}, 7,{152,122,15}}, { 12,{75,47,14}, 26,{76,48,14}}, { 39,{54,24,15}, 14,{55,25,15}}, { 22, {45,15,15}, 41,{46,16,15}}},
|
|||
|
{{ 6,{151,121,15}, 14,{152,122,15}}, { 6,{75,47,14}, 34,{76,48,14}}, { 46,{54,24,15}, 10,{55,25,15}}, { 2, {45,15,15}, 64,{46,16,15}}},
|
|||
|
{{ 17,{152,122,15}, 4,{153,123,15}}, { 29,{74,46,14}, 14,{75,47,14}}, { 49,{54,24,15}, 10,{55,25,15}}, { 24, {45,15,15}, 46,{46,16,15}}},
|
|||
|
{{ 4,{152,122,15}, 18,{153,123,15}}, { 13,{74,46,14}, 32,{75,47,14}}, { 48,{54,24,15}, 14,{55,25,15}}, { 42, {45,15,15}, 32,{46,16,15}}},
|
|||
|
{{ 20,{147,117,15}, 4,{148,118,15}}, { 40,{75,47,14}, 7,{76,48,14}}, { 43,{54,24,15}, 22,{55,25,15}}, { 10, {45,15,15}, 67,{46,16,15}}},
|
|||
|
{{ 19,{148,118,15}, 6,{149,119,15}}, { 18,{75,47,14}, 31,{76,48,14}}, { 34,{54,24,15}, 34,{55,25,15}}, { 20, {45,15,15}, 61,{46,16,15}}}
|
|||
|
}
|
|||
|
|
|||
|
-- The bits that must be 0 if the version does fill the complete matrix.
|
|||
|
-- Example: for version 1, no bits need to be added after arranging the data, for version 2 we need to add 7 bits at the end.
|
|||
|
local remainder = {0, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0}
|
|||
|
|
|||
|
-- This is the formula for table 1 in the spec:
|
|||
|
-- function get_capacity_remainder( version )
|
|||
|
-- local len = version * 4 + 17
|
|||
|
-- local size = len^2
|
|||
|
-- local function_pattern_modules = 192 + 2 * len - 32 -- Position Adjustment pattern + timing pattern
|
|||
|
-- local count_alignemnt_pattern = #alignment_pattern[version]
|
|||
|
-- if count_alignemnt_pattern > 0 then
|
|||
|
-- -- add 25 for each aligment pattern
|
|||
|
-- function_pattern_modules = function_pattern_modules + 25 * ( count_alignemnt_pattern^2 - 3 )
|
|||
|
-- -- but substract the timing pattern occupied by the aligment pattern on the top and left
|
|||
|
-- function_pattern_modules = function_pattern_modules - ( count_alignemnt_pattern - 2) * 10
|
|||
|
-- end
|
|||
|
-- size = size - function_pattern_modules
|
|||
|
-- if version > 6 then
|
|||
|
-- size = size - 67
|
|||
|
-- else
|
|||
|
-- size = size - 31
|
|||
|
-- end
|
|||
|
-- return math.floor(size/8),math.fmod(size,8)
|
|||
|
-- end
|
|||
|
|
|||
|
|
|||
|
--- Example: Version 5-H has four data and four error correction blocks. The table above lists
|
|||
|
--- `2, {33,11,11}, 2,{34,12,11}` for entry [5][4]. This means we take two blocks with 11 codewords
|
|||
|
--- and two blocks with 12 codewords, and two blocks with 33 - 11 = 22 ec codes and another
|
|||
|
--- two blocks with 34 - 12 = 22 ec codes.
|
|||
|
--- Block 1: D1 D2 D3 ... D11
|
|||
|
--- Block 2: D12 D13 D14 ... D22
|
|||
|
--- Block 3: D23 D24 D25 ... D33 D34
|
|||
|
--- Block 4: D35 D36 D37 ... D45 D46
|
|||
|
--- Then we place the data like this in the matrix: D1, D12, D23, D35, D2, D13, D24, D36 ... D45, D34, D46. The same goes
|
|||
|
--- with error correction codes.
|
|||
|
|
|||
|
-- The given data can be a string of 0's and 1' (with #string mod 8 == 0).
|
|||
|
-- Alternatively the data can be a table of codewords. The number of codewords
|
|||
|
-- must match the capacity of the qr code.
|
|||
|
local function arrange_codewords_and_calculate_ec( version,ec_level,data )
|
|||
|
if type(data)=="table" then
|
|||
|
local tmp = ""
|
|||
|
for i=1,#data do
|
|||
|
tmp = tmp .. binary(data[i],8)
|
|||
|
end
|
|||
|
data = tmp
|
|||
|
end
|
|||
|
-- If the size of the data is not enough for the codeword, we add 0's and two special bytes until finished.
