lovr/src/modules/graphics/graphics.c

941 lines
33 KiB
C
Raw Normal View History

2016-11-19 09:28:01 +00:00
#include "graphics/graphics.h"
#include "data/blob.h"
2022-04-30 03:38:34 +00:00
#include "data/image.h"
2022-04-21 07:27:13 +00:00
#include "core/gpu.h"
2022-05-07 00:26:38 +00:00
#include "core/maf.h"
2022-04-27 05:51:24 +00:00
#include "core/os.h"
2022-04-21 07:27:13 +00:00
#include "util.h"
2022-04-30 03:38:34 +00:00
#include <math.h>
#include <stdlib.h>
2022-04-20 07:38:21 +00:00
#include <string.h>
#ifdef LOVR_USE_GLSLANG
#include "glslang_c_interface.h"
#include "resource_limits_c.h"
#endif
2022-04-27 05:44:44 +00:00
#define MAX_FRAME_MEMORY (1 << 30)
struct Buffer {
uint32_t ref;
uint32_t size;
gpu_buffer* gpu;
BufferInfo info;
2022-04-27 07:35:09 +00:00
char* pointer;
};
2022-04-30 03:38:34 +00:00
struct Texture {
uint32_t ref;
gpu_texture* gpu;
gpu_texture* renderView;
TextureInfo info;
};
2022-05-01 22:47:17 +00:00
struct Sampler {
uint32_t ref;
gpu_sampler* gpu;
SamplerInfo info;
};
struct Shader {
uint32_t ref;
gpu_shader* gpu;
ShaderInfo info;
};
2022-05-11 19:50:26 +00:00
typedef struct {
float color[4];
Shader* shader;
gpu_pipeline_info info;
bool dirty;
} Pipeline;
struct Pass {
uint32_t ref;
PassInfo info;
gpu_stream* stream;
2022-05-07 00:26:38 +00:00
float* transform;
float transforms[16][16];
2022-05-11 19:50:26 +00:00
uint32_t transformIndex;
Pipeline* pipeline;
Pipeline pipelines[4];
uint32_t pipelineIndex;
};
2022-04-27 05:44:44 +00:00
typedef struct {
char* memory;
uint32_t cursor;
uint32_t length;
} Allocator;
2019-06-27 08:47:08 +00:00
static struct {
bool initialized;
bool active;
uint32_t tick;
Pass* transfers;
2022-04-22 20:28:59 +00:00
gpu_device_info device;
gpu_features features;
gpu_limits limits;
2022-04-27 05:44:44 +00:00
Allocator allocator;
2019-06-27 08:47:08 +00:00
} state;
2016-07-07 07:04:24 +00:00
2022-04-21 07:27:13 +00:00
// Helpers
static void* tempAlloc(size_t size);
static void beginFrame(void);
static gpu_stream* getTransfers(void);
2022-04-30 03:38:34 +00:00
static size_t measureTexture(TextureFormat format, uint16_t w, uint16_t h, uint16_t d);
2022-04-21 07:27:13 +00:00
static void onMessage(void* context, const char* message, bool severe);
// Entry
bool lovrGraphicsInit(bool debug) {
2022-04-19 02:30:58 +00:00
if (state.initialized) return false;
2022-04-21 07:27:13 +00:00
glslang_initialize_process();
2022-04-27 07:28:39 +00:00
float16Init();
2022-04-21 07:27:13 +00:00
gpu_config config = {
.debug = debug,
.callback = onMessage,
.engineName = "LOVR",
.engineVersion = { LOVR_VERSION_MAJOR, LOVR_VERSION_MINOR, LOVR_VERSION_PATCH },
.device = &state.device,
.features = &state.features,
.limits = &state.limits
2022-04-21 07:27:13 +00:00
};
if (!gpu_init(&config)) {
lovrThrow("Failed to initialize GPU");
}
2022-04-27 05:44:44 +00:00
// Temporary frame memory uses a large 1GB virtual memory allocation, committing pages as needed
state.allocator.length = 1 << 14;
state.allocator.memory = os_vm_init(MAX_FRAME_MEMORY);
os_vm_commit(state.allocator.memory, state.allocator.length);
2022-04-19 02:30:58 +00:00
state.initialized = true;
return true;
2016-09-28 03:20:08 +00:00
}
void lovrGraphicsDestroy() {
if (!state.initialized) return;
2022-04-21 07:27:13 +00:00
gpu_destroy();
glslang_finalize_process();
2022-04-27 05:44:44 +00:00
os_vm_free(state.allocator.memory, MAX_FRAME_MEMORY);
2019-06-27 08:47:08 +00:00
memset(&state, 0, sizeof(state));
2016-07-07 07:04:24 +00:00
}
2022-04-21 07:27:13 +00:00
void lovrGraphicsGetDevice(GraphicsDevice* device) {
2022-04-22 20:28:59 +00:00
device->deviceId = state.device.deviceId;
device->vendorId = state.device.vendorId;
device->name = state.device.deviceName;
device->renderer = state.device.renderer;
device->subgroupSize = state.device.subgroupSize;
2022-04-22 20:28:59 +00:00
device->discrete = state.device.discrete;
}
void lovrGraphicsGetFeatures(GraphicsFeatures* features) {
features->textureBC = state.features.textureBC;
features->textureASTC = state.features.textureASTC;
features->wireframe = state.features.wireframe;
features->depthClamp = state.features.depthClamp;
features->indirectDrawFirstInstance = state.features.indirectDrawFirstInstance;
features->float64 = state.features.float64;
features->int64 = state.features.int64;
features->int16 = state.features.int16;
}
void lovrGraphicsGetLimits(GraphicsLimits* limits) {
limits->textureSize2D = state.limits.textureSize2D;
limits->textureSize3D = state.limits.textureSize3D;
limits->textureSizeCube = state.limits.textureSizeCube;
limits->textureLayers = state.limits.textureLayers;
limits->renderSize[0] = state.limits.renderSize[0];
limits->renderSize[1] = state.limits.renderSize[1];
limits->renderSize[2] = state.limits.renderSize[2];
limits->uniformBufferRange = state.limits.uniformBufferRange;
limits->storageBufferRange = state.limits.storageBufferRange;
limits->uniformBufferAlign = state.limits.uniformBufferAlign;
limits->storageBufferAlign = state.limits.storageBufferAlign;
limits->vertexAttributes = state.limits.vertexAttributes;
limits->vertexBufferStride = state.limits.vertexBufferStride;
limits->vertexShaderOutputs = state.limits.vertexShaderOutputs;
limits->clipDistances = state.limits.clipDistances;
limits->cullDistances = state.limits.cullDistances;
limits->clipAndCullDistances = state.limits.clipAndCullDistances;
memcpy(limits->computeDispatchCount, state.limits.computeDispatchCount, 3 * sizeof(uint32_t));
memcpy(limits->computeWorkgroupSize, state.limits.computeWorkgroupSize, 3 * sizeof(uint32_t));
limits->computeWorkgroupVolume = state.limits.computeWorkgroupVolume;
limits->computeSharedMemory = state.limits.computeSharedMemory;
limits->shaderConstantSize = state.limits.pushConstantSize;
limits->indirectDrawCount = state.limits.indirectDrawCount;
limits->instances = state.limits.instances;
limits->anisotropy = state.limits.anisotropy;
limits->pointSize = state.limits.pointSize;
}
2022-04-30 00:12:10 +00:00
bool lovrGraphicsIsFormatSupported(uint32_t format, uint32_t features) {
uint8_t supports = state.features.formats[format];
if (!features) return supports;
if ((features & TEXTURE_FEATURE_SAMPLE) && !(supports & GPU_FEATURE_SAMPLE)) return false;
if ((features & TEXTURE_FEATURE_FILTER) && !(supports & GPU_FEATURE_FILTER)) return false;
if ((features & TEXTURE_FEATURE_RENDER) && !(supports & GPU_FEATURE_RENDER)) return false;
if ((features & TEXTURE_FEATURE_BLEND) && !(supports & GPU_FEATURE_BLEND)) return false;
if ((features & TEXTURE_FEATURE_STORAGE) && !(supports & GPU_FEATURE_STORAGE)) return false;
if ((features & TEXTURE_FEATURE_ATOMIC) && !(supports & GPU_FEATURE_ATOMIC)) return false;
if ((features & TEXTURE_FEATURE_BLIT_SRC) && !(supports & GPU_FEATURE_BLIT_SRC)) return false;
if ((features & TEXTURE_FEATURE_BLIT_DST) && !(supports & GPU_FEATURE_BLIT_DST)) return false;
return true;
}
void lovrGraphicsSubmit(Pass** passes, uint32_t count) {
if (!state.active) {
return;
}
// Allocate a few extra stream handles for any internal passes we sneak in
gpu_stream** streams = tempAlloc((count + 3) * sizeof(gpu_stream*));
uint32_t extraPassCount = 0;
if (state.transfers) {
streams[extraPassCount++] = state.transfers->stream;
}
for (uint32_t i = 0; i < count; i++) {
streams[extraPassCount + i] = passes[i]->stream;
}
for (uint32_t i = 0; i < extraPassCount + count; i++) {
gpu_stream_end(streams[i]);
}
gpu_submit(streams, extraPassCount + count);
state.transfers = NULL;
state.active = false;
}
2022-04-29 05:37:03 +00:00
void lovrGraphicsWait() {
gpu_wait();
}
// Buffer
2022-04-27 07:28:39 +00:00
Buffer* lovrGraphicsGetBuffer(BufferInfo* info, void** data) {
uint32_t size = info->length * info->stride;
2022-04-27 07:28:39 +00:00
lovrCheck(size > 0, "Buffer size can not be zero");
2022-04-30 03:38:34 +00:00
lovrCheck(size <= 1 << 30, "Max buffer size is 1GB");
2022-04-27 07:28:39 +00:00
Buffer* buffer = tempAlloc(sizeof(Buffer) + gpu_sizeof_buffer());
2022-04-27 07:28:39 +00:00
buffer->ref = 1;
buffer->size = size;
buffer->gpu = (gpu_buffer*) (buffer + 1);
buffer->info = *info;
buffer->pointer = gpu_map(buffer->gpu, size, state.limits.uniformBufferAlign, GPU_MAP_WRITE);
if (data) {
*data = buffer->pointer;
}
return buffer;
}
Buffer* lovrBufferCreate(BufferInfo* info, void** data) {