|
|||
|
local blocks = ecblocks[version][ec_level]
|
|||
|
local size_datablock_bytes, size_ecblock_bytes
|
|||
|
local datablocks = {}
|
|||
|
local final_ecblocks = {}
|
|||
|
local count = 1
|
|||
|
local pos = 0
|
|||
|
local cpty_ec_bits = 0
|
|||
|
for i=1,#blocks/2 do
|
|||
|
for _=1,blocks[2*i - 1] do
|
|||
|
size_datablock_bytes = blocks[2*i][2]
|
|||
|
size_ecblock_bytes = blocks[2*i][1] - blocks[2*i][2]
|
|||
|
cpty_ec_bits = cpty_ec_bits + size_ecblock_bytes * 8
|
|||
|
datablocks[#datablocks + 1] = string.sub(data, pos * 8 + 1,( pos + size_datablock_bytes)*8)
|
|||
|
local tmp_tab = calculate_error_correction(datablocks[#datablocks],size_ecblock_bytes)
|
|||
|
local tmp_str = ""
|
|||
|
for x=1,#tmp_tab do
|
|||
|
tmp_str = tmp_str .. binary(tmp_tab[x],8)
|
|||
|
end
|
|||
|
final_ecblocks[#final_ecblocks + 1] = tmp_str
|
|||
|
pos = pos + size_datablock_bytes
|
|||
|
count = count + 1
|
|||
|
end
|
|||
|
end
|
|||
|
local arranged_data = ""
|
|||
|
pos = 1
|
|||
|
repeat
|
|||
|
for i=1,#datablocks do
|
|||
|
if pos < #datablocks[i] then
|
|||
|
arranged_data = arranged_data .. string.sub(datablocks[i],pos, pos + 7)
|
|||
|
end
|
|||
|
end
|
|||
|
pos = pos + 8
|
|||
|
until #arranged_data == #data
|
|||
|
-- ec
|
|||
|
local arranged_ec = ""
|
|||
|
pos = 1
|
|||
|
repeat
|
|||
|
for i=1,#final_ecblocks do
|
|||
|
if pos < #final_ecblocks[i] then
|
|||
|
arranged_ec = arranged_ec .. string.sub(final_ecblocks[i],pos, pos + 7)
|
|||
|
end
|
|||
|
end
|
|||
|
pos = pos + 8
|
|||
|
until #arranged_ec == cpty_ec_bits
|
|||
|
return arranged_data .. arranged_ec
|
|||
|
end
|
|||
|
|
|||
|
--- Step 4: Generate 8 matrices with different masks and calculate the penalty
|
|||
|
--- ==========================================================================
|
|||
|
---
|
|||
|
--- Prepare matrix
|
|||
|
--- --------------
|
|||
|
--- The first step is to prepare an _empty_ matrix for a given size/mask. The matrix has a
|
|||
|
--- few predefined areas that must be black or blank. We encode the matrix with a two
|
|||
|
--- dimensional field where the numbers determine which pixel is blank or not.
|
|||
|
---
|
|||
|
--- The following code is used for our matrix:
|
|||
|
--- 0 = not in use yet,
|
|||
|
--- -2 = blank by mandatory pattern,
|
|||
|
--- 2 = black by mandatory pattern,
|
|||
|
--- -1 = blank by data,
|
|||
|
--- 1 = black by data
|
|||
|
---
|
|||
|
---
|
|||
|
--- To prepare the _empty_, we add positioning, alingment and timing patters.
|
|||
|
|
|||
|
--- ### Positioning patterns ###
|
|||
|
local function add_position_detection_patterns(tab_x)
|
|||
|
local size = #tab_x
|
|||
|
-- allocate quite zone in the matrix area
|
|||
|
for i=1,8 do
|
|||
|
for j=1,8 do
|
|||
|
tab_x[i][j] = -2
|
|||
|
tab_x[size - 8 + i][j] = -2
|
|||
|
tab_x[i][size - 8 + j] = -2
|
|||
|
end
|
|||
|
end
|
|||
|
-- draw the detection pattern (outer)
|
|||
|
for i=1,7 do
|
|||
|
-- top left
|
|||
|
tab_x[1][i]=2
|
|||
|
tab_x[7][i]=2
|
|||
|
tab_x[i][1]=2
|
|||
|
tab_x[i][7]=2
|
|||
|
|
|||
|
-- top right
|
|||
|
tab_x[size][i]=2
|
|||
|
tab_x[size - 6][i]=2
|
|||
|
tab_x[size - i + 1][1]=2
|
|||
|
tab_x[size - i + 1][7]=2
|
|||
|
|
|||
|
-- bottom left
|
|||
|
tab_x[1][size - i + 1]=2
|
|||
|
tab_x[7][size - i + 1]=2
|
|||
|
tab_x[i][size - 6]=2
|
|||
|
tab_x[i][size]=2
|
|||
|
end
|
|||
|
-- draw the detection pattern (inner)
|
|||
|
for i=1,3 do
|
|||
|
for j=1,3 do
|
|||
|
-- top left
|
|||
|
tab_x[2+j][i+2]=2
|
|||
|
-- top right
|
|||
|
tab_x[size - j - 1][i+2]=2
|
|||
|
-- bottom left
|
|||
|
tab_x[2 + j][size - i - 1]=2
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
--- ### Timing patterns ###
|
|||
|
-- The timing patterns (two) are the dashed lines between two adjacent positioning patterns on row/column 7.
|
|||
|
local function add_timing_pattern(tab_x)
|
|||
|
local line,col
|
|||
|
line = 7
|
|||
|
col = 9
|
|||
|
for i=col,#tab_x - 8 do
|
|||
|
if math.fmod(i,2) == 1 then
|
|||
|
tab_x[i][line] = 2
|
|||
|
else
|
|||
|
tab_x[i][line] = -2
|
|||
|
end
|
|||
|
end
|
|||
|
for i=col,#tab_x - 8 do
|
|||
|
if math.fmod(i,2) == 1 then
|
|||
|
tab_x[line][i] = 2
|
|||
|
else
|
|||
|
tab_x[line][i] = -2
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
--- ### Alignment patterns ###
|
|||
|
--- The alignment patterns must be added to the matrix for versions > 1. The amount and positions depend on the versions and are
|
|||
|
--- given by the spec. Beware: the patterns must not be placed where we have the positioning patterns
|
|||
|
--- (that is: top left, top right and bottom left.)
|
|||
|
|
|||
|
-- For each version, where should we place the alignment patterns? See table E.1 of the spec
|
|||
|
local alignment_pattern = {
|
|||
|
{},{6,18},{6,22},{6,26},{6,30},{6,34}, -- 1-6
|
|||
|
{6,22,38},{6,24,42},{6,26,46},{6,28,50},{6,30,54},{6,32,58},{6,34,62}, -- 7-13
|
|||
|
{6,26,46,66},{6,26,48,70},{6,26,50,74},{6,30,54,78},{6,30,56,82},{6,30,58,86},{6,34,62,90}, -- 14-20
|
|||
|
{6,28,50,72,94},{6,26,50,74,98},{6,30,54,78,102},{6,28,54,80,106},{6,32,58,84,110},{6,30,58,86,114},{6,34,62,90,118}, -- 21-27
|
|||
|
{6,26,50,74,98 ,122},{6,30,54,78,102,126},{6,26,52,78,104,130},{6,30,56,82,108,134},{6,34,60,86,112,138},{6,30,58,86,114,142},{6,34,62,90,118,146}, -- 28-34
|
|||
|
{6,30,54,78,102,126,150}, {6,24,50,76,102,128,154},{6,28,54,80,106,132,158},{6,32,58,84,110,136,162},{6,26,54,82,110,138,166},{6,30,58,86,114,142,170} -- 35 - 40
|
|||
|
}
|
|||
|
|
|||
|
--- The alignment pattern has size 5x5 and looks like this:
|
|||
|
--- XXXXX
|
|||
|
--- X X
|
|||
|
--- X X X
|
|||
|
--- X X
|
|||
|
--- XXXXX
|
|||
|
local function add_alignment_pattern( tab_x )
|
|||
|
local version = (#tab_x - 17) / 4
|
|||
|
local ap = alignment_pattern[version]
|
|||
|
local pos_x, pos_y
|
|||
|
for x=1,#ap do
|
|||
|
for y=1,#ap do
|
|||
|
-- we must not put an alignment pattern on top of the positioning pattern
|
|||
|
if not (x == 1 and y == 1 or x == #ap and y == 1 or x == 1 and y == #ap ) then
|
|||
|
pos_x = ap[x] + 1
|
|||
|
pos_y = ap[y] + 1
|
|||
|
tab_x[pos_x][pos_y] = 2
|
|||
|
tab_x[pos_x+1][pos_y] = -2
|
|||
|
tab_x[pos_x-1][pos_y] = -2
|
|||
|
tab_x[pos_x+2][pos_y] = 2
|
|||
|
tab_x[pos_x-2][pos_y] = 2
|
|||
|
tab_x[pos_x ][pos_y - 2] = 2
|
|||
|
tab_x[pos_x+1][pos_y - 2] = 2
|
|||
|
tab_x[pos_x-1][pos_y - 2] = 2
|
|||
|
tab_x[pos_x+2][pos_y - 2] = 2
|
|||
|
tab_x[pos_x-2][pos_y - 2] = 2
|
|||
|
tab_x[pos_x ][pos_y + 2] = 2
|
|||
|
tab_x[pos_x+1][pos_y + 2] = 2
|
|||
|
tab_x[pos_x-1][pos_y + 2] = 2
|
|||
|
tab_x[pos_x+2][pos_y + 2] = 2
|
|||
|
tab_x[pos_x-2][pos_y + 2] = 2
|
|||
|
|
|||
|
tab_x[pos_x ][pos_y - 1] = -2
|
|||
|
tab_x[pos_x+1][pos_y - 1] = -2
|
|||
|
tab_x[pos_x-1][pos_y - 1] = -2
|
|||
|
tab_x[pos_x+2][pos_y - 1] = 2
|
|||
|
tab_x[pos_x-2][pos_y - 1] = 2
|
|||
|
tab_x[pos_x ][pos_y + 1] = -2
|
|||
|
tab_x[pos_x+1][pos_y + 1] = -2
|
|||
|
tab_x[pos_x-1][pos_y + 1] = -2
|
|||
|
tab_x[pos_x+2][pos_y + 1] = 2
|
|||
|
tab_x[pos_x-2][pos_y + 1] = 2
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
--- ### Type information ###
|
|||
|
--- Let's not forget the type information that is in column 9 next to the left positioning patterns and on row 9 below
|
|||
|
--- the top positioning patterns. This type information is not fixed, it depends on the mask and the error correction.