uint32_t size = info->length * info->stride;
lovrCheck(size > 0, "Buffer size can not be zero");
lovrCheck(size <= 1 << 30, "Max buffer size is 1GB");
Buffer* buffer = calloc(1, sizeof(Buffer) + gpu_sizeof_buffer());
lovrAssert(buffer, "Out of memory");
buffer->ref = 1;
buffer->size = size;
buffer->gpu = (gpu_buffer*) (buffer + 1);
buffer->info = *info;
gpu_buffer_init(buffer->gpu, &(gpu_buffer_info) {
.size = buffer->size,
.label = info->label,
.pointer = data
});
2022-04-27 07:28:39 +00:00
if (data && *data == NULL) {
gpu_buffer* scratchpad = tempAlloc(gpu_sizeof_buffer());
2022-04-27 07:28:39 +00:00
*data = gpu_map(scratchpad, size, 4, GPU_MAP_WRITE);
// TODO copy scratchpad to buffer
}
return buffer;
}
void lovrBufferDestroy(void* ref) {
Buffer* buffer = ref;
2022-04-27 07:28:39 +00:00
if (buffer->pointer) return;
gpu_buffer_destroy(buffer->gpu);
free(buffer);
}
const BufferInfo* lovrBufferGetInfo(Buffer* buffer) {
return &buffer->info;
}
2022-04-27 07:28:39 +00:00
bool lovrBufferIsTemporary(Buffer* buffer) {
return !!buffer->pointer;
}
void* lovrBufferMap(Buffer* buffer, uint32_t offset, uint32_t size) {
if (size == ~0u) {
size = buffer->size - offset;
}
lovrCheck(offset + size <= buffer->size, "Buffer write range [%d,%d] exceeds buffer size", offset, offset + size);
if (buffer->pointer) {
2022-04-27 07:35:09 +00:00
return buffer->pointer + offset;
2022-04-27 07:28:39 +00:00
}
gpu_stream* transfers = getTransfers();
gpu_buffer* scratchpad = tempAlloc(gpu_sizeof_buffer());
void* data = gpu_map(scratchpad, size, 4, GPU_MAP_WRITE);
gpu_copy_buffers(transfers, scratchpad, buffer->gpu, 0, offset, size);
return data;
2022-04-27 07:28:39 +00:00
}
void lovrBufferClear(Buffer* buffer, uint32_t offset, uint32_t size) {
lovrCheck(size % 4 == 0, "Buffer clear size must be a multiple of 4");
lovrCheck(offset % 4 == 0, "Buffer clear offset must be a multiple of 4");
2022-04-27 07:28:39 +00:00
lovrCheck(offset + size <= buffer->size, "Tried to clear past the end of the Buffer");
if (buffer->pointer) {
2022-04-27 07:35:09 +00:00
memset(buffer->pointer + offset, 0, size);
2022-04-27 07:28:39 +00:00
} else {
gpu_stream* transfers = getTransfers();
gpu_clear_buffer(transfers, buffer->gpu, offset, size);
2022-04-27 07:28:39 +00:00
}
}
2022-04-30 03:38:34 +00:00
// Texture
Texture* lovrTextureCreate(TextureInfo* info) {
uint32_t limits[] = {
[TEXTURE_2D] = state.limits.textureSize2D,
[TEXTURE_3D] = state.limits.textureSize3D,
2022-04-30 03:38:34 +00:00
[TEXTURE_CUBE] = state.limits.textureSizeCube,
[TEXTURE_ARRAY] = state.limits.textureSize2D
2022-04-30 03:38:34 +00:00
};
uint32_t limit = limits[info->type];
2022-05-01 01:49:46 +00:00
uint32_t mipmapCap = log2(MAX(MAX(info->width, info->height), (info->type == TEXTURE_3D ? info->depth : 1))) + 1;
uint32_t mipmaps = CLAMP(info->mipmaps, 1, mipmapCap);
2022-04-30 03:38:34 +00:00
uint8_t supports = state.features.formats[info->format];
lovrCheck(info->width > 0, "Texture width must be greater than zero");
lovrCheck(info->height > 0, "Texture height must be greater than zero");
lovrCheck(info->depth > 0, "Texture depth must be greater than zero");
lovrCheck(info->width <= limit, "Texture %s exceeds the limit for this texture type (%d)", "width", limit);
lovrCheck(info->height <= limit, "Texture %s exceeds the limit for this texture type (%d)", "height", limit);
lovrCheck(info->depth <= limit || info->type != TEXTURE_3D, "Texture %s exceeds the limit for this texture type (%d)", "depth", limit);
2022-04-30 03:38:34 +00:00
lovrCheck(info->depth <= state.limits.textureLayers || info->type != TEXTURE_ARRAY, "Texture %s exceeds the limit for this texture type (%d)", "depth", limit);
lovrCheck(info->depth == 1 || info->type != TEXTURE_2D, "2D textures must have a depth of 1");
lovrCheck(info->depth == 6 || info->type != TEXTURE_CUBE, "Cubemaps must have a depth of 6");
lovrCheck(info->width == info->height || info->type != TEXTURE_CUBE, "Cubemaps must be square");
2022-05-01 01:49:46 +00:00
lovrCheck(measureTexture(info->format, info->width, info->height, info->depth) < 1 << 30, "Memory for a Texture can not exceed 1GB"); // TODO mip?