|
|||
|
|
|||
|
-- The first index is ec level (LMQH,1-4), the second is the mask (0-7). This bitstring of length 15 is to be used
|
|||
|
-- as mandatory pattern in the qrcode. Mask -1 is for debugging purpose only and is the 'noop' mask.
|
|||
|
local typeinfo = {
|
|||
|
{ [-1]= "111111111111111", [0] = "111011111000100", "111001011110011", "111110110101010", "111100010011101", "110011000101111", "110001100011000", "110110001000001", "110100101110110" },
|
|||
|
{ [-1]= "111111111111111", [0] = "101010000010010", "101000100100101", "101111001111100", "101101101001011", "100010111111001", "100000011001110", "100111110010111", "100101010100000" },
|
|||
|
{ [-1]= "111111111111111", [0] = "011010101011111", "011000001101000", "011111100110001", "011101000000110", "010010010110100", "010000110000011", "010111011011010", "010101111101101" },
|
|||
|
{ [-1]= "111111111111111", [0] = "001011010001001", "001001110111110", "001110011100111", "001100111010000", "000011101100010", "000001001010101", "000110100001100", "000100000111011" }
|
|||
|
}
|
|||
|
|
|||
|
-- The typeinfo is a mixture of mask and ec level information and is
|
|||
|
-- added twice to the qr code, one horizontal, one vertical.
|
|||
|
local function add_typeinfo_to_matrix( matrix,ec_level,mask )
|
|||
|
local ec_mask_type = typeinfo[ec_level][mask]
|
|||
|
|
|||
|
local bit
|
|||
|
-- vertical from bottom to top
|
|||
|
for i=1,7 do
|
|||
|
bit = string.sub(ec_mask_type,i,i)
|
|||
|
fill_matrix_position(matrix, bit, 9, #matrix - i + 1)
|
|||
|
end
|
|||
|
for i=8,9 do
|
|||
|
bit = string.sub(ec_mask_type,i,i)
|
|||
|
fill_matrix_position(matrix,bit,9,17-i)
|
|||
|
end
|
|||
|
for i=10,15 do
|
|||
|
bit = string.sub(ec_mask_type,i,i)
|
|||
|
fill_matrix_position(matrix,bit,9,16 - i)
|
|||
|
end
|
|||
|
-- horizontal, left to right
|
|||
|
for i=1,6 do
|
|||
|
bit = string.sub(ec_mask_type,i,i)
|
|||
|
fill_matrix_position(matrix,bit,i,9)
|
|||
|
end
|
|||
|
bit = string.sub(ec_mask_type,7,7)
|
|||
|
fill_matrix_position(matrix,bit,8,9)
|
|||
|
for i=8,15 do
|
|||
|
bit = string.sub(ec_mask_type,i,i)
|
|||
|
fill_matrix_position(matrix,bit,#matrix - 15 + i,9)
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
-- Bits for version information 7-40
|
|||
|
-- The reversed strings from https://www.thonky.com/qr-code-tutorial/format-version-tables
|
|||
|
local version_information = {"001010010011111000", "001111011010000100", "100110010101100100", "110010110010010100",
|
|||
|
"011011111101110100", "010001101110001100", "111000100001101100", "101100000110011100", "000101001001111100",
|
|||
|
"000111101101000010", "101110100010100010", "111010000101010010", "010011001010110010", "011001011001001010",
|
|||
|
"110000010110101010", "100100110001011010", "001101111110111010", "001000110111000110", "100001111000100110",
|
|||
|
"110101011111010110", "011100010000110110", "010110000011001110", "111111001100101110", "101011101011011110",
|
|||
|
"000010100100111110", "101010111001000001", "000011110110100001", "010111010001010001", "111110011110110001",
|
|||
|
"110100001101001001", "011101000010101001", "001001100101011001", "100000101010111001", "100101100011000101" }
|
|||
|
|
|||
|
-- Versions 7 and above need two bitfields with version information added to the code
|
|||
|
local function add_version_information(matrix,version)
|
|||
|
if version < 7 then return end
|
|||
|
local size = #matrix
|
|||
|
local bitstring = version_information[version - 6]
|
|||
|
local x,y, bit
|
|||
|
local start_x, start_y
|
|||
|
-- first top right
|
|||
|
start_x = size - 10
|
|||
|
start_y = 1
|
|||
|
for i=1,#bitstring do
|
|||
|
bit = string.sub(bitstring,i,i)
|
|||
|
x = start_x + math.fmod(i - 1,3)
|
|||
|
y = start_y + math.floor( (i - 1) / 3 )
|
|||
|
fill_matrix_position(matrix,bit,x,y)
|
|||
|
end
|
|||
|
|
|||
|
-- now bottom left
|
|||
|
start_x = 1
|
|||
|
start_y = size - 10
|
|||
|
for i=1,#bitstring do
|
|||
|
bit = string.sub(bitstring,i,i)
|
|||
|
x = start_x + math.floor( (i - 1) / 3 )
|
|||
|
y = start_y + math.fmod(i - 1,3)
|
|||
|
fill_matrix_position(matrix,bit,x,y)
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
--- Now it's time to use the methods above to create a prefilled matrix for the given mask
|
|||
|
local function prepare_matrix_with_mask( version,ec_level, mask )
|
|||
|
local size
|
|||
|
local tab_x = {}
|
|||
|
|
|||
|
size = version * 4 + 17
|
|||
|
for i=1,size do
|
|||
|
tab_x[i]={}
|
|||
|
for j=1,size do
|
|||
|
tab_x[i][j] = 0
|
|||
|
end
|
|||
|
end
|
|||
|
add_position_detection_patterns(tab_x)
|
|||
|
add_timing_pattern(tab_x)
|
|||
|
add_version_information(tab_x,version)
|
|||
|
|
|||
|
-- black pixel above lower left position detection pattern
|
|||
|
tab_x[9][size - 7] = 2
|
|||
|
add_alignment_pattern(tab_x)
|
|||
|
add_typeinfo_to_matrix(tab_x,ec_level, mask)
|
|||
|
return tab_x
|
|||
|
end
|
|||
|
|
|||
|
--- Finally we come to the place where we need to put the calculated data (remember step 3?) into the qr code.
|
|||
|
--- We do this for each mask. BTW speaking of mask, this is what we find in the spec:
|
|||
|
--- Mask Pattern Reference Condition
|
|||
|
--- 000 (y + x) mod 2 = 0
|
|||
|
--- 001 y mod 2 = 0
|
|||
|
--- 010 x mod 3 = 0
|
|||
|
--- 011 (y + x) mod 3 = 0
|
|||
|
--- 100 ((y div 2) + (x div 3)) mod 2 = 0
|
|||
|
--- 101 (y x) mod 2 + (y x) mod 3 = 0
|
|||
|
--- 110 ((y x) mod 2 + (y x) mod 3) mod 2 = 0
|
|||
|
--- 111 ((y x) mod 3 + (y+x) mod 2) mod 2 = 0
|
|||
|
|
|||
|
-- Return 1 (black) or -1 (blank) depending on the mask, value and position.
|
|||
|
-- Parameter mask is 0-7 (-1 for 'no mask'). x and y are 1-based coordinates,
|
|||
|
-- 1,1 = upper left. tonumber(value) must be 0 or 1.