2022-04-30 03:38:34 +00:00
lovrCheck(info->samples == 1 || info->samples == 4, "Currently, Texture multisample count must be 1 or 4");
lovrCheck(info->samples == 1 || info->type != TEXTURE_CUBE, "Cubemaps can not be multisampled");
lovrCheck(info->samples == 1 || info->type != TEXTURE_3D, "Volume textures can not be multisampled");
2022-04-30 03:38:34 +00:00
lovrCheck(info->samples == 1 || ~info->usage & TEXTURE_STORAGE, "Currently, Textures with the 'storage' flag can not be multisampled");
2022-05-01 01:49:46 +00:00
lovrCheck(info->samples == 1 || mipmaps == 1, "Multisampled textures can only have 1 mipmap");
2022-04-30 03:38:34 +00:00
lovrCheck(~info->usage & TEXTURE_SAMPLE || (supports & GPU_FEATURE_SAMPLE), "GPU does not support the 'sample' flag for this format");
lovrCheck(~info->usage & TEXTURE_RENDER || (supports & GPU_FEATURE_RENDER), "GPU does not support the 'render' flag for this format");
lovrCheck(~info->usage & TEXTURE_STORAGE || (supports & GPU_FEATURE_STORAGE), "GPU does not support the 'storage' flag for this format");
lovrCheck(~info->usage & TEXTURE_RENDER || info->width <= state.limits.renderSize[0], "Texture has 'render' flag but its size exceeds the renderSize limit");
lovrCheck(~info->usage & TEXTURE_RENDER || info->height <= state.limits.renderSize[1], "Texture has 'render' flag but its size exceeds the renderSize limit");
2022-05-01 01:49:46 +00:00
lovrCheck(mipmaps <= mipmapCap, "Texture has more than the max number of mipmap levels for its size (%d)", mipmapCap);
2022-04-30 03:38:34 +00:00
lovrCheck((info->format < FORMAT_BC1 || info->format > FORMAT_BC7) || state.features.textureBC, "%s textures are not supported on this GPU", "BC");
lovrCheck(info->format < FORMAT_ASTC_4x4 || state.features.textureASTC, "%s textures are not supported on this GPU", "ASTC");
Texture* texture = calloc(1, sizeof(Texture) + gpu_sizeof_texture());
lovrAssert(texture, "Out of memory");
texture->ref = 1;
texture->gpu = (gpu_texture*) (texture + 1);
texture->info = *info;
2022-05-01 01:49:46 +00:00
texture->info.mipmaps = mipmaps;
uint32_t levelCount = 0;
uint32_t levelOffsets[16];
uint32_t levelSizes[16];
2022-05-01 22:18:56 +00:00
gpu_buffer* scratchpad = NULL;
2022-05-01 01:49:46 +00:00
if (info->imageCount > 0) {
levelCount = lovrImageGetLevelCount(info->images[0]);
lovrCheck(info->type != TEXTURE_3D || levelCount == 1, "Images used to initialize 3D textures can not have mipmaps");
uint32_t total = 0;
for (uint32_t level = 0; level < levelCount; level++) {
levelOffsets[level] = total;
uint32_t width = MAX(info->width >> level, 1);
uint32_t height = MAX(info->height >> level, 1);
levelSizes[level] = measureTexture(info->format, width, height, info->depth);
total += levelSizes[level];
}
scratchpad = tempAlloc(gpu_sizeof_buffer());
char* data = gpu_map(scratchpad, total, 64, GPU_MAP_WRITE);
for (uint32_t level = 0; level < levelCount; level++) {
for (uint32_t layer = 0; layer < info->depth; layer++) {
Image* image = info->imageCount == 1 ? info->images[0] : info->images[layer];
uint32_t slice = info->imageCount == 1 ? layer : 0;
uint32_t size = lovrImageGetLayerSize(image, level);
lovrCheck(size == levelSizes[level], "Texture/Image size mismatch!");
2022-05-01 22:18:56 +00:00
void* pixels = lovrImageGetLayerData(image, level, slice);
2022-05-01 01:49:46 +00:00
memcpy(data, pixels, size);
data += size;
}
}
}
2022-04-30 03:38:34 +00:00
gpu_texture_init(texture->gpu, &(gpu_texture_info) {
.type = (gpu_texture_type) info->type,
.format = (gpu_texture_format) info->format,
.size = { info->width, info->height, info->depth },
.mipmaps = texture->info.mipmaps,
.samples = MAX(info->samples, 1),
.usage =
((info->usage & TEXTURE_SAMPLE) ? GPU_TEXTURE_SAMPLE : 0) |
((info->usage & TEXTURE_RENDER) ? GPU_TEXTURE_RENDER : 0) |
((info->usage & TEXTURE_STORAGE) ? GPU_TEXTURE_STORAGE : 0) |
2022-05-07 00:26:59 +00:00
((info->usage & TEXTURE_TRANSFER) ? GPU_TEXTURE_COPY_SRC | GPU_TEXTURE_COPY_DST : 0),
2022-04-30 03:38:34 +00:00
.srgb = info->srgb,
.handle = info->handle,
2022-05-01 01:49:46 +00:00
.label = info->label,
.upload = {
.stream = getTransfers(),
.buffer = scratchpad,
.levelCount = levelCount,
.levelOffsets = levelOffsets,
.generateMipmaps = levelCount < mipmaps
}
2022-04-30 03:38:34 +00:00
});
// Automatically create a renderable view for renderable non-volume textures