|
|||
|
local function get_pixel_with_mask( mask, x,y,value )
|
|||
|
x = x - 1
|
|||
|
y = y - 1
|
|||
|
local invert = false
|
|||
|
-- test purpose only:
|
|||
|
if mask == -1 then -- luacheck: ignore
|
|||
|
-- ignore, no masking applied
|
|||
|
elseif mask == 0 then
|
|||
|
if math.fmod(x + y,2) == 0 then invert = true end
|
|||
|
elseif mask == 1 then
|
|||
|
if math.fmod(y,2) == 0 then invert = true end
|
|||
|
elseif mask == 2 then
|
|||
|
if math.fmod(x,3) == 0 then invert = true end
|
|||
|
elseif mask == 3 then
|
|||
|
if math.fmod(x + y,3) == 0 then invert = true end
|
|||
|
elseif mask == 4 then
|
|||
|
if math.fmod(math.floor(y / 2) + math.floor(x / 3),2) == 0 then invert = true end
|
|||
|
elseif mask == 5 then
|
|||
|
if math.fmod(x * y,2) + math.fmod(x * y,3) == 0 then invert = true end
|
|||
|
elseif mask == 6 then
|
|||
|
if math.fmod(math.fmod(x * y,2) + math.fmod(x * y,3),2) == 0 then invert = true end
|
|||
|
elseif mask == 7 then
|
|||
|
if math.fmod(math.fmod(x * y,3) + math.fmod(x + y,2),2) == 0 then invert = true end
|
|||
|
else
|
|||
|
assert(false,"This can't happen (mask must be <= 7)")
|
|||
|
end
|
|||
|
if invert then
|
|||
|
-- value = 1? -> -1, value = 0? -> 1
|
|||
|
return 1 - 2 * tonumber(value)
|
|||
|
else
|
|||
|
-- value = 1? -> 1, value = 0? -> -1
|
|||
|
return -1 + 2*tonumber(value)
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
-- We need up to 8 positions in the matrix. Only the last few bits may be less then 8.
|
|||
|
-- The function returns a table of (up to) 8 entries with subtables where
|
|||
|
-- the x coordinate is the first and the y coordinate is the second entry.
|
|||
|
local function get_next_free_positions(matrix,x,y,dir,byte)
|
|||
|
local ret = {}
|
|||
|
local count = 1
|
|||
|
local mode = "right"
|
|||
|
while count <= #byte do
|
|||
|
if mode == "right" and matrix[x][y] == 0 then
|
|||
|
ret[#ret + 1] = {x,y}
|
|||
|
mode = "left"
|
|||
|
count = count + 1
|
|||
|
elseif mode == "left" and matrix[x-1][y] == 0 then
|
|||
|
ret[#ret + 1] = {x-1,y}
|
|||
|
mode = "right"
|
|||
|
count = count + 1
|
|||
|
if dir == "up" then
|
|||
|
y = y - 1
|
|||
|
else
|
|||
|
y = y + 1
|
|||
|
end
|
|||
|
elseif mode == "right" and matrix[x-1][y] == 0 then
|
|||
|
ret[#ret + 1] = {x-1,y}
|
|||
|
count = count + 1
|
|||
|
if dir == "up" then
|
|||
|
y = y - 1
|
|||
|
else
|
|||
|
y = y + 1
|
|||
|
end
|
|||
|
else
|
|||
|
if dir == "up" then
|
|||
|
y = y - 1
|
|||
|
else
|
|||
|
y = y + 1
|
|||
|
end
|
|||
|
end
|
|||
|
if y < 1 or y > #matrix then
|
|||
|
x = x - 2
|
|||
|
-- don't overwrite the timing pattern
|
|||
|
if x == 7 then x = 6 end
|
|||
|
if dir == "up" then
|
|||
|
dir = "down"
|
|||
|
y = 1
|
|||
|
else
|
|||
|
dir = "up"
|
|||
|
y = #matrix
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
return ret,x,y,dir
|
|||
|
end
|
|||
|
|
|||
|
-- Add the data string (0's and 1's) to the matrix for the given mask.
|
|||
|
local function add_data_to_matrix(matrix,data,mask)
|
|||
|
local size = #matrix
|
|||
|
local x,y,positions
|
|||
|
local _x,_y,m
|
|||
|
local dir = "up"
|
|||
|
local byte_number = 0
|
|||
|
x,y = size,size
|
|||
|
string.gsub(data,".?.?.?.?.?.?.?.?",function ( byte )
|
|||
|
byte_number = byte_number + 1
|
|||
|
positions,x,y,dir = get_next_free_positions(matrix,x,y,dir,byte)
|
|||
|
for i=1,#byte do
|
|||
|
_x = positions[i][1]
|
|||
|
_y = positions[i][2]
|
|||
|
m = get_pixel_with_mask(mask,_x,_y,string.sub(byte,i,i))
|
|||
|
matrix[_x][_y] = m
|
|||
|
end
|
|||
|
end)
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
--- The total penalty of the matrix is the sum of four steps. The following steps are taken into account:
|
|||
|
---
|
|||
|
--- 1. Adjacent modules in row/column in same color
|
|||
|
--- 1. Block of modules in same color
|
|||
|
--- 1. 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column
|
|||
|
--- 1. Proportion of dark modules in entire symbol
|
|||
|
---
|
|||
|
--- This all is done to avoid bad patterns in the code that prevent the scanner from
|
|||
|
--- reading the code.
|
|||
|
-- Return the penalty for the given matrix
|
|||
|
local function calculate_penalty(matrix)
|
|||
|
local penalty1, penalty2, penalty3 = 0,0,0
|
|||
|
local size = #matrix
|
|||
|
-- this is for penalty 4
|
|||
|
local number_of_dark_cells = 0
|
|||
|
|
|||
|
-- 1: Adjacent modules in row/column in same color
|
|||
|
-- --------------------------------------------
|
|||
|
-- No. of modules = (5+i) -> 3 + i
|
|||
|
local last_bit_blank -- < 0: blank, > 0: black
|
|||
|
local is_blank
|
|||
|
local number_of_consecutive_bits
|
|||
|
-- first: vertical
|
|||
|
for x=1,size do
|
|||
|
number_of_consecutive_bits = 0
|
|||
|
last_bit_blank = nil
|
|||
|
for y = 1,size do
|
|||
|
if matrix[x][y] > 0 then
|
|||
|
-- small optimization: this is for penalty 4
|
|||
|
number_of_dark_cells = number_of_dark_cells + 1
|
|||
|
is_blank = false
|
|||
|
else
|
|||
|
is_blank = true
|
|||
|
end
|
|||
|
if last_bit_blank == is_blank then
|
|||
|
number_of_consecutive_bits = number_of_consecutive_bits + 1
|
|||
|
else
|
|||
|
if number_of_consecutive_bits >= 5 then
|
|||
|
penalty1 = penalty1 + number_of_consecutive_bits - 2
|
|||
|
end
|
|||
|
number_of_consecutive_bits = 1
|
|||
|
end
|
|||
|
last_bit_blank = is_blank
|
|||
|
end
|
|||
|
if number_of_consecutive_bits >= 5 then
|
|||
|
penalty1 = penalty1 + number_of_consecutive_bits - 2
|
|||
|
end
|
|||
|
end
|
|||
|
-- now horizontal
|
|||
|
for y=1,size do
|
|||
|
number_of_consecutive_bits = 0
|
|||
|
last_bit_blank = nil
|
|||
|
for x = 1,size do
|
|||
|
is_blank = matrix[x][y] < 0
|
|||
|
if last_bit_blank == is_blank then
|
|||
|
number_of_consecutive_bits = number_of_consecutive_bits + 1
|
|||
|
else
|
|||
|
if number_of_consecutive_bits >= 5 then
|
|||
|
penalty1 = penalty1 + number_of_consecutive_bits - 2
|
|||
|
end
|
|||
|
number_of_consecutive_bits = 1
|
|||
|
end
|
|||
|
last_bit_blank = is_blank
|
|||
|
end
|
|||
|
if number_of_consecutive_bits >= 5 then
|
|||
|
penalty1 = penalty1 + number_of_consecutive_bits - 2
|
|||
|
end
|
|||
|
end
|
|||
|
for x=1,size do
|
|||
|
for y=1,size do
|
|||
|
-- 2: Block of modules in same color
|
|||
|
-- -----------------------------------
|
|||
|
-- Blocksize = m × n -> 3 × (m-1) × (n-1)
|
|||
|
if (y < size - 1) and ( x < size - 1) and ( (matrix[x][y] < 0 and matrix[x+1][y] < 0 and matrix[x][y+1] < 0 and matrix[x+1][y+1] < 0) or (matrix[x][y] > 0 and matrix[x+1][y] > 0 and matrix[x][y+1] > 0 and matrix[x+1][y+1] > 0) ) then
|
|||
|
penalty2 = penalty2 + 3
|
|||
|
end
|
|||
|
|
|||
|
-- 3: 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column
|
|||
|
-- ------------------------------------------------------------------
|
|||
|
-- Gives 40 points each
|
|||
|
--
|
|||
|
-- I have no idea why we need the extra 0000 on left or right side. The spec doesn't mention it,
|
|||
|
-- other sources do mention it. This is heavily inspired by zxing.