2022-04-30 16:13:21 +00:00
if ((info->usage & TEXTURE_RENDER) && info->type != TEXTURE_3D && info->depth <= state.limits.renderSize[2]) {
2022-04-30 03:38:34 +00:00
if (info->mipmaps == 1) {
texture->renderView = texture->gpu;
} else {
gpu_texture_view_info view = {
.source = texture->gpu,
.type = GPU_TEXTURE_ARRAY,
.layerCount = info->depth,
.levelCount = 1
};
texture->renderView = malloc(gpu_sizeof_texture());
lovrAssert(texture->renderView, "Out of memory");
lovrAssert(gpu_texture_init_view(texture->renderView, &view), "Failed to create texture view");
}
}
return texture;
}
Texture* lovrTextureCreateView(TextureViewInfo* view) {
const TextureInfo* info = &view->parent->info;
uint32_t maxDepth = info->type == TEXTURE_3D ? MAX(info->depth >> view->levelIndex, 1) : info->depth;
lovrCheck(!info->parent, "Can't nest texture views");
lovrCheck(view->type != TEXTURE_3D, "Texture views may not be volume textures");
lovrCheck(view->layerCount > 0, "Texture view must have at least one layer");
lovrCheck(view->levelCount > 0, "Texture view must have at least one mipmap");
lovrCheck(view->layerIndex + view->layerCount <= maxDepth, "Texture view layer range exceeds depth of parent texture");
lovrCheck(view->levelIndex + view->levelCount <= info->mipmaps, "Texture view mipmap range exceeds mipmap count of parent texture");
lovrCheck(view->layerCount == 1 || view->type != TEXTURE_2D, "2D texture can only have a single layer");
lovrCheck(view->levelCount == 1 || info->type != TEXTURE_3D, "Views of volume textures may only have a single mipmap level");
lovrCheck(view->layerCount == 6 || view->type != TEXTURE_CUBE, "Cubemaps can only have a six layers");
Texture* texture = calloc(1, sizeof(Texture) + gpu_sizeof_texture());
lovrAssert(texture, "Out of memory");
texture->ref = 1;
texture->gpu = (gpu_texture*) (texture + 1);
texture->info = *info;
texture->info.parent = view->parent;
texture->info.mipmaps = view->levelCount;
texture->info.width = MAX(info->width >> view->levelIndex, 1);
texture->info.height = MAX(info->height >> view->levelIndex, 1);
texture->info.depth = view->layerCount;
gpu_texture_init_view(texture->gpu, &(gpu_texture_view_info) {
.source = view->parent->gpu,
.type = (gpu_texture_type) view->type,
.layerIndex = view->layerIndex,
.layerCount = view->layerCount,
.levelIndex = view->levelIndex,
.levelCount = view->levelCount
});
if (view->levelCount == 1 && view->type != TEXTURE_3D && view->layerCount <= 6) {
texture->renderView = texture->gpu;
}
lovrRetain(view->parent);
return texture;
}
2022-04-30 03:38:34 +00:00
void lovrTextureDestroy(void* ref) {
Texture* texture = ref;
lovrRelease(texture->info.parent, lovrTextureDestroy);
if (texture->renderView && texture->renderView != texture->gpu) gpu_texture_destroy(texture->renderView);
if (texture->gpu) gpu_texture_destroy(texture->gpu);
free(texture);
}
const TextureInfo* lovrTextureGetInfo(Texture* texture) {
return &texture->info;
}
2022-05-01 22:47:17 +00:00
// Sampler
Sampler* lovrSamplerCreate(SamplerInfo* info) {
lovrCheck(info->range[1] < 0.f || info->range[1] >= info->range[0], "Invalid Sampler mipmap range");
lovrCheck(info->anisotropy <= state.limits.anisotropy, "Sampler anisotropy (%f) exceeds anisotropy limit (%f)", info->anisotropy, state.limits.anisotropy);
Sampler* sampler = calloc(1, sizeof(Sampler) + gpu_sizeof_sampler());
lovrAssert(sampler, "Out of memory");
sampler->ref = 1;
2022-05-01 22:47:17 +00:00
sampler->gpu = (gpu_sampler*) (sampler + 1);
sampler->info = *info;
gpu_sampler_info gpu = {
.min = (gpu_filter) info->min,
.mag = (gpu_filter) info->mag,
.mip = (gpu_filter) info->mip,
.wrap[0] = (gpu_wrap) info->wrap[0],
.wrap[1] = (gpu_wrap) info->wrap[1],
.wrap[2] = (gpu_wrap) info->wrap[2],
.compare = (gpu_compare_mode) info->compare,
.anisotropy = MIN(info->anisotropy, state.limits.anisotropy),
.lodClamp = { info->range[0], info->range[1] }
};
gpu_sampler_init(sampler->gpu, &gpu);
2022-05-01 22:47:17 +00:00
return sampler;
}
void lovrSamplerDestroy(void* ref) {
Sampler* sampler = ref;
gpu_sampler_destroy(sampler->gpu);
free(sampler);
}
const SamplerInfo* lovrSamplerGetInfo(Sampler* sampler) {
return &sampler->info;
}
// Shader
Blob* lovrGraphicsCompileShader(ShaderStage stage, Blob* source) {
#ifdef LOVR_USE_GLSLANG
const glslang_stage_t stages[] = {
[STAGE_VERTEX] = GLSLANG_STAGE_VERTEX,
[STAGE_FRAGMENT] = GLSLANG_STAGE_FRAGMENT,
[STAGE_COMPUTE] = GLSLANG_STAGE_COMPUTE
};
const glslang_resource_t* resource = glslang_default_resource();
glslang_input_t input = {
.language = GLSLANG_SOURCE_GLSL,
.stage = stages[stage],
.client = GLSLANG_CLIENT_VULKAN,
.client_version = GLSLANG_TARGET_VULKAN_1_1,
.target_language = GLSLANG_TARGET_SPV,
.target_language_version = GLSLANG_TARGET_SPV_1_3,
.code = source->data,
.default_version = 460,
.default_profile = GLSLANG_NO_PROFILE,
.resource = resource
};
glslang_shader_t* shader = glslang_shader_create(&input);
if (!glslang_shader_preprocess(shader, &input)) {
lovrLog(LOG_INFO, "Could not preprocess shader: %s", glslang_shader_get_info_log(shader));
return NULL;
}
if (!glslang_shader_parse(shader, &input)) {
lovrLog(LOG_INFO, "Could not parse shader: %s", glslang_shader_get_info_log(shader));
return NULL;
}
glslang_program_t* program = glslang_program_create();
glslang_program_add_shader(program, shader);
if (!glslang_program_link(program, 0)) {
lovrLog(LOG_INFO, "Could not link shader: %s", glslang_program_get_info_log(program));
return NULL;
}
glslang_program_SPIRV_generate(program, stages[stage]);
void* words = glslang_program_SPIRV_get_ptr(program);
size_t size = glslang_program_SPIRV_get_size(program) * 4;
void* data = malloc(size);
lovrAssert(data, "Out of memory");
memcpy(data, words, size);
Blob* blob = lovrBlobCreate(data, size, "SPIRV");
glslang_program_delete(program);
glslang_shader_delete(shader);
return blob;
#endif
return NULL;
}
Shader* lovrShaderCreate(ShaderInfo* info) {
Shader* shader = calloc(1, sizeof(Shader) + gpu_sizeof_shader());
lovrAssert(shader, "Out of memory");
shader->ref = 1;
shader->gpu = (gpu_shader*) (shader + 1);
shader->info = *info;
gpu_shader_info gpu = {
.stages[0] = { info->stages[0]->data, info->stages[0]->size },
.stages[1] = { info->stages[1]->data, info->stages[1]->size }
};
gpu_shader_init(shader->gpu, &gpu);
return shader;
}
void lovrShaderDestroy(void* ref) {
Shader* shader = ref;
gpu_shader_destroy(shader->gpu);
free(shader);
}
const ShaderInfo* lovrShaderGetInfo(Shader* shader) {
return &shader->info;
}
// Pass
Pass* lovrGraphicsGetPass(PassInfo* info) {
beginFrame();
Pass* pass = tempAlloc(sizeof(Pass));
pass->ref = 1;
pass->info = *info;
pass->stream = gpu_stream_begin(info->label);
return pass;
}
void lovrPassDestroy(void* ref) {
//
}
const PassInfo* lovrPassGetInfo(Pass* pass) {
return &pass->info;
}
2022-05-07 00:26:38 +00:00
void lovrPassPush(Pass* pass, StackType stack) {
if (stack == STACK_TRANSFORM) {
pass->transform = pass->transforms[++pass->transformIndex];
lovrCheck(pass->transformIndex < COUNTOF(pass->transforms), "Transform stack overflow (more pushes than pops?)");
mat4_init(pass->transforms[pass->transformIndex], pass->transforms[pass->transformIndex - 1]);
}
}
void lovrPassPop(Pass* pass, StackType stack) {
if (stack == STACK_TRANSFORM) {
pass->transform = pass->transforms[--pass->transformIndex];
lovrCheck(pass->transformIndex < COUNTOF(pass->transforms), "Transform stack underflow (more pops than pushes?)");
}
}
void lovrPassOrigin(Pass* pass) {
mat4_identity(pass->transform);
}
void lovrPassTranslate(Pass* pass, vec3 translation) {
mat4_translate(pass->transform, translation[0], translation[1], translation[2]);
}
void lovrPassRotate(Pass* pass, quat rotation) {
mat4_rotateQuat(pass->transform, rotation);
}
void lovrPassScale(Pass* pass, vec3 scale) {
mat4_scale(pass->transform, scale[0], scale[1], scale[2]);
}
void lovrPassTransform(Pass* pass, mat4 transform) {
mat4_mul(pass->transform, transform);
}
2022-05-11 19:50:26 +00:00
void lovrPassSetAlphaToCoverage(Pass* pass, bool enabled) {
pass->pipeline->dirty |= enabled != pass->pipeline->info.multisample.alphaToCoverage;
pass->pipeline->info.multisample.alphaToCoverage = enabled;
}
void lovrPassSetBlendMode(Pass* pass, BlendMode mode, BlendAlphaMode alphaMode) {
if (mode == BLEND_NONE) {
pass->pipeline->dirty |= pass->pipeline->info.color[0].blend.enabled;
memset(&pass->pipeline->info.color[0].blend, 0, sizeof(gpu_blend_state));
return;
}
gpu_blend_state* blend = &pass->pipeline->info.color[0].blend;
switch (mode) {
case BLEND_ALPHA:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ONE_MINUS_SRC_ALPHA;
blend->color.op = GPU_BLEND_ADD;