|
|||
|
if (y + 6 < size and
|
|||
|
matrix[x][y] > 0 and
|
|||
|
matrix[x][y + 1] < 0 and
|
|||
|
matrix[x][y + 2] > 0 and
|
|||
|
matrix[x][y + 3] > 0 and
|
|||
|
matrix[x][y + 4] > 0 and
|
|||
|
matrix[x][y + 5] < 0 and
|
|||
|
matrix[x][y + 6] > 0 and
|
|||
|
((y + 10 < size and
|
|||
|
matrix[x][y + 7] < 0 and
|
|||
|
matrix[x][y + 8] < 0 and
|
|||
|
matrix[x][y + 9] < 0 and
|
|||
|
matrix[x][y + 10] < 0) or
|
|||
|
(y - 4 >= 1 and
|
|||
|
matrix[x][y - 1] < 0 and
|
|||
|
matrix[x][y - 2] < 0 and
|
|||
|
matrix[x][y - 3] < 0 and
|
|||
|
matrix[x][y - 4] < 0))) then penalty3 = penalty3 + 40 end
|
|||
|
if (x + 6 <= size and
|
|||
|
matrix[x][y] > 0 and
|
|||
|
matrix[x + 1][y] < 0 and
|
|||
|
matrix[x + 2][y] > 0 and
|
|||
|
matrix[x + 3][y] > 0 and
|
|||
|
matrix[x + 4][y] > 0 and
|
|||
|
matrix[x + 5][y] < 0 and
|
|||
|
matrix[x + 6][y] > 0 and
|
|||
|
((x + 10 <= size and
|
|||
|
matrix[x + 7][y] < 0 and
|
|||
|
matrix[x + 8][y] < 0 and
|
|||
|
matrix[x + 9][y] < 0 and
|
|||
|
matrix[x + 10][y] < 0) or
|
|||
|
(x - 4 >= 1 and
|
|||
|
matrix[x - 1][y] < 0 and
|
|||
|
matrix[x - 2][y] < 0 and
|
|||
|
matrix[x - 3][y] < 0 and
|
|||
|
matrix[x - 4][y] < 0))) then penalty3 = penalty3 + 40 end
|
|||
|
end
|
|||
|
end
|
|||
|
-- 4: Proportion of dark modules in entire symbol
|
|||
|
-- ----------------------------------------------
|
|||
|
-- 50 ± (5 × k)% to 50 ± (5 × (k + 1))% -> 10 × k
|
|||
|
local dark_ratio = number_of_dark_cells / ( size * size )
|
|||
|
local penalty4 = math.floor(math.abs(dark_ratio * 100 - 50)) * 2
|
|||
|
return penalty1 + penalty2 + penalty3 + penalty4
|
|||
|
end
|
|||
|
|
|||
|
-- Create a matrix for the given parameters and calculate the penalty score.
|
|||
|
-- Return both (matrix and penalty)
|
|||
|
local function get_matrix_and_penalty(version,ec_level,data,mask)
|
|||
|
local tab = prepare_matrix_with_mask(version,ec_level,mask)
|
|||
|
add_data_to_matrix(tab,data,mask)
|
|||
|
local penalty = calculate_penalty(tab)
|
|||
|
return tab, penalty
|
|||
|
end
|
|||
|
|
|||
|
-- Return the matrix with the smallest penalty. To to this
|
|||
|
-- we try out the matrix for all 8 masks and determine the
|
|||
|
-- penalty (score) each.
|
|||
|
local function get_matrix_with_lowest_penalty(version,ec_level,data)
|
|||
|
local tab, penalty
|
|||
|
local tab_min_penalty, min_penalty
|
|||
|
|
|||
|
-- try masks 0-7
|
|||
|
tab_min_penalty, min_penalty = get_matrix_and_penalty(version,ec_level,data,0)
|
|||
|
for i=1,7 do
|
|||
|
tab, penalty = get_matrix_and_penalty(version,ec_level,data,i)
|
|||
|
if penalty < min_penalty then
|
|||
|
tab_min_penalty = tab
|
|||
|
min_penalty = penalty
|
|||
|
end
|
|||
|
end
|
|||
|
return tab_min_penalty
|
|||
|
end
|
|||
|
|
|||
|
--- The main function. We connect everything together. Remember from above:
|
|||
|
---
|
|||
|
--- 1. Determine version, ec level and mode (=encoding) for codeword
|
|||
|
--- 1. Encode data
|
|||
|
--- 1. Arrange data and calculate error correction code
|
|||
|
--- 1. Generate 8 matrices with different masks and calculate the penalty
|
|||
|
--- 1. Return qrcode with least penalty
|
|||
|
-- If ec_level or mode is given, use the ones for generating the qrcode. (mode is not implemented yet)
|
|||
|
local function qrcode( str, ec_level, _mode ) -- luacheck: no unused args
|
|||
|
local arranged_data, version, data_raw, mode, len_bitstring
|
|||
|
version, ec_level, data_raw, mode, len_bitstring = get_version_eclevel_mode_bistringlength(str,ec_level)
|
|||
|
data_raw = data_raw .. len_bitstring
|
|||
|
data_raw = data_raw .. encode_data(str,mode)
|
|||
|
data_raw = add_pad_data(version,ec_level,data_raw)
|
|||
|
arranged_data = arrange_codewords_and_calculate_ec(version,ec_level,data_raw)
|
|||
|
if math.fmod(#arranged_data,8) ~= 0 then
|
|||
|
return false, string.format("Arranged data %% 8 != 0: data length = %d, mod 8 = %d",#arranged_data, math.fmod(#arranged_data,8))
|
|||
|
end
|
|||
|
arranged_data = arranged_data .. string.rep("0",remainder[version])
|
|||
|
local tab = get_matrix_with_lowest_penalty(version,ec_level,arranged_data)
|
|||
|
return true, tab
|
|||
|
end
|
|||
|
|
|||
|
return {
|
|||
|
qrcode = qrcode
|
|||
|
}
|