blend->alpha.src = GPU_BLEND_ONE;
blend->alpha.dst = GPU_BLEND_ONE_MINUS_SRC_ALPHA;
blend->alpha.op = GPU_BLEND_ADD;
break;
case BLEND_ADD:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ONE;
blend->color.op = GPU_BLEND_ADD;
blend->alpha.src = GPU_BLEND_ZERO;
blend->alpha.dst = GPU_BLEND_ONE;
blend->alpha.op = GPU_BLEND_ADD;
break;
case BLEND_SUBTRACT:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ONE;
blend->color.op = GPU_BLEND_RSUB;
blend->alpha.src = GPU_BLEND_ZERO;
blend->alpha.dst = GPU_BLEND_ONE;
blend->alpha.op = GPU_BLEND_RSUB;
break;
case BLEND_MULTIPLY:
blend->color.src = GPU_BLEND_DST_COLOR;
blend->color.dst = GPU_BLEND_ZERO;
blend->color.op = GPU_BLEND_ADD;
blend->alpha.src = GPU_BLEND_DST_COLOR;
blend->alpha.dst = GPU_BLEND_ZERO;
blend->alpha.op = GPU_BLEND_ADD;
break;
case BLEND_LIGHTEN:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ZERO;
blend->color.op = GPU_BLEND_MAX;
blend->alpha.src = GPU_BLEND_ONE;
blend->alpha.dst = GPU_BLEND_ZERO;
blend->alpha.op = GPU_BLEND_MAX;
break;
case BLEND_DARKEN:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ZERO;
blend->color.op = GPU_BLEND_MIN;
blend->alpha.src = GPU_BLEND_ONE;
blend->alpha.dst = GPU_BLEND_ZERO;
blend->alpha.op = GPU_BLEND_MIN;
break;
case BLEND_SCREEN:
blend->color.src = GPU_BLEND_SRC_ALPHA;
blend->color.dst = GPU_BLEND_ONE_MINUS_SRC_COLOR;
blend->color.op = GPU_BLEND_ADD;
blend->alpha.src = GPU_BLEND_ONE;
blend->alpha.dst = GPU_BLEND_ONE_MINUS_SRC_COLOR;
blend->alpha.op = GPU_BLEND_ADD;
break;
default: lovrUnreachable();
};
if (alphaMode == BLEND_PREMULTIPLIED && mode != BLEND_MULTIPLY) {
blend->color.src = GPU_BLEND_ONE;
}
blend->enabled = true;
pass->pipeline->dirty = true;
}
void lovrPassSetColorMask(Pass* pass, bool r, bool g, bool b, bool a) {
uint8_t mask = (r << 0) | (g << 1) | (b << 2) | (a << 3);
pass->pipeline->dirty |= pass->pipeline->info.color[0].mask != mask;
pass->pipeline->info.color[0].mask = mask;
}
void lovrPassSetCullMode(Pass* pass, CullMode mode) {
pass->pipeline->dirty |= pass->pipeline->info.rasterizer.cullMode != (gpu_cull_mode) mode;
pass->pipeline->info.rasterizer.cullMode = (gpu_cull_mode) mode;
}
void lovrPassSetDepthTest(Pass* pass, CompareMode test) {
pass->pipeline->dirty |= pass->pipeline->info.depth.test != (gpu_compare_mode) test;
pass->pipeline->info.depth.test = (gpu_compare_mode) test;
}
void lovrPassSetDepthWrite(Pass* pass, bool write) {
pass->pipeline->dirty |= pass->pipeline->info.depth.write != write;
pass->pipeline->info.depth.write = write;
}
void lovrPassSetDepthOffset(Pass* pass, float offset, float sloped) {
pass->pipeline->info.rasterizer.depthOffset = offset;
pass->pipeline->info.rasterizer.depthOffsetSloped = sloped;
pass->pipeline->dirty = true;
}
void lovrPassSetDepthClamp(Pass* pass, bool clamp) {
if (state.features.depthClamp) {
pass->pipeline->dirty |= pass->pipeline->info.rasterizer.depthClamp != clamp;
pass->pipeline->info.rasterizer.depthClamp = clamp;
}
}
void lovrPassSetShader(Pass* pass, Shader* shader) {
lovrRetain(shader);
lovrRelease(pass->pipeline->shader, lovrShaderDestroy);
pass->pipeline->shader = shader;
pass->pipeline->info.shader = shader ? shader->gpu : NULL;
pass->pipeline->dirty = true;
}
void lovrPassSetStencilTest(Pass* pass, CompareMode test, uint8_t value, uint8_t mask) {
bool hasReplace = false;
hasReplace |= pass->pipeline->info.stencil.failOp == GPU_STENCIL_REPLACE;
hasReplace |= pass->pipeline->info.stencil.depthFailOp == GPU_STENCIL_REPLACE;
hasReplace |= pass->pipeline->info.stencil.passOp == GPU_STENCIL_REPLACE;
if (hasReplace && test != COMPARE_NONE) {
lovrCheck(value == pass->pipeline->info.stencil.value, "When stencil write is 'replace' and stencil test is active, their values must match");
}
switch (test) { // (Reversed compare mode)
case COMPARE_NONE: default: pass->pipeline->info.stencil.test = GPU_COMPARE_NONE; break;
case COMPARE_EQUAL: pass->pipeline->info.stencil.test = GPU_COMPARE_EQUAL; break;
case COMPARE_NEQUAL: pass->pipeline->info.stencil.test = GPU_COMPARE_NEQUAL; break;
case COMPARE_LESS: pass->pipeline->info.stencil.test = GPU_COMPARE_GREATER; break;
case COMPARE_LEQUAL: pass->pipeline->info.stencil.test = GPU_COMPARE_GEQUAL; break;
case COMPARE_GREATER: pass->pipeline->info.stencil.test = GPU_COMPARE_LESS; break;
case COMPARE_GEQUAL: pass->pipeline->info.stencil.test = GPU_COMPARE_LEQUAL; break;
}
pass->pipeline->info.stencil.testMask = mask;
if (test != COMPARE_NONE) pass->pipeline->info.stencil.value = value;
pass->pipeline->dirty = true;
}
void lovrPassSetStencilWrite(Pass* pass, StencilAction actions[3], uint8_t value, uint8_t mask) {
bool hasReplace = actions[0] == STENCIL_REPLACE || actions[1] == STENCIL_REPLACE || actions[2] == STENCIL_REPLACE;
if (hasReplace && pass->pipeline->info.stencil.test != GPU_COMPARE_NONE) {
lovrCheck(value == pass->pipeline->info.stencil.value, "When stencil write is 'replace' and stencil test is active, their values must match");
}
pass->pipeline->info.stencil.failOp = (gpu_stencil_op) actions[0];
pass->pipeline->info.stencil.depthFailOp = (gpu_stencil_op) actions[1];
pass->pipeline->info.stencil.passOp = (gpu_stencil_op) actions[2];
pass->pipeline->info.stencil.writeMask = mask;
if (hasReplace) pass->pipeline->info.stencil.value = value;
pass->pipeline->dirty = true;
}
void lovrPassSetWinding(Pass* pass, Winding winding) {
pass->pipeline->dirty |= pass->pipeline->info.rasterizer.winding != (gpu_winding) winding;
pass->pipeline->info.rasterizer.winding = (gpu_winding) winding;
}
void lovrPassSetWireframe(Pass* pass, bool wireframe) {
if (state.features.wireframe) {
pass->pipeline->dirty |= pass->pipeline->info.rasterizer.wireframe != (gpu_winding) wireframe;
pass->pipeline->info.rasterizer.wireframe = wireframe;
}
}
2022-04-21 07:27:13 +00:00
// Helpers
static void* tempAlloc(size_t size) {
2022-04-27 05:44:44 +00:00
while (state.allocator.cursor + size > state.allocator.length) {
lovrAssert(state.allocator.length << 1 <= MAX_FRAME_MEMORY, "Out of memory");
os_vm_commit(state.allocator.memory + state.allocator.length, state.allocator.length);
state.allocator.length <<= 1;
}
uint32_t cursor = ALIGN(state.allocator.cursor, 8);
state.allocator.cursor = cursor + size;
return state.allocator.memory + cursor;
}
static void beginFrame(void) {
if (state.active) {
return;
}
state.active = true;
state.tick = gpu_begin();
}
static gpu_stream* getTransfers(void) {
if (!state.transfers) {
state.transfers = lovrGraphicsGetPass(&(PassInfo) {
.type = PASS_TRANSFER,
.label = "Internal Transfers"
});
}
return state.transfers->stream;
}
2022-04-30 03:38:34 +00:00
// Returns number of bytes of a 3D texture region of a given format
static size_t measureTexture(TextureFormat format, uint16_t w, uint16_t h, uint16_t d) {
switch (format) {
case FORMAT_R8: return w * h * d;
case FORMAT_RG8:
case FORMAT_R16:
case FORMAT_R16F:
case FORMAT_RGB565:
case FORMAT_RGB5A1:
case FORMAT_D16: return w * h * d * 2;
case FORMAT_RGBA8:
case FORMAT_RG16:
case FORMAT_RG16F:
case FORMAT_R32F:
case FORMAT_RG11B10F:
case FORMAT_RGB10A2:
case FORMAT_D24S8:
case FORMAT_D32F: return w * h * d * 4;
case FORMAT_RGBA16:
case FORMAT_RGBA16F:
case FORMAT_RG32F: return w * h * d * 8;
case FORMAT_RGBA32F: return w * h * d * 16;
case FORMAT_BC1:
case FORMAT_BC2:
case FORMAT_BC3:
case FORMAT_BC4U:
case FORMAT_BC4S:
case FORMAT_BC5U:
case FORMAT_BC5S:
case FORMAT_BC6UF:
case FORMAT_BC6SF:
case FORMAT_BC7:
case FORMAT_ASTC_4x4: return ((w + 3) / 4) * ((h + 3) / 4) * d * 16;
case FORMAT_ASTC_5x4: return ((w + 4) / 5) * ((h + 3) / 4) * d * 16;
case FORMAT_ASTC_5x5: return ((w + 4) / 5) * ((h + 4) / 5) * d * 16;
case FORMAT_ASTC_6x5: return ((w + 5) / 6) * ((h + 4) / 5) * d * 16;
case FORMAT_ASTC_6x6: return ((w + 5) / 6) * ((h + 5) / 6) * d * 16;
case FORMAT_ASTC_8x5: return ((w + 7) / 8) * ((h + 4) / 5) * d * 16;
case FORMAT_ASTC_8x6: return ((w + 7) / 8) * ((h + 5) / 6) * d * 16;
case FORMAT_ASTC_8x8: return ((w + 7) / 8) * ((h + 7) / 8) * d * 16;
case FORMAT_ASTC_10x5: return ((w + 9) / 10) * ((h + 4) / 5) * d * 16;
case FORMAT_ASTC_10x6: return ((w + 9) / 10) * ((h + 5) / 6) * d * 16;
case FORMAT_ASTC_10x8: return ((w + 9) / 10) * ((h + 7) / 8) * d * 16;
case FORMAT_ASTC_10x10: return ((w + 9) / 10) * ((h + 9) / 10) * d * 16;
case FORMAT_ASTC_12x10: return ((w + 11) / 12) * ((h + 9) / 10) * d * 16;
case FORMAT_ASTC_12x12: return ((w + 11) / 12) * ((h + 11) / 12) * d * 16;
default: lovrUnreachable();
}
}
2022-04-21 07:27:13 +00:00
static void onMessage(void* context, const char* message, bool severe) {
if (severe) {
lovrLog(LOG_ERROR, "GPU", message);
} else {
lovrLog(LOG_DEBUG, "GPU", message);
}
